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Abstract

The total number of patents produced by a country (or the number of patents produced per capita) is often used as an
indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many
countries is well-described by power laws with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest
that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential
attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between
countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both
the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other
indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in
more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of
patents are filed by large companies than in less advanced countries.
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Introduction

Endogenous theories of economic growth relate behaviour at

the firm level to productivity growth through a variety of models of

the innovation process [1,2]. Despite the crucial role that firms and

their inter-relationships must undoubtedly play in economic

growth, a complete description of this complex system has eluded

economists. More than a century ago, one of the fathers of modern

economics, Alfred Marshall, drew on an analogy with forest

ecosystems to describe this system: ‘‘… we may read a lesson from the

young trees of the forest as they struggle upwards through the benumbing shade

of their older rivals. Many succumb on the way, and only a few survive… And

as with the growth of trees, so it was with the growth of businesses…’’ [3].

Today we have indications that this is more than just a metaphor.

Many observations support the idea that, as with the distribution

of biomass and metabolic rates amongst biological organisms [4],

the distribution of firm sizes follows a power law [5–9].

The validity of theories of economic growth, endogeneous or

otherwise, is generally judged by their ability to explain the

variance in the rates of economic growth between different

countries [10]. Although modern theories of growth often make

use of firm level models of the innovation process, these theories

are less often tested at this scale, despite our knowledge of a

number of pertinent stylised facts. When aggregated at the city

level, for instance, quantities such as the number of new patents,

inventors, research establishments and even productivity have

been found to follow power law scaling with respect to city size

[11,12]. Crucially, these measures of innovation scale super-

linearly; larger cities are more productive per capita than smaller

cities [13]. However when patent data is aggregated at the level of

countries, rather than cities or regions, we find that larger

countries do not consistently outperform smaller countries in

innovation. Economic geography tells us that cities exist to exploit

the benefits of agglomeration [14–16], so it is not necessarily

surprising that super-linear scaling for cities can be seen in patent

data. Countries exist for more complicated reasons.

Quantities such as patent counts or the number of researchers

are only a proxy for innovation however. While the OECD

regularly reports on national patent counts in its assessments of

national innovation performance, it is often pointed out that the

value of individual patents vary enormously [17]. This begs the

question: are straightforward counts of patents a good indicator of

innovation? Attempts to answer this by valuing patents have been

made using patent citations [18] and through patent renewals

[19]. In this article, we take another approach to measuring

innovation by looking at the distribution of patents within an

economy rather than just the total number of patents itself.

In particular, we report on several new stylised facts regarding

the distribution of intellectual property amongst firms in national

economic ecosystems. We consider the distribution of patents

among applicants within countries and find compelling evidence

that this distribution follows a power law in many instances.

However these power laws are not universal: the best-fit exponents

for these distributions differs from country to country by a

statistically significant amount. This suggests that firms within the

ecosystems of different countries experience different environ-

ments which influence their patenting behavior. Using a simple

preferential attachment model, based on the Yule process, we

show it is possible to reproduce the qualitative features observed in

the empirical data and to explain some of the variation of
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exponents between countries. We also find that the value of the

power law exponent is inversely correlated with a number of

indicators that are commonly linked with innovation, such as

research and development (R&D) intensity. Interestingly we find

that the value of the exponent saturates at high R&D intensities.

Methods

Empirical Distributions of Patents
In this study we have used the Organisation for Economic Co-

operation and Development (OECD) Harmonised Applicant

Name (HAN) data set from July 2011. This includes patent

applications filed at the European Patent Office (EPO) from 1977–

2007 with partial data from 2007 onwards. The data set covers 22

countries and has been harmonised by the OECD to correct for

cases where applicant details have been recorded differently on

different patent applications. Details of the harmonization

methodology are given in the documentation accompanying the

data set [20]. The use of the harmonised data is important. When

the same analysis was performed with non-harmonised data (from

the OECD REGPAT data set), large errors resulted from

fragmentation where a single unique applicant appeared as several

different applicants due to, for example, variations in recording the

applicant name. These errors are typically in the order of 5% to

15% of the value of the power law exponent, but are as high as

25% in cases.

Power law distributions are only one of many right-skewed, or

heavy-tailed distributions. By power law distribution we mean one

where the probability distribution P½X~x� of a discrete variable x
satisfies.

P½X~x�~Cx{a for x§xmin

where a is called the power law exponent or scaling parameter.

