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Abstract

Cortical thickness and gyrification abnormalities in anorexia nervosa (AN) have been

recently described, but no attempt has been made to explore their organizational patterns to

characterize the neurobiology of the disorder in the different stages of its course. The aim of

this study was to explore cortical thickness and gyrification patterns by means of graph the-

ory tools in 38 patients with AN, 20 fully recovered patients, and 38 healthy women (HC). All

participants underwent high-resolution magnetic resonance imaging. Connectome proper-

ties were compared between: 1) AN patients and HC, 2) fully recovered patients and HC, 3)

patients with a full remission at a 3-year follow-up assessment and patients who had not

recovered. Small-worldness was greater in patients with acute AN in comparison to HC in

both cortical thickness and gyrification networks. In the cortical thickness network, patients

with AN also showed increased Local Efficiency, Modularity and Clustering coefficients,

whereas integration measures were lower in the same group. Patients with a poor outcome

showed higher segregation measures and lower small-worldness in the gyrification network,

but no differences emerged for the cortical thickness network. For both cortical thickness

and gyrification patterns, regional analyses revealed differences between patients with dif-

ferent outcomes. Different patterns between cortical thickness and gyrification networks are

probably due to their peculiar developmental trajectories and sensitivity to environmental

influences. The role of gyrification network alterations in predicting the outcome suggests a

role of early maturational processes in the prognosis of AN.

Introduction

Anorexia Nervosa (AN) is a disabling psychiatric disorder that typically develops in female

individuals during adolescence or early adulthood and is characterized by important psycho-

pathological, cognitive, medical and neurobiological abnormalities [1].

From a neurobiological perspective, in recent years many efforts have been made to

describe brain volumetric and morphological characteristics in AN, and to characterize them

according to the course of the disease and to different clinical variables. Since AN often has its
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onset in adolescence [2], a neurodevelopmental approach is of particular relevance in order to

understand both the role of early etiopathogenetic factors [3] and the consequences of malnu-

trition on maturational trajectories.

The possibility to describe changes of morphological and structural brain features over neu-

rodevelopmental trajectories allows better interpretation of how their alterations can impact

on different psychiatric conditions.

The study of cortical thickness and gyrification indices are very promising within this con-

text, since their modifications through the stages of brain maturation and their ability to cap-

ture anatomical and structural cortical properties are increasingly characterized [4]. During

neurodevelopment, cortical thickness reflects processes that determine a progressive reorgani-

zation of grey matter structure, following the demands for greater plasticity in childhood and

the subsequent need for higher synaptic stability in later phases. Gyrification, on the other

hand, begins prior to birth to shape an efficient architecture that shows great structural stabil-

ity over time, with the exception of a gradual decrease in the amount of cortical complexity

during adolescence [5].

The different stability of these two structural parameters along neurodevelopmental trajec-

tories is explained by their different sensitivity to environmental influences; cortical thickness

is in fact more influenced by environmental exposures than gyrification, which maintains a

more constant configuration during development [6,7].

Previous literature on brain morphology in patients with AN is inconsistent as regards find-

ings, methodology approaches and recruitment criteria. A significant reduction of cortical

thickness in underweight patients with AN was found by two studies, which did not detect a

direct correlation between cortical thickness and body mass index (BMI) [8,9]. Furthermore,

in a longitudinal study, Bernardoni and colleagues [10] observed a substantial normalization

of thickness after an average of three months of weight restoration [10]. On the contrary,

Lavagnino and colleagues [11], while observing a correlation between cortical thickness and

BMI in the AN group, did not find any differences between patients and controls [11]. More-

over, in a recent study, a comparison between patients with AN (both acute and recovered)

and healthy women revealed higher cortical thickness values in orbitofrontal areas [12].

Regarding cortical gyrification, Favaro et al. [13] observed the presence of significant alter-

ations in the parietal and frontal cortex of adult patients with AN; hypogyrification in these

areas was not correlated with weight loss, body mass index, cortical thickness or dehydration

[13]. Furthermore, these alterations were not present in patients with a good clinical outcome,

regardless of their body weight and recovery status. On the contrary, in a mixed sample of ado-

lescents and adults, Bernardoni et al. [14] found that an almost complete normalization of cor-

tical folding after weight gain and weight restoration was the main predictor of increased

gyrification during treatment [14].

