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Vocal tract morphology is an important factor in voice production. Its analysis has potential implications for educational matters
as well as medical issues like voice therapy. The knowledge of the complex adjustments in the spatial geometry of the vocal tract
during phonation is still limited. For a major part, this is due to difficulties in acquiring geometry data of the vocal tract in the
process of voice production. In this study, a centerline-based segmentation method using active contours was introduced to extract
the geometry data of the vocal tract obtained with MRI during sustained vowel phonation. The applied semiautomatic algorithm
was found to be time- and interaction-efficient and allowed performing various three-dimensional measurements on the resulting
model. The method is suitable for an improved detailed analysis of the vocal tract morphology during speech or singing which
might give some insights into the underlying mechanical processes.

1. Introduction

The process of human voice production involves a complex
interaction of different components and mechanisms. It
involves the generation of a pulsating transglottal airflow
which is filtered by the vocal tract (VT) resonator. The
shape of the VT, the aeroacoustic cavity between the vocal
folds and the lips, defines the formant frequencies and the
frequency response of the filter which, in turn, defines vowels,
consonants, and essential parts of voice timbre [1].

Magnetic resonance imaging (MRI) has become a
promising technique for investigating the VT at a functional
stage. MRI delivers images of high spatial resolution which
can be analyzed in two dimensions within a single sagittal
plane allowing for detailed analysis of dynamic VT adjust-
ments during speech or even singing. For a detailed overview,
see [2].

The elongated structure of the VT along with its curved
shapemakes segmentation feasible with the use of centerline-
based methods. In medical imaging, these approaches have
been successfully used in vessel segmentation [3]. The image
stack is transformed into a coordinate systemwhich is aligned
with the centerline, and the cross sections are segmented.This
makes a reduction of the 3D segmentation problem to a set of
two-dimensional problems possible.

In many cases, the estimation of the centerline is a
problem in itself, as in the aforementioned vessel segmen-
tation task. There exist a broad variety of segmentation
methods which compute the centerline on runtime, based on
segmentation results of previous cross sections. Some of them
postulate a circular [4] or else analytically defined [5] cross-
section shape. Other authorsmake use of deformablemodels,
subsequently skeletonizing the shape and extrapolating the
resulting centerline, such as Li andOurselin [6]. In our recent
study on the cochlea [7], we also used deformable models in
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form of active contours [8] but predicted the centerline via
mass centers of cross sections with the help of a Kalman filter
[9].

With regard to segmentation, the geometrical structure
of the VT poses similar challenges as vessel or cochlear
segmentation. The potential of tomographic imaging tech-
niques, especially MRI, to deliver three-dimensional (3D)
image stacks of the VT has been exploited, for instance, to
analyze area functions during sustained phonation [10, 11]. So
far though, applications to the VT mostly included manual
segmentation or relatively simple segmentation algorithms.
Although publications on 3D modeling of the VT exist for
quite some time [12, 13], they rely on manual segmentation.

A few centerline-based methods have been applied to the
VT. However, most studies focus solely on the extraction of
the area function by employing 2Dmethods such as threshold
segmentation [14, 15]. A 3D centerline-based approach was
presented by Vampola et al. [16], yet it still suggests seg-
menting individual cross sections manually. While manual
segmentation requires little implementation error and is
thereby a good tool for exploratory analysis, it has the
drawback of being time-consuming, a factor that precludes
its application to large sets of individual data.

There are several studies published which use region
growing for the segmentation of VT [17, 18]. This method
does not allow for the immediate studying of VT cross
sections as it lacks a centerline. In order to measure cross-
sectional areas, the centerline has to be constructed a pos-
teriori, and the resulting segmented body cut along this
centerline.This process might be nontrivial if there are bifur-
cations along the path. Indeed, VT has minor bifurcations:
the piriform sinuses (sinus piriformes) and vallecula. On the
other hand, vocal tract cross-sectional area has attracted
considerable interest within the research community [19–23],
since it plays an important role in the acoustics of speech
and singing. Functional VT adjustments during phonation
seem to be of importance not only for educational purposes
but also for the medical field, where voice problems, for
example, among professional voice users continue to bring
about considerable socioeconomic burdens for the health
care systems [24, 25].

Thus, in this study, we attempt to develop a VT segmen-
tation algorithm which satisfies the following: (1) reduced
operator interaction and time efforts and (2) direct data
output on both VT cross sections and 3D geometry.