(Power law distributions are, of course, also defined for continuous

variables. In fact much of the resulting analysis is simpler in the

continuous case. See [21] for a good overview of power laws in

empirical data.) The scaling constant C is determined by the

requirement that probabilities sum to one: C~1=f(a,xmin), where

f(a,xmin)~
P?

n~0 (nzxmin){a is the Hurwitz zeta function. To

test rigorously whether the patent distributions observed follow

power laws, we follow the procedure described in [21]. We use a

maximum likelihood estimator for a discrete power law distribu-

tion to fit the exponent, and estimate the power law cut-off xmin by

choosing the value which minimises the Kolmogorov–Smirnov

statistic, D~maxx§xmin
DS(x){P(x)D, where S(x) is the cumula-

tive density function (CDF) of the data being fitted and P(x) is the

CDF of the fitted model distribution. The standard deviations of

the fitted values were calculated using a boot-strapping method,

drawing a sequence of points fx̂xi[fxig,i~1, . . . ,ng at random,

uniformly, and with replacement from the original distribution.

The fitted values are listed in Tab. 1 along with their estimated

standard errors. For most data, a power law is only fitted to the tail

of a distribution, i.e. for values greater than some xmin. The patent

distributions are interesting in that most countries show a good

power law fit for the entire range of the data.

In Tab. 1 we report two different estimates of the standard error

in a, the first sBS(a) is estimated via bootstrap method using the

Matlab code which accompanies [21]. This method can overes-

timate the value of the standard error in some cases – details are

given in chapter six of [22]. The second estimate, sAa uses the

analytic expression eqn (3.6) of [21] which gives an accurate

estimate of the standard error for a, in the case where the

underlying data are consistent with a power law model. When

comparing the estimated power law exponents of empirical and

simulated data, we use the boot strap estimate of the standard

error in the value of a for the empirical data.

The values in Tab. 1 for the standard errors in a and xmin give

us an indication of how precise the estimates of the best fit

parameters are, but they do not tell us whether the power law

model itself is a good fit. To quantify the goodness-of-fit of a power

law model to the empirical data we calculate a so-called p value

[21]. The value of p is essentially the fraction of the time when we

might expect a goodness-of-fit as poor, or poorer than, that of the

empirical data purely due to statistical fluctuations. A p value of 1

would indicate that the amount of mis-fit between the data and a

power law is entirely attributable to statistical fluctuations. Values

of p less than a threshold in the range of 0:05 to 0:1 are typically

used to rule out a power law fit. A threshold of p§0:1 would

exclude only four countries – Austria, Switzerland, Israel, and

Japan.

A Generative Model for Patent Distributions
We now describe a mathematical model which is intended to

reproduce the behaviour observed in the empirical data. Since it is

not clear why the distribution of patents amongst applicants should

necessarily follow a power law, and since the underlying rules or

patterns which lead to such a distribution for patents is not

obvious, it is important that our generative model follows some set

of rules or procedures which could credibly apply to growth in the

number of patents.

There is a large literature on generative models for power law

distributions, going back almost a century [23]. We use a model

equivalent to the Yule process [24], based on two assumptions; 1)

growth – the number of applicants with patents increases over

time, and 2) preferential attachment – the likelihood of an existing

applicant acquiring a new patent is proportional to the number of

patents that the applicant already holds.

These assumptions lead to the following algorithm: Beginning

with a single applicant holding a single patent, at each time step we

either add a new applicant holding a single patent or add a new

patent to an existing applicant. The rate at which new applicants

are added is determined by the growth rate c, which is fixed

throughout the simulation. When a patent is added to an existing

applicant the probability that it is attached to applicant i is given

by ki=
PN

j~1 kj , where kj is the number of patents held by

applicant j and N is the total number of applicants in the model at

that time step. Since only a single patent is added at each time

step, the (inverse of the) growth rate c gives (for large N) the

average number of patents per applicant. Since it is desirable that

a model should reproduce known quantities, such as the average

number of patents per applicant, we choose c~Napp=Npat using

the empirical data in Tab. 1. This ensures that this quantity

matches that observed empirically, and eliminates the only free

parameter in the model.

It is not difficult to prove that such an algorithm produces data

with a power law tail when the number of steps taken becomes

large [23] and that the power law exponent for the simulated

distribution tends towards a~2zc [25]. Hence, the exponents of

the simulated distributions are bounded below by 2, approaching

this limit as the average number of patents per applicant becomes

large.