In the context of clinical neurosciences, evaluation of the morphological and structural

parameters of the cerebral cortex on the basis of their covariance patterns is becoming increas-

ingly important since it can reveal an inter-regional structural dependence, which derives

from a complex mixture of developmental, genetic and environmental factors [15]. The possi-

bility of characterizing the topology of cortical structural and morphological networks pro-

vides an insight into the ways in which the architecture of cortical connectivity negotiates the

trade-off between network wiring cost and topological complexity and allows a very promising

perspective on the study of psychiatric illnesses [16,17]. One of the most promising potentials

of complex network sciences is in fact related to its applicability for uncovering developmental

mechanisms that lead to aberrant brain network organization and for tracking the progression

of disease in degenerative disorders [18]. The topological complexity of brain networks lies

mainly in the need to mediate the presence of locally and globally distributed connections and
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to support, during neurodevelopment, the shift from a modular and segregated organization

to a more globally integrated one. This integrated configuration fulfills the maturation of high

order association areas and of higher cognitive abilities. In this perspective, it is of great inter-

est to explore the connectomic characteristics of Anorexia Nervosa: a disorder that is hypothe-

sized to have an early neurodevelopmental origin [19], but also represents a potential restraint

for brain maturational trajectories due to starvation and consequent malnutrition. Our pur-

pose in this paper is therefore to apply the tools provided by connectomics and graph theory to

deepen our knowledge of the neurobiological complexity of AN, by trying to define any abnor-

malities in covariation patterns of gyrification and cortical thickness and then to assess the

rules that govern the structural cortical topological interaction in the disorder. The secondary

aim of the present study was to compare covariation patterns of the same brain characteristics

between patients who have recovered at a 3-year follow-up and those who have not. We

hypothesized that graph theory metrics in AN would support a delay in neurodevelopmental

trajectories in both cortical measurements, with higher network segregation parameters and

lower integrative properties in patients with AN compared to healthy controls (HC).

Methods and materials

The sample included was the same as a previous study [13]. A total of 58 patients with AN (38

with acute AN and 20 fully recovered (AN-REC)) and 38 HC participated.

Patients with AN were recruited from the Padova Hospital Eating Disorders Unit. AN was

defined according to DSM-5 criteria and all patients fulfilling the inclusion criteria who were

in treatment or referred to the Unit while the study was being carried out were asked to partici-

pate. A sample of HC similar to the patient group in age, ethnicity, educational level, and hand

lateralization was recruited from the same geographical area.

Exclusion criteria for both patients with AN and HC were male gender, history of head

trauma or injury with loss of consciousness, history of any serious neurological or medical ill-

ness, active use of systemic steroids, pregnancy, active suicidality or major depression, history

of substance/alcohol abuse or dependence, bipolar disorder or schizophrenia spectrum disor-

der, moderate mental impairment (IQ<60) or learning disabilities, use of medications other

than antidepressants, and known contraindications to conventional MRI. History of any psy-

chiatric disorder and any first-degree relatives with an eating disorder were additional exclu-

sion criteria for HC.

When recruiting subjects, some individuals were not included in the study: five AN

patients, because of antipsychotic medication and/or severe comorbidity; one AN patient and

one healthy subject, because of previous head trauma; and one AN patient, 3 recovered AN

and 2 healthy subjects, who were not available to undergo MRI scanning when scheduled. The

final sample comprised of 96 women (38 with AN, 20 recovered from AN, and 38 HC). No fur-

ther subject was excluded due to problems with scan acquisition, gross brain alterations, or

motion artifacts.

The experimental sample was composed of different diagnostic subtypes: 32 subjects (84%)

were restrictive AN, 6 patients were binge eating/purging AN subtype and 7 patients presented

restrictive AN subtype with a history of binge eating or purging behavior. 14 AN patients and

4 recovered women were under drug treatment with antidepressants at the time of scanning

(acute AN: 1 patient mirtazapine, 2 paroxetine, 2 escitalopram, 1 fluoxetine, 8 sertraline; recov-

ered AN: 4 sertraline).

Definition of full recovery was: 1) having had AN (according to DSM-5 criteria) in their

lifetime; 2) being asymptomatic for at least 6 months at the time of scanning (mean remission

time: 38.5 months (standard deviation = 33.2; range 6–96). Amenorrhea, food restriction,
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bingeing, excessive exercise, fasting and purging in the last 6-months were exclusion criteria

for the recovered AN group and none of the subjects of this group relapsed in the year follow-

ing scanning. Table 1 describes the main characteristics of the sample.