2. Materials and Methods

2.1. Image Data Acquisition and Sound Recording. A 43-year-
oldmale test subject (height: 1.90m,weight: 108 kg)was asked
to produce a sustained vowel in a 3.0-T MR system (Verio;
Siemens Medical Solutions, Erlangen, Germany) and to keep
articulation constant during the recording. The task was
specified regarding vowel quality (closed midback rounded
vowel /o/ as in German “Boot”), pitch (220Hz/ A3), and
phonatory condition (speaking voice). The MRI recording
was initiated as soon as the subject had started phonation.
The MRI was performed with a 12-element head-neck coil.
The applied MRI sequence was a volumetric interpolated

breath-hold examination sequence with an acquisition time
of about 12 s. A set of 52 sagittal slices of the whole VT
was obtained. The parameter setting was the following: slice
thickness 1.8mm, repetition time 4.01ms, echo time 1.22ms,
matrix 288 × 288, field of view 300 × 300mm, and flip angle
9
∘.The obtained resolution of the imageswas 1.04mm.Due to
the known limitations of the MRI to visualize structures with
low water content, the teeth were not detected in the MRI
scan. For the segmentation of the oral cavity the segments
were forced manually to remain between the tongue and the
maxillary bone leaving out the space of the teeth.

An optical microphone unit (MO 2000 from Sennheiser)
and a laptop PC running Audacity software (Dominic
Mazzoni et al., http://audacity.sourceforge.net/, retrieved on
January 20, 2015) were used for sound recording within the
MRI facility. The acoustical recording was used to ensure
vowel quality and pitch correctness.

2.2. Processing of Images and Coordinate Transform. The 52
sagittal images were stacked and scaled by a factor of 3.0
with ImageJ (National Institutes of Health, Bethesda, MD,
USA) resulting in 156 images with a pixel size of 0.35mm.
This scaling was necessary to facilitate the later segmentation.
Then, the images were resliced to the coronal view in order
to fit the distance between slices to 0.35mm and to obtain
uniformly sized voxels.The reslicewas repeated a second time
with default settings to obtain sagittally oriented images.

For further image processing, the used algorithms were
implemented in our software IPTools (freeware: http://www
.uniklinikum-dresden.de/das-klinikum/kliniken-poliklini-
ken-institute/hno/forschung/forschungslabor-gehor/links,
last inspected January 20, 2015). In order to increase the
grayscale gradient at the air-tissue border of the VT, the
image stacks were filtered using anisotropic diffusion [26].

On the midsagittal image of the stack, the centerline
was drawn (see Figure 1). This was done by defining node
points such that the centerline intersects the tip of the uvula
and the crossing of ventricular folds and the arytenoids.
This procedure was established to ensure repeatability for
application to other subjects while keeping the orientation
of transformed slices near-orthogonal to the pharyngeal
axis. Moreover, this provides a near-parallel slicing of the
ventricular folds which is essential for calculating the area
function in this region.

The centerline was piecewise interpolated between these
nodes using cubic splines:
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Subsequently, the image stack was transformed along the
curve with a fixed spacing of 1 pixel between new images
resulting in a distance of 1.04 millimeters between centers of
images. The center of each image of the new stack was set at
the respective position on c(𝑡

𝑐
). The coordinate axes were set
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Figure 1: Four examples of vocal tract cross sections at different levels: (a) anterior oral cavity, (b) central oral cavity, (c) hypopharynx at
inferior vallecula, and (d) larynx.

to the Frenet vectors of the curve at this position; specifically,
the 𝑥-axis was set to the normalized binormal vector b, the
𝑦-axis to the negated normalized normal vector −n, and the
𝑧-axis to the normalized tangent vector t. The negation of the
normal vector was necessary since the coordinate system of
an image stack was defined as left-hand.

From these definitions, we could derive the following
affine transform matrix for each 𝑡

𝑐
:
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Note that the binormal vector b = [𝑏
𝑥
, 𝑏
𝑦
, 𝑏
𝑧
]
T is defined as

b = ̇c × ̈c. (3)

The transformation with a set of such matrices delivered a
stack of several hundred images, where each image displayed
the cross section in a manner feasible for 2D segmentation.

2.3. Segmentation. The segmentation was performed with
a greedy variant of active contours [8]. A circular discrete
starting contour was initialized with a center at user-defined
position. Each node of the contour had the energy balance

𝐸 = 𝐸cont + 𝐸curv + 𝐸ext + 𝐸dev. (4)

Here,𝐸cont is the contour energywhich controls the expansive
behavior of the contour. It is defined by a first-order derivative
of the active contour curve function k(𝑡V):

𝐸cont = 𝛼 ⋅
∇k (𝑡V)


2

. (5)

𝐸curv is the curvature energy which models the bending
stiffness of the contour via the second-order derivative of the
curve function:

𝐸curv = 𝛽 ⋅
Δk (𝑡V)


2

. (6)

The external energy 𝐸ext provides the contour with edge
detection and is proportional to the negated square norm of
the grayscale gradient:

𝐸ext = −𝛾 ⋅
∇𝐼 (𝑥, 𝑦)
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Finally, the deviation energy 𝐸dev provides cross links
between contours on adjacent tomogram images:

𝐸dev = 𝛿 ⋅ 𝑑
4

. (8)

Here, 𝑑 is the distance to the nearest node of the contour on
previous image. In the first contour, this energy is set to zero.
TheGreek letters in (5)–(8) indicate user-defined parameters.