Using this algorithm we simulated the growth of the

corresponding distribution of patents 500 times for each country,

determining the average value of a and its corresponding standard

deviation. In addition to comparing the simulated results with the

empirical patent data, we also tested the preferential attachment

Power Laws, Patents & Innovation
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model against a simple null model where the preferential

attachment rule was replaced by uniform random attachment.

Results and Analysis

Empirical Distributions of Patents
Several previous studies have considered patent data aggregated

at the level of cities or metropolitan regions. In the method

described above, we aggregate the patent data at the country level

in order to better understand the relationship between national

economies and innovation. In contrast to the findings for cities in

[11–13] where data are tightly clustered and show clear super-

linear scaling due to agglomoration effects, the number of patents

per country varies roughly linearly with a country’s population and

is poorly correlated in comparison with the results for cities, Fig. 1.

We infer from this that the agglomoration effects observed for

cities are absent at a national level. If we use patenting as a proxy

for innovation, then we conclude that the drivers of innovation at a

national level are different from those which lead to agglomeration

effects for innovation within cities and regions.

As a first step towards investigating the distribution of patents

amongst applicants, the cumulative density functions were plotted

for the 22 countries. These are shown, along with the fitted power

laws, in Fig. 2. The fit is generally strong, with only small

deviations between the data and the fitted models over four orders

of magnitude for most countries.

Various statistics such as the best-fit exponent, the xmin

threshold of the power law tail and the goodness-of-fit p value

were calculated from these distributions, and are presented in

Tab. 1 The main feature of Tab. 1 is that the power law exponents

for the 22 countries differ by an amount greater than their

estimated standard deviations. The exponents mostly lie between 2

and 2.5, with the exponent for many countries being close to a~2
– the threshold below which the mean value of the distribution

diverges. For countries with aw2, the expected mean value for the

fitted power law distribution is given by SxT~(a{1)=(a{2)xmin,

hence the expected mean number of patent applications per firm is

large for many of the countries.

Figure 3 shows a plot of the power law exponents and their

estimated standard deviations for each country. We order the

countries by the size of the exponent a. It is interesting to note that

the countries which are often thought of as having innovative or

‘‘high-tech’’ economies lie mostly towards the left of the plot, with

smaller power law exponents. The link between small exponents

and economies with highly specialized firms is reinforced by Fig. 4

where the rank of the countries by exponent is plotted against the

rank for the average ‘‘ubiquity’’ of the goods exported by that

country [26]. A low ubiquity rank indicates that the goods

exported by a country are exported by few other countries.

Hidalgo and Hausmann observed in the supplementary material

of [26] that industrialized countries export products in almost all

product categories, hence, specialization patterns are empirically

Table 1. Summary statistics for the patent distributions of the 22 countries.