Ethical permission was obtained from the ethics committee of the Hospital of Padova. After

completely describing the study to the subjects, informed written informed consent was

obtained.

Clinical assessment and follow-up

All subjects were investigated for AN diagnosis with a diagnostic interview according to the

Eating Disorders Section of the Structured Clinical Interview for DSM-5 [20] and, also, a

semi-structured interview was used in order to collect socio-demographic and clinical vari-

ables [21,22]. More information about subjects’ psychopathology was achieved using the Hop-

kins Symptoms Checklist [23] and the Eating Disorders Inventory [24] in order to gather

depressive and obsessive-compulsive symptoms, as well as those regarding eating disorders.

Furthermore, the Edinburgh Handedness Inventory [25] was used to assess handedness.

All subjects were recruited at the Hospital of Padova Eating Disorder Unit, fulfilled the

diagnosis for AN according to DSM-IV criteria and were medically stable at the time of scan-

ning. Most patients had restricting type anorexia nervosa at the time of scanning (see Supple-

mentary Materials). Follow-up for acute AN patients was performed about 3 years later

(average 3.4 years, range 1.7–3.9). A semi-structured interview, the Eating Disorders Section

of the Structured Clinical Interview for DSM-IV, as well as information from informants, were

used to achieve diagnostic information at follow up. Full recovery was defined as: normal

range weight, regular menses, absence of binge/purge/avoidance or restrictive eating behavior,

absence of excessive physical activity, body dissatisfaction or drive to thinness for at least 3

months before the evaluation. Table 2 shows the baseline characteristics of the two groups

with a different outcome at follow-up.

MRI data acquisition

Scans were collected using a Philips Achieva 1.5 Tesl scanner equipped for echo-planar imag-

ing. High-resolution 3D T1-weighted anatomical images were acquired using a gradient-echo

Table 1. Baseline characteristics of the three groups.

AN (n = 38) AN-REC (n = 20) HC (n = 38) AN vs. HC AN-REC vs. HC

mean (SD) mean (SD) mean (SD) z (p) z (p)

Age (years) 26.1 (7.2) 26.3 (7.1) 25.3 (6.3) 0.38 (0.701) 0.44 (0.659)

Age at onset (years) 18.3 (5.1) 17.7 (3.2) = = =

Duration of illness (months) 78.6 (81.3) 45.7 (65.0) = = =

Duration of recovery (months) = 45.4 (46.8) = = =

Baseline BMI (kg/m2) 15.8 (1.8) 19.6 (1.6) 21.7 (2.9) 7.42 (0.000) 3.09 (0.002)

Lowest BMI (kg/m2) 14.0 (1.8) 15.7 (1.4) 19.8 (2.5) 7.17 (0.000) 5.35 (0.000)

Education (years) 14.2 (2.2) 14.2 (2.7) 15.5 (2.3) 2.63 (0.009) 1.94 (0.053)

Edinburgh laterality index 57.2 (37.6) 60.6 (35.2) 55.1 (42.0) 0.52 (0.603) 0.32 (0.749)

Left cortical thickness (mm) 2.45 (0.14) 2.52 (0.10) 2.53 (0.09) 2.65 (0.008) 0.23 (0.819)

Right cortical thickness (mm) 2.44 (0.14) 2.51 (0.11) 2.52 (0.08) 2.86 (0.004) 0.34 (0.731)

Left gyrification 2.85 (0.09) 2.90 (0.09) 2.90 (0.11) 1.97 (0.048) 0.23 (0.819)

Right gyrification 2.85 (0.10) 2.90 (0.09) 2.90 (0.12) 1.83 (0.067) 0.07 (0.941)

According to false discovery rate method, differences are significant at p<0.027

https://doi.org/10.1371/journal.pone.0216154.t001
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sequence (repetition-time = 20 sec, echo time = 3.78 msec, flip angle = 20˚, 160 sagittal slices,

acquisition voxel size = 1×0.66×0.66 mm, field of view 21–22 cm).