A search for the localminimumof the energy sumover all
nodes was performed.This caused the contour to expand and
adapt to the cross section of the vocal tract iteratively. When
the contour stopped moving, the finding of local energy
minimum was stated and the algorithm moved to the next
image. Alternatively, the processing of the contour on an
image stopped when the number of iterations exceeded a
predefined threshold (𝑛 = 30). On the next image, a new
contour was initialized with the end result of the previous
image.

As the contour expanded, new points were added
between any two neighboring points, whose spacing
exceeded a predefined value 𝑠max. Similarly, one of two points
was deleted if the spacing became lower than 𝑠min after
any iteration. For this purpose, the values were defined as
𝑠max = 4𝑠min and 𝑠min = 3 px.

The algorithm progress through the image stack was
terminated at user’s command.The accuracy of the segments
was checked by an experienced laryngologist and corrected
manually if needed.

The resulting segment stack was realigned with the
information of the centerline curvature and visualized using
Amira (FEI Visualization Sciences Group, Burlington, MA,
USA).

3. Results and Discussion

Using the abovementioned methods, we were able to seg-
ment cross sections along the entire vocal tract (Figure 1).
Total time used for segmentation (excluding filtering with
anisotropic diffusion) was about 90 minutes.

To estimate algorithm objectivity, we performed the
segmentation including centerline positioning twice. Out of
the segmented data, we computed the area functions which
are plotted against each other on Figure 2.The graphs appear
to be highly correspondent down to the ventricular folds,
scattering only in the region of the laryngeal ventricle. We
assume that this is due to phonatory vibrations which cause
blurring artifacts on VT borders and decrease the precision
of segmentation.

We calculated reference volumes by superposition of
segment areas. The total volume of the VT was estimated at
50528mm3. The volume of the oral cavity was 25965mm3,
the combined volume of oropharynx and hypopharynx
(segments from uvula to arytenoids including the sinus pir-
iformes) was 21900mm3, and the volume of larynx (segments
from arytenoids to glottis) was 2663mm3.

As a method of validation, we calculated the acoustic
transfer function of the VT using PRAAT (Paul Boersma
and David Weenink, http://www.fon.hum.uva.nl/praat/). It
is displayed in Figure 3 and shows distinct peaks which are
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Figure 2: Cross-sectional area function obtained from two segmen-
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Figure 3: Transfer function computed with PRAAT based on the
calculated area functions (Figure 2, green line). Light green stripes
denote frequencies of the first two formants according to [27].

fairly coincident with the 1st and the 2nd formants for the
utilized vowel [27].

With the obtained VT cross-section model, the geomet-
rical analysis within all three spatial dimensions becomes
feasible. The complete set of segmented cross sections,
transformed from centerline-based coordinate system back
to the global coordinate system (Figure 4(a)), is shown in
Figure 4(b). Triangulation of this set yielded a surface mesh
of the vocal tract shown on Figure 4(c). A close-up on the
lower VT showing the high-detailed resolution of the larynx
segmentation is displayed in Figure 4(d).This resulting mesh
can serve as direct input for further numerical simulations
using, for example, finite element modeling.

The accuracy of the model is dependent on the used
MRI tomography device and the stability of the test sub-
ject over time. A natural challenge to the stability is the
requirement to the subject to keep a constant articulatory
setting and tomaintain phonation during the entire recording
procedure. This is necessary to produce enough images to
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Figure 4: Vocal tract geometry modeling results: (a) centerline position within a midsagittal slice, (b) spatial alignment of the resulting
cross-sectional segments, (c) generated surface mesh and its location within the image stack, and (d) detailed coronal view of the lower vocal
tract.

cover the whole VT. There are hints that the movement
artifacts of the jaw during sustained phonation are in the
submillimeter order [28]. Yet this data represents only a
single subject. A detailed discussion of the accuracy of MRI
investigations prior to image processing is beyond the scope
of this methodological study but ought to require further
scientific attention.

The technical accuracy of the segmentation algorithm is
constrained by the obtained resolution of MRI images. Since
active contours cannot perform segmentation to a higher
precision than 1 pixel, the uncertainty in border estimation
corresponds to the resolution value, that is, 1.04mm, which is
well in range of state-of-the-art publications [15, 18]. Hence,
the error in cross-section area estimation is between ca. 20
and 50mm2, depending on the area value.

The amount of input image data calls for a time-efficient
and at least semiautomatic algorithm in order to reduceman-
hours spent on segmentation. Unlike vessels whose cross-
section shape does not vary much along the centerline, the
VT has highly variable cross-section geometry (cf. Figure 1).
A heuristic algorithm which is capable of handling arbitrary
shapes is active contours which are widely used in biological

imaging [29, 30]. It is based on the search of a steady-state
shape of discrete deformable contour under influence of an
equilibrium of internal and external forces. Internal forces
govern the intrinsic properties of the contour, expansion, and
stiffness. The external force creates a link to the image data,
attracting the contour to regions with the greatest gradient of
grayscale intensity.

4. Conclusion

By the presented approach for a complete MRI based 3D
segmentation of the VT at a functional state, we were able to
obtain a high-detailed model. The method could be used for
answering questions regarding the physics and mechanical
properties of the VT.
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