ISO a sBS(a) sA(a) xmin s(xmin) p Napp Npat

AT 1.97 0.074827 0.0044163 3 1.0777 0.01 3214 18398

BE 1.93 0.017827 0.0091749 1 0.1 0.24 2746 20470

CA 1.99 0.022143 0.0079035 1 0.3266 0.16 4842 24276

CH 1.86 0.036726 0.0028699 2 1.9159 0.01 7907 74987

CN 2.23 0.031152 0.020124 1 0.14071 0.81 1930 7879

CZ 2.36 0.12005 0.052896 1 0.25643 0.16 438 910

DE 1.97 0.059017 0.0010264 18 6.681 0.29 32558 391834

DK 2 0.031161 0.010195 1 0.39492 0.52 3039 15081

ES 2.13 0.020977 0.012197 1 0 0.14 3614 10408

FI 1.98 0.053119 0.005757 3 0.68895 0.36 2289 20378

FR 1.89 0.0096839 0.0032337 1 0.25643 0.45 18317 158608

GB 2.03 0.035597 0.0022348 3 0.98985 0.79 18041 99027

IE 2 0.029475 0.016786 1 0 0.63 1121 4074

IL 2.11 0.021996 0.012833 1 0 0.04 3019 9138

IT 2.21 0.0996 0.0025322 7 2.9426 0.99 14255 57260

JP 1.66 0.006795 0.0017311 1 0.17145 0 18121 508774

NL 1.97 0.012978 0.0062712 1 0.2 0.43 7043 79976

NO 2.12 0.027157 0.016935 1 0.1 0.28 1803 5742

PL 2.37 0.13149 0.049215 1 0.37753 0.15 523 985

PT 2.27 0.080284 0.054094 1 0.1 0.29 308 707

SE 2.03 0.015404 0.0077361 1 0 0.42 5998 35655

US 1.87 0.024768 0.00081815 7 2.2293 0.61 55539 654304

The best fit of the empirical data to a power law model is achieved with a power law exponent a and cut-off xmin . The estimated standard deviation in these parameters
is also given. In the case of the standard deviation of a, two estimates are given. The first, sBS(a), is calculated using a bootstrap method via the Matlab code which
accompanies [21]. The estimate sA(a) is obtained via the analytic expression eqn. (3.6) of [21] which gives an estimate for the standard error a, assuming that the
underlying distribution is well fitted by a power law (i.e. the p-value is large). The estimate s(xmin) is calculated via the bootstrap method. The values for p indicate the
‘‘goodness of fit’’ of the empirical data to a power law model. Also given, is Napp the number of applicants and Npat the total number of patents held.

doi:10.1371/journal.pone.0049501.t001
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driven by the lack of diversification amongst less developed

countries. We therefore use the low ubiquity rank of a country as

an indicator of specialized and complex exports. The correlation

between the exponent rank and ubiquity rank indicates that the

power law exponents give information about the presence of

sophisticated (export) sectors in a country. The lower the value of

the power law exponent of a country, the more likely that the

country exports a number of specialised goods, exported by few

other countries.

The data used for the empirical analysis in this section is limited

to patents filed at the European Patent Office. However, the 22

countries included in this data extend beyond European countries,

which raises the possibility of systematic regional biases within the

data; the considerations and behaviour of an applicant filing at a

local patent office may differ from an applicant who is pursuing

protection at a foreign office. To determine that regional effects do

not invalidate our results we have repeated this analysis for patents

applications filed under the Patent Cooperations Treaty (PCT).

The PCT provides a unified procedure for filing patent

applications and establishing precedence under international

law. Since PCT patent applications are equivalent for all of the

contracting states of the treaty, and since the treaty covers most

industrialised nations, PCT applications can be expected to be free

of any regional bias. The PCT patent records are also drawn from

the HAN data set and hence use the same applicant harmonisation

method and cover the same timeframe as the EPO records. As

with the EPO applications, patent distributions for PCT applica-

tions aggregated at national level are well described by a power

law with an exponent that closely matches those from the EPO

data.

The well known correlations that exist between patent counts

and R&D expenditure suggest that there may be a relationship

between the patent distributions and national expenditures on

R&D. Just as the total biomass of a natural ecosystem can be used

to normalise frequency versus body mass distributions, rescaling

the absolute number of patents for a country by that country’s

absolute GERD or BERD causes the patent distributions to

collapse on one another (see Fig. 5). Thus, in an innovation

ecosystem, gross expenditure on research and development

(GERD) and business expenditure on research and development

(BERD) could be considered to play a role similar to that played

by biomass in natural ecosystems [27].

It is also interesting to see whether the exponent a is related to

expenditure on R&D. To investigate this, we plot the EPO power

law exponents for the countries in the OECD HAN data set

against GERD and BERD intensity as a percentage of gross

domestic product (GDP): Fig. 6. We see a strong correlation

between increasing intensity of expenditure on R&D, and lower

values of the power law exponent (corresponding to more

innovative and more sophisticated economies). An interesting

feature is that the decrease in a appears to saturate at about 3%

GERD intensity, or 2% BERD intensity. Beyond this level of

R&D expenditure, there is no evidence of further flattening of the

patent distributions. It is also interesting to note that the

correlation of a with both GERD and BERD is the same – a

translation of BERD intensity by around 1% almost exactly

matches the pattern for GERD intensity, implying that both

BERD and GERD play similar roles.

Generative Model
The analysis used for fitting a power law to the empirical patent

distribution was performed for each simulation run of the

generative model. Figure 3 shows the values of a and the

estimated standard errors for both the simulated and empirical

data sets, again ordered by a (for the empirical data). While the

match between the empirical and simulated results is far from

perfect, there is a clear qualitative fit: countries with lower values

of a in the empirical data, show the same pattern in the simulated

data. In Fig. 7 we show the relationship between the exponent a
and the growth rate c for empirical and simulated data. Both the

empirical and simulated data show a clear correlation with c,

although the empirical data consistently has lower exponents than

the simulated data. The linear regression fit for the simulated data

is very close to the asymptotically expected result:

asim~1:95z0:99c, R2~0:94, p~1, so the gap between the

simulated and empirical exponents is not due to the finite duration

of the simulations.