Data processing and statistics

Data processing was performed using the FreeSurfer package (Martinos Center for Biomedical

Imaging, Massachusetts General Hospital, Boston) version 5.3.0. Pre-processing, cortical

reconstruction, segmentation, and cortical thickness estimation were performed according to

standard protocols [26,27]—see Supplementary Materials for detailed information. Surface

reconstruction and segmentation were manually inspected and minor manual intervention

was performed when necessary, according to FreeSurfer user guidelines. The local Gyrification

Index (lGI) was developed to take account of the three-dimensional nature of the cortical sur-

face and was introduced in order to replace the previous two-dimensional linear gyrification

measures, more susceptible to different kinds of bias. The lGI is a measure of cortical folding

and was calculate at thousands of points of the reconstructed cortical surface using already val-

idated algorithms [28]. The cortical surface was parcellated into 148 regions (74 in each hemi-

sphere) using a specific suco-gyral atlas (Destrieux Atlas) (26).

Constructing cortical thickness-based networks

A 148×148 Pearson’s correlation matrix of Cortical Thickness indices of each parcellated brain

region was used to create a binary adjacency matrix for each group. The nodes of the matrix

correspond to the areas parcellated according to the Destrieux atlas. Age, Edinburgh Handed-

ness Inventory score and mean cortical thickness index were used as covariates.

A range of thresholds determined by connection densities (proportions of connections

present in a graph to all possible connections) varying from 0.1 to 0.5 (increments of 0.05) was

used to compare the properties of emerging networks.

Constructing gyrification-based networks

A 148×148 Pearson’s correlation matrix of gyrification indices of each parcellated brain region

was used to create a binary adjacency matrix for each group. The nodes of the matrix corre-

spond to the areas parcellated according to the Destrieux atlas. Age, intracranial volume,

Table 2. Baseline data of the two outcome groups.

AN patients with recovery at follow-

up

(n = 13)

AN patients without

recovery

(n = 24)

z (p)

mean (SD) mean (SD)

Age (years) 25.5 (6.8) 26.7 (7.5) 0.33 (0.74)

Age at onset (years) 20.8 (6.5) 17.1 (3.8) 2.26 (0.02)�

Duration of illness

(months)

40.0 (46.2) 101.2 (89.8) 2.10 (0.04)

Baseline BMI (kg/m2) 14.9 (1.75) 16.2 (1.6) 2.23 (0.03)

Lowest BMI (kg/m2) 14.4 (2.0) 13.7 (1.7) 1.13 (0.26)

Duration follow-up (years) 3.2 (0.6) 3.5 (0.5) 1.48 (0.14)

Final BMI (kg/m2) 19.6 (2.1) 17.7 (4.3) 3.66

(<0.001)�

� According to false discovery rate method, differences are significant at p<0.027

https://doi.org/10.1371/journal.pone.0216154.t002
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Edinburgh Handedness Inventory score and mean overall gyrification index were used as

covariates.

A range of thresholds determined by connection densities (proportions of connections

present in a graph to all possible connections) varying from 0.1 to 0.5 (increments of 0.05) was

used to compare the properties of emerging networks.

Comparing network measures between patients with different outcome profiles at follow

up, the minimum density at which fully connected graph was observed was 0.20. Between

these groups, the range of thresholds used to compare the properties of the networks varied

from 0.2 and 0.5 (increments of 0.05).

Properties of the connectome and group comparison

Covariance patterns within connectome are described using integration and segregation prop-

erties, which are quantified using various graph theory indices. Segregation indicates a modu-

lar development of related brain regions, while integration results from maturational processes

affecting the entire brain. Integration was measured using Global Efficiency and Characteristic

Path Length; segregation was measured using Clustering Coefficient, Modularity and Local

Efficiency. We also quantified Small-World Index (SWI), a measure of the balance between

integration and segregation. All topological properties were computed using Graph Analysis

Toolbox (GAT) (https://www.nitrc.org/projects/gat/) [29].

Between group comparison was performed 2 groups at time, both for cortical thickness and

for gyrification indices (AN vs HC, AN-rec vs HC, poor-outcome vs good-outcome). Signifi-

cant differences between topological parameters were investigated using a nonparametric per-

mutation test with 1000 repetition. The numerosity of the original groups were maintained in

each repetition by the randomly reassignment of the regional data (or residuals) of each partic-

ipant to one of the two group analyzed, so as to obtain an association matrix for each random

group. Then, a range threshold of 0.1 to 0.5 with increments of 0.05 were applied to each ran-

dom group in order to estimate the binary adjacency matrices. Topological measurements

were calculated for all networks and the full density range were used to compare differences in

network measurements. For each iteration, the values of each random group across the range

of density were plotted and the differences of the different areas under the obtained curves

were used to compute topological proprieties. p values were obtained by comparing the results

from the actual differences in the curve functions obtained and the null distribution of differ-

ences. This nonparametric permutation test compared the shapes of the curves derived from

multiple threshold points (and so from multiple comparisons) and is based on functional data

analysis (FDA) that allowed to overcome limitations driven by the sensitivity of the analysis

methodology. The same permutation procedure used to test the significance of the between

group differences in global network measures are used to compare regional network measures.

Graph-based metrics

Characteristic path length (CPL) is the number of edges that are present in the shortest path of

two nodes, averaged over all pairs of nodes. High values of CPL indicate a less efficient flow of

information across the connectome. Global efficiency (GE) is a measure of efficient informa-

tion transfer and is inversely related to path length. Maximal GE values indicate a fully con-

nected network.

The clustering coefficient indicates the density of connections between the neighbors of an

individual node. The average of clustering coefficients across nodes indicate the clustering

coefficient of the network. The local efficiency has a role similar to the clustering coefficient,

representing a nodal measure of the average efficiency within a local subgraph. The modularity
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measures the correlation between the probability of having an edge that connect two nodes

and the probability that nodes are part of the same community. Modules are defined as local

communities of highly interconnected nodes which are poorly connected with other regions.

The small-world index (SWI) is computed by comparing the CPL and the CF of a graph

with the corresponding values of null random graphs with same number of nodes, edges and

degree distribution. Small world brain network exhibit the ability to use a relatively small num-

ber of long-distance connections to synchronize the information flow and the advantage to use

local connections to locally processing information[30,31].

Statistics

Group comparisons were performed by means of nonparametric statistical tests, with false dis-

covery rate methods to control for multiple comparisons.

Results

Table 1 shows the main clinical characteristics of the 3 groups involved in the study, including

average cortical thickness and gyrification index as found in Favaro et al. [13]. Differences in

vertex-wise analyses were reported in our previous paper [13].

Cortical thickness based networks

Main findings regarding the properties of cortical thickness based networks are reported in

Table 3. Hub distribution is described in Supplementary Materials.

Patients with AN vs. HC. Patients with acute AN showed increased segregation measures

in terms of Mean Local Efficiency, Clustering and Modularity in comparison to HC (Table 3),

while, on the contrary, they revealed significantly lower patterns of integration as measured by

Global Efficiency.

Both AN patients and HC reported average values of small-wordless greater than 1, but the

small-world index was significantly higher in patients with acute AN than in HC (Table 3). No

regional differences were detected either in the segregation or in the integration indices.

Patients recovered from AN vs. HC. No differences emerged in the comparison between

the recovered AN and the healthy control group in any integration and segregation parameters

in either overall or regional networks analysis. In recovered patients, mean small-world index

was 1.63 (SD = 0.53). With regard to segregation measures, mean clustering coefficient was

Table 3. Topological properties of Cortical Thickness-based connectome.

AN (n = 38) HC (n = 38) AN-REC

(n = 20)

Poor outcome (n = 24) Good outcome (n = 13) FDA permutation test

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) (p-values) Cohen’s d

Small-world index 1.64 (0.46) 1.45 (0.38) 1.63 (0.53) 1.66 (0.47) 1.73 (0.55) AN>HC (0.0001) 0.45

Measure of segregation
Clustering Coefficient 0.47 (0.08) 0.39 (0.11) 0.45 (0.09) 0.47 (0.08) 0.47 (0.78) AN>HC (0.008) 0.83

Mean local efficiency 0.72 (0.07) 0.68 (0.09) 0.71 (0.07) 0.63 (0.09) 0.63 (0.09) AN>HC (0.005) 0.50

Modularity 0.28 (0.09) 0.19 (0.07) 0.28 (0.09) 0.27 (0.08) 0.27 (0.09) AN>HC (0.006) 1.12

Measures of integration
Global efficiency 0.63 (0.09) 0.64 (0.08) 0.64 (0.09) 0.63 (0.09) 0.63 (0.09) AN<HC (0.02) 0.12

Characteristic path length 1.78 (0.29) 1.74 (0.22) 1.77 (0.26) 1.78 (0.28) 1.79 (0.29) AN>HC (0.03) 0.16

According to false discovery rate method, differences are significant at p<0.029

https://doi.org/10.1371/journal.pone.0216154.t003
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0.45 (SD = 0.09), mean local efficiency is 0.71 (SD = 0.07) and mean modularity was 0.28

(SD = 0.09), whereas with regard to integration measures, mean global efficiency is 0.64

(SD = 0.09), and mean characteristic path length was 1.77 (SD = 0.26).