The distributions resulting from the null model, where the

preferential attachment rule was replaced by uniform random

attachment, are poorly fitted by a power law distribution: if a

power law fit is assumed then the resulting best fit exponent is

typically between four and six (c.f. 1.66 and 2.37 for the empirical

data), shows no particular correlation with the growth rate c (a

linear least-squares fit gives a~4:7z1:95c, R2~0:15, c.f.

a~1:78z1:12c, R2~0:81, p~0:9995 for the empirical data).

Furthermore, the estimated standard deviation in the fitted power

law exponents was typically greater than the total variation

between exponents for the empirical data.

The relatively good agreement between the simulated and

empirical data gives support to the assumption that applicants

holding many patents are more likely to acquire further patents –

future innovators are likely to also be past innovators. However we

note that in our model, applicants can continue to acquire patents

indefinitely. Clearly, this assumption is not realistic – applicant

firms can go out of business or be acquired by other firms.

Similarly, a single patent may be owned by more than one

applicant, resulting in a network of co-applicants, (although 88%

Figure 1. Scaling of number of patents and patent applicants,
with country size. Upper plot: Number of EPO (European Patent
Office) patent applications (filled triangles) and unique applicants (open
squares) versus national population, for the 22 countries in the OECD
HAN data set. The dashed line indicates the slope which the data would
follow if they scaled linearly – in the absence of agglomeration effects.
Lower plot: Ratio of number of applicants to number of patents
(c~Napp=Npat) for the same data. The least squares best fit has a slope
of {0:041 and R2~0:038 indicating a poor correlation and little
dependence on population.
doi:10.1371/journal.pone.0049501.g001
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of the patents in the HAN EPO data set have only a single

applicant). Both these effects will alter the patent distribution from

that seen in the simulations.

Discussion and Conclusions

In summary, we have found that the distribution of patents

amongst applicants within OECD countries generally follows a

power law, and that these power laws are not universal in that

their scaling exponents differ significantly between countries.

Using this exponent as a proxy for innovation provides a new way

of looking at the structure of national economies and strengthens

the analogy between innovating firms and ecosystems.

There have been many studies that have linked the market

value or productivity of firms to their stock of knowledge as

measured by R&D expenditure and patents held [28]. This

suggests that the distributions of productivity and patents are also

linked at the firm level. It is remarkable then that the

characteristics of the overall patent distributions found here vary

so little from country to country, despite the variety of sizes,

locations and industrial structures encompassed by this set of

countries. In fact it appears that much of the difference between

countries can be captured by rather simple measures such

economy-wide research and development expenditures and

intensities.

Figure 2. Cumulative density functions and power law fits for the 22 countries in the data set. The CDFs of EPO patent distributions for
all 22 countries, ordered by country code, are indicated by blue circles. The slope of the best-fit power law model is shown as a black dotted line. The
match to a power law fit is generally good.
doi:10.1371/journal.pone.0049501.g002

Figure 3. Power law exponents, sorted by rank. Values of a, with
their associated estimated uncertainties, for the 22 countries in the EPO
HAN data set (black), sorted by a, along with average asim values (red),
and their associated standard deviations, for simulated data. For each
country’s simulation, the growth rate was determined by the ratio
c~Napp=Npat from Tab. 1.
doi:10.1371/journal.pone.0049501.g003
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This finding adds to a body of stylised facts concerning the

distribution of the revenues and productivity of firms. For instance,

it was observed some time ago that the tail of the distribution of

the revenue of firms is well approximated by a power law [5]. Such

a distribution can be reproduced by a model in which incumbant

firms can innovate to improve their productivity but face

competition from new entrants who are able to take advantage

of existing technologies [8]. It has also been suggested that the

distribution of the value of ideas may similarly have a power law

tail [29], and processes whereby innovators select and improve on

previously productive ideas have been shown to generate such

distributions [30]. The variations between countries in the

exponent of the power law tails seen here will provide an

important test for future models of innovation by firms, and

ultimately, long-run economic growth.