Good outcome patients vs. poor outcome patients. Patients with a poor outcome and

those with a good outcome at a 3-year follow-up assessment did not show differences in global

network properties. A regional analysis of the between-group differences revealed a signifi-

cantly higher clustering coefficient of the orbital part of the left inferior frontal gyrus in the

poor outcome group (FalseDiscoveryRate (FDR)-corrected permutation-based p values:

<0.001) while patients with a good outcome show a higher degree in the same area (FDR-cor-

rected permutation-based p values: <0.001).

Gyrification based networks

Main findings regarding the properties of gyrification based networks are reported in Table 4.

Hub distribution is described in Supplementary Materials.

Patients with AN vs. HC. No differences were detected in integration and segregation

measures between patients with AN and HC. Both AN patients, HC and recovered AN

patients showed small-worldness greater than 1. However, the small-world index was signifi-

cantly higher in patients with acute AN than in HC (Table 4).

Patients recovered from AN vs. HC. No statistically significant differences were detected

in the gyrification based network in the comparison between recovered AN patients and HC.

In recovered patients, mean small-world index was 1.81 (SD = 0.59). With regard to segrega-

tion measures, mean clustering coefficient was 0.54 (SD = 0.05), mean local efficiency was 0.76

(SD = 0.04) and mean modularity was 0.32 (SD = 0.11), whereas with regard to integration

measures, mean global efficiency was 0.62 (SD = 0.10), and mean characteristic path length

was 1.84 (SD = 0.36).

Good outcome patients vs. poor outcome patients. Patients with a poor outcome

showed significantly higher clustering and trends towards significantly higher mean local effi-

ciency and characteristic path length when compared to patients with a good outcome

(Table 4). At a regional level, the poor outcome group revealed a higher normalized degree

index in the inferior part of the right circular sulcus of the insula (FDR-corrected permuta-

tion-based p values: <0.001) and a higher normalized clustering of the left superior temporal

sulcus (FDR-corrected permutation-based p values: <0.001).

Table 4. Topological properties of Gyrification-based connectome.

AN (n = 38) HC (n = 38) AN-REC

(n = 20)

Poor outcome (n = 24) Good outcome (n = 13) FDA permutation test

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) (p-values) Cohen’s d

Small-world index 1.64 (0.46) 1.45 (0.38) 1.63 (0.53) 1.66 (0.47) 1.73 (0.55) AN>HC (0.0001) 0.45

Measure of segregation
Clustering Coefficient 0.47 (0.08) 0.39 (0.11) 0.45 (0.09) 0.47 (0.08) 0.47 (0.78) AN>HC (0.008) 0.83

Mean local efficiency 0.72 (0.07) 0.68 (0.09) 0.71 (0.07) 0.63 (0.09) 0.63 (0.09) AN>HC (0.005) 0.50

Modularity 0.28 (0.09) 0.19 (0.07) 0.28 (0.09) 0.27 (0.08) 0.27 (0.09) AN>HC (0.006) 1.12

Measures of integration
Global efficiency 0.63 (0.09) 0.64 (0.08) 0.64 (0.09) 0.63 (0.09) 0.63 (0.09) AN<HC (0.02) 0.12

Characteristic path length 1.78 (0.29) 1.74 (0.22) 1.77 (0.26) 1.78 (0.28) 1.79 (0.29) AN>HC (0.03) 0.16

According to false discovery rate method, differences are significant at p<0.029; n.s.: not significative

https://doi.org/10.1371/journal.pone.0216154.t004
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Both groups showed small-worldness greater than 1, but the small-world index was signifi-

cantly higher in the good outcome group. We performed the analysis including age at onset as

a covariate and differences in small-world index remained statistically significant.

Discussion

In the last decade many advances have been made in the description of the organizational

principles that govern the anatomy and the topology of brain structural covariance networks

and in establishing the relationship between them and functional connectivity patterns [15].

Regional and global structural brain features undergo profound modifications during develop-

ment and establish their covariance properties following complex trajectories that are influ-

enced by both genetic predisposition and environmental influences. The biological

mechanisms underlying thickness and gyrification correlation among cortical areas might

impact at different developmental stages and their properties should reflect the different mech-

anisms that influence the cortical connective architecture. Several studies have examined

thickness and gyrification covariance patterns in psychiatric diseases in order to understand

whether disruptions in segregation and integration properties are measurable and to investi-

gate the candidate biological and developmental underpinnings that may explain such alter-

ations [32–37].

In this study we use a connectomic approach by means of cortical thickness and gyrification

data to study the cortical structural architecture in AN and to evaluate the presence of any

imbalance in the overall cortical network properties and in regional subnetwork patterns.

Our results highlighted the presence of a significantly higher segregation of the overall cor-

tical thickness network in the acute AN group in comparison to the healthy control group. AN

patients in particular showed higher local efficiency, modularity and clustering coefficients,

which indicate the presence of a more topologically localized and less densely distributed con-

nective organization. On the contrary, gyrification patterns did not show significant differ-

ences between the acute AN and the HC group. The observation that cortical thickness

networks showed more significant alterations than gyrification based networks in acute AN

patients is probably due to their different developmental trajectory and to their different sensi-

tivity to environmental changes. While convolution of the cortical surface begins prior to

birth, establishing its main patterns principally in the fetal and neonatal stages, cortical thick-

ness undergoes profound modification during later developmental phases, probably as the

result of a fine tuning process between brain structure and function [38].

Evidence in the literature regarding the evolution of cortical thickness networks suggests

that structural networks exhibit a global efficient small-world and modular organization by the

time of birth and indicates a delayed increase of their integrative properties, which follows

maturation of high order association areas and refinement of higher cognitive abilities [39,40].

In acute AN patients our results highlight the presence of significantly higher small-world

properties in cortical thickness and in gyrification-based networks. These findings could rep-

resent the consequence of processes that tend to reduce the wiring cost of the global network

and could indicate the presence of a more economical and less random cortical structural

architecture. We can also hypothesize that this configuration could represent a consequence of

the energy saving needs imposed by AN in the acute stage and that the presence of increased

small-world properties is due to the attempt to maintain an adequate network efficiency

despite starvation and malnutrition. This finding is also consistent with the clinical observa-

tion that many patients describe increased functioning during starvation, at least in the initial

stages, and better ability in managing emotions, which is considered a maintenance factor

[41].
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The present study excludes the presence of any regional differences (which have been

found in other psychiatric diagnoses) in integration and segregation properties, suggesting

that the disorder impacts only the global covariation patterns estimated on cortical thickness

indices. These results allow us to hypothesize that the acute effect of the disease could deter-

mine a global network readjustment that follows energy saving purposes. Therefore, AN could

impact the balance between the wiring cost of the network and its integrative communication

demand, supporting a less expensive connective architecture reconfiguration.

To better understand the impact of AN on the cortical structural connectivity architecture

and on their developmental trajectories we evaluated a sample of AN recovered patients, with-

out finding significant alterations either in gyrification or in cortical thickness covariance net-

works. These results seem to confirm the sensitivity of the overall cortical thickness network to

the acute effects of the disease. In particular, we can hypothesize that nutritional status is cru-

cial in determining the alterations in cortical thickness covariance patterns.

The second objective of our study was to explore the impact of gyrification and cortical

thickness patterns in predicting outcome at follow up, evaluating the presence of possible dif-

ferences in cortical connectivity patterns between “good prognosis” and “poor prognosis”

patients. The absence of significant differences in the overall cortical thickness network prop-

erties between the two groups examined is consistent with a high cortical thickness sensitivity

to the acute effects of AN, which homogeneously impact the cortical thickness covariance pat-

terns in the acute stage of the disease.