We note that there is certainly scope for increasing the

sophistication of the generative model used here. For instance, it

would be possible to modify this model by introducing a ‘‘death

rate’’ for example, where applicants can cease to acquire new

patents, and this would certainly change the resulting power law

exponent. Such an approach would introduce an additional

parameter to the model, which could be used to generate

distributions which fit the empirical data much more closely.

However, since there is no simple way to choose the death rate

parameter a priori from the empirical patent data, such a model

does not give additional insight into the process of innovation.

Similarly, the Yule process can be modified such that some

patents are shared between applicants, resulting in a network of

co-applicants. In this case, the choice of co-applicant for shared

patents may also be determined by preferential attachment,

leading to a network of applicants where the number of co-

applicants per applicant also follows a power law distribution.

Such models have been widely used, for example to model the

distribution of links between pages on the world-wide-web [23].

Further modifications to the Yule process include the general-

ization proposed by Simon in [31] where preferential attachment

is used to choose a class of applicants (i.e. those holding i patents)

but where the probability of obtaining within that class of an

applicant obtaining a patent may be non-uniform. For example, it

may depend on the amount of time since applicants last acquired a

patent. It is also possible to modify the generative model such that

the growth rate c is not fixed but may depend on factors such as

the number of patents already introduced to the model. Other

variations of the Yule process such as nested Yule models can also

be considered [32].

Finally, we remark on the fact that the power law exponents

that describe these distributions are correlated with measures such

as national expenditure on R&D, and the ubiquity, or degree of

specialisation, of the basket of goods that a country exports.

Countries that export more specialised goods tend to have a

smaller proportion of companies that hold a larger share of the

patents, while countries that export more ubiquitous goods tend to

have a larger share of patents held in small portfolios. In Finland

for instance, 80% of patents are owned by the top 10% of

applicants, whereas in Portugal, only 50% of patents are owned by

the top 10% of the applicants. Finland’s high R&D intensity and

the low ubiquity of its exports suggest that Finnish firms are

operating closer to the technological frontier than those of

Figure 4. Power law exponents are correlated with the ‘‘ubiquity’’ of exported products. Correlation between the country rank of the
empirical power law exponent a and the country rank based on average export ubiquity (kc,1 as reported in [26]). The dashed line indicates the linear
least-squares fit and has slope 0.71 (R2~0:5, p~0:9997).
doi:10.1371/journal.pone.0049501.g004
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Portugal. The more highly skewed patent distribution that exists in

Finland might indicate that new firms face higher barriers to entry,

possibly because research and development in these countries

takes place closer to the frontier. Thus it seems that the innovator

of today is more likely to work in the research laboratory of a large

multinational company than in the suburban garage or small start-

up company.

Figure 5. Expenditure on R&D rescales national patent distributions. Just as the total biomass of an ecosystem can be used to rescale the
distribution for the frequency of organisms with a particular body mass in some area, total expenditure on R&D in a country can be used to rescale
the distribution for the frequency of applicants in a country who have filed a particular number of patents. The left-hand plot shows the unscaled
data, with each country indicated by a different color/shape of symbol. The right-hand plot shows the same data after the frequencies are scaled by
business expenditure on R&D (millions of US dollars). The role played by GERD (gross expenditure on R&D) is similar. The one country for which the
distribution does not match the others after rescaling (pink triangles) is China; a country which has only a recent record of filing patents at the EPO.
doi:10.1371/journal.pone.0049501.g005

Figure 6. Lower values of the exponent a are inversely correlated with R&D spending. Power law exponents for EPO patent
distributions of 22 OECD countries versus GERD (left) and BERD (right) intensity – gross, resp., business expenditure on R&D as a percentage of GDP.
Vertical bars indicate the estimated standard error in the a values, horizontal bars indicate the standard deviation in the time averaged (1995–2006)
OECD data. The trend appears to be bimodal. For GERD, resp. BERD, intensity below approximatley 3% resp. 2% there is an inverse correlation
between the power law exponent and the intensity of R&D spending. Beyond this level, the trend appears to reverse, though data in this region are
limited. The blue lines indicate the least-squares linear regression fit to the data, excluding the three right-most points corresponding to Finland,
Sweden and Israel (left to right). The linear fits are a~{0:23 GERDz2:44 (R2~0:80, p~0:9964) and a~{0:27 BERDz2:35 (R2~0:79,
p~0:9823).
doi:10.1371/journal.pone.0049501.g006
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