However, regional analysis showed a non-homogeneous pattern, with a significantly lower

number of connected edges (lower degree) and higher regional clustering of the orbital part of

the left inferior frontal gyrus in the poor-outcome group. Inferior frontal gyrus is involved in

numerous executive functions, playing a critical role mainly in cognitive control and in

response inhibition. Proper maturation of inhibitory abilities is particularly crucial during

adolescence, given the detrimental role of high levels of impulsivity during this critical devel-

opmental period. Interestingly, the transition from adolescence to adulthood is characterized

by profound differences in the spatial localization of inhibitory processing, with a higher

recruitment of right IFG in adulthood and a more left dominant processing at younger ages

[42].

Adolescent individuals with AN show a bilateral decrease in gray matter volume in the IFG

and the volume of this area was found to negatively correlate with both age and age of onset of

the disorder [43]. Our observation of higher segregation in the IFG in the group of patients

with a poor outcome is consistent with the idea that a lower integration of maturation of this

area could mediate for prognostically unfavorable characteristics of the disorder.

Analysis of the role of gyrification-based networks in predicting the outcome at follow up

showed the presence of a more clustered, segregated and less efficient overall covariance net-

work in the poor-outcome group. Since gyrification patterns seem to develop mainly during

the prenatal stages, our results are in line with others that support a neurodevelopmental

hypothesis for AN and suggest a role of early maturational processes in the characterization of

a subgroup of patients with low response to treatments.

Structural networks are proven to have an intimate relationship with functional cortical

interconnectivity and a fundamental role in the way in which cortical regions structurally

mature in relation to one another [44,45]. We can hypothesize that the higher global segrega-

tion of the poor-outcome group and its lower global efficiency could reduce the response to

treatment by limiting the dynamic functional reconfiguration of the network and the informa-

tion exchange between topologically distant brain areas. The finding of a higher small-world

index in gyrification-based network in patients with a good outcome does not seem to
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contradict these hypothesis, since it probably reflects the presence of lower characteristic path

length values in this group when compared to the good-outcome one.

The finding of a lower integration of gyrification indices in mediating the prognosis of AN

is in line and expands the previous observation of a lower cortical gyrification in AN patients

who show a poor outcome at a 3-year follow up [13]. In particular, since lower structural inte-

gration is likely to indicate a slowdown in the maturation of connectivity patterns during

development, the opportunity to disentangle the role of neurodevelopment trajectories on the

onset of AN and the impact that the disorder itself has on neurodevelopmental trajectories

seems to be particularly relevant from a clinical point of view.

From a regional perspective, patients with a bad prognosis show an increased clustering of

the left superior temporal sulcus, a higher-order processing region that has a key role in diverse

aspects of social perception and cognition, including the perception of faces, voices and under-

standing the actions and mental states of others [46,47]. The higher clusterization of this area

in AN patients who have a poor response to treatment indicates, in this clinical population, a

preponderance of segregative network characteristics.

Patients with a poor outcome also have a reduced degree of the right insula, when com-

pared with patients with good prognosis, which indicates a reduced centrality of an area with

high integrative functions [48]. These regional differences are consistent with the high segrega-

tion of gyrification covariance networks in patients with bad prognosis and suggest a role of

highly connected areas such as the insula and superior temporal sulcus in determining or

mediating the resistance of the disorder to conventional treatments.

This study has several strengths, as well as important limitations, which should be taken

into consideration. It is the first to analyze the relationships between different cortical struc-

tural indices using a connectomic framework in AN, and to describe the relationship between

structural covariation patterns and subsequent outcomes of the disorder. However, particular

caution must be applied in interpreting brain findings in AN samples, for which it is often dif-

ficult to disentangle the effects of early developmental factors on the brain and the conse-

quences of starvation.

In conclusion, the present study highlights the presence of higher segregation and lower

integration characteristics in the global cortical thickness-based network in patients with

acute AN when compared to HC. These higher segregation characteristics could be due to a

maturational delay, which would affect normal development trajectories, or to a protective

and energy saving adaptation to the disease. However, the presence of small-world properties

in AN patients guarantees the presence of non-random and balanced network properties,

in line with the high level of functioning that characterizes patients with AN even in their

malnourished status. The differences evidenced between cortical thickness and gyrification

networks in acute AN patients and the observation of a more clustered and segregated gyrifi-

cation network in patients with a bad prognosis suggest that the covariation patterns of these

two parameters should be further investigated using longitudinal observations in order not

only to better understand the long-term consequences of malnutrition, but also to explore

the possibility of using gyrification and its pattern of covariance network as a measure of

outcome.
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