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ABSTRACT: Untargeted metabolomics and lipidomics LC−MS experiments produce complex datasets, usually containing tens of
thousands of features from thousands of metabolites whose annotation requires additional MS/MS experiments and expert
knowledge. All-ion fragmentation (AIF) LC−MS/MS acquisition provides fragmentation data at no additional experimental time
cost. However, analysis of such datasets requires reconstruction of parent−fragment relationships and annotation of the resulting
pseudo-MS/MS spectra. Here, we propose a novel approach for automated annotation of isotopologues, adducts, and in-source
fragments from AIF LC−MS datasets by combining correlation-based parent−fragment linking with molecular fragment matching.
Our workflow focuses on a subset of features rather than trying to annotate the full dataset, saving time and simplifying the process.
We demonstrate the workflow in three human serum datasets containing 599 features manually annotated by experts. Precision and
recall values of 82−92% and 82−85%, respectively, were obtained for features found in the highest-rank scores (1−5). These results
equal or outperform those obtained using MS-DIAL software, the current state of the art for AIF data annotation. Further validation
for other biological matrices and different instrument types showed variable precision (60−89%) and recall (10−88%) particularly
for datasets dominated by nonlipid metabolites. The workflow is freely available as an open-source R package, MetaboAnnotatoR,
together with the fragment libraries from Github (https://github.com/gggraca/MetaboAnnotatoR).

■ INTRODUCTION

Liquid chromatography−mass spectrometry (LC−MS)-based
untargeted metabolomics and lipidomics experiments are
widely used approaches for biomarker discovery and to study
disease mechanisms. They typically result in complex datasets
containing thousands to tens of thousands of features [mass-
to-charge ratio−retention time (m/z−RT) pairs], correspond-
ing to adducts, in-source fragments, multimers, and isotopo-
logues.1 The numbers of compounds corresponding to such
features are of the order of thousands.1,2 Biological
interpretation of the data depends wholly on annotation of
each feature to a chemical structure. Despite its utmost
importance to the field, this annotation step is a key bottleneck
in untargeted metabolomics data analysis and interpretation.
Accurate metabolite annotation is a largely manual and time-

consuming process that typically consists of MS spectral
inspection and additional MS/MS-targeted fragmentation

experiments on the features of interest, usually run post
acquisition. Data-independent acquisition (DIA) LC−MS
schemes, such as alternating low and high collision energy
(parallel) acquisition without prior ion selection (referred to
henceforth as all-ion fragmentation, AIF, and also known as
MSE, MS/MSALL, or bbCID), sequential window acquisition of
all theoretical mass spectra (SWATH-MS),3 and rapidly
scanning quadrupole (SONAR)4 have been developed to
provide analysts with fragmentation data acquired during
regular LC−MS runs. These reduce the need for additional
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MS/MS fragmentation experiments.1,5 In some cases, struc-
tural information can also be accessed from the MS spectrum
of some compounds in the form of in-source fragments, which
are formed during ionization.5,6 Nevertheless, to get mean-
ingful information from AIF datasets, special processing
routines are needed to reconstruct the parent−fragment ion
relationships and obtain a spectrum containing all fragments
arising from the same parent (pseudo-MS/MS spectrum).
Several commercial and open-source/free software packages,
such as MS-DIAL,7 DIA-Umpire,8 RAMClustR,5 and R-
MetaboList,9 employ deconvolution techniques to link AIF
parent ions to their corresponding fragment ions and extract
the corresponding pseudo-MS/MS spectra. Two R packages,
CAMERA10 and RAMClustR,5 can also be used to reconstruct
in-source parent-fragment pseudo-MS/MS spectra. However,
the interpretation of the resulting pseudo-MS/MS spectra still
requires expert knowledge and manual verification to
determine compound identity from the underlying features.
To identify features belonging to known compounds,

researchers have built metabolite spectral libraries containing
thousands of MS/MS spectra and developed spectral matching
algorithms to annotate unknowns using spectral similarity.
Notable examples include the databases METLIN,11 Mass-
Bank,12 and GNPS13 which are invaluable in the identification
of metabolites from diverse sample matrices. Additional
approaches to MS/MS interpretation involve spectral matching
to in silico spectra generated from metabolite structures,
therefore covering a larger chemical space than spectral
databases.14−18 Most of these tools are, however, most suited
to single-ion MS/MS, rather than AIF MS/MS data.
In most automated AIF annotation software tools, such as

LipidMatch,19 R-MetaboList,9,20 or MS-DIAL,7 the parent−
fragment ion relationship is determined by inspecting which

fragment peaks co-elute with the parent ions. This is usually
conducted using deconvolution strategies consisting of
matching RTs at the maximum intensity and height at half-
maximum (peak shape matching) or by calculating the
correlation of peak intensity shapes across a fixed RT window
(peak shape correlation). These can result in incomplete
pseudo-MS/MS spectra, particularly for co-eluting compounds
containing similar types of chemical groups, which upon
fragmentation produce nonspecific fragment ions (e.g., lipid
head groups or glucuronides in conjugated metabolites) or for
poorly detected fragment peaks. In these cases, peak shape
correlations are affected because the shapes of parent and
fragment peaks are different.
Nonetheless, peak shape matching and peak shape

correlation approaches when used together with fragment
library matching could improve the annotation of AIF LC−MS
features. Most open-source tools for AIF LC−MS annotation
attempt to annotate all detected features. This can be time-
consuming and could miss low-intensity features which might
be relevant for the question under study. In addition,
isotopologues, in-source fragments, and some adducts are
not always considered. Since in most untargeted studies,
statistical analysis is run prior to feature annotation, focusing
on a subset of features (e.g., those which reach statistical
significance) might save time and simplify the process. In
addition, several strategies have been developed specifically to
annotate lipid features using AIF data, such as Lipid-Pro,21

Arcadiate,22 and LipidMatch,19 which can annotate peak lists
but only for lipid and lipid-like features. R-MetaboList9,20

focuses mostly on small molecules, while MS-DIAL7 allows the
analysis not only of both lipids and smaller metabolite
molecules but only of monoisotopic features.

Figure 1. Schematic of MetaboannotatoR workflow for AIF LC−MS feature annotation.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c03032
Anal. Chem. 2022, 94, 3446−3455

3447

https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig1&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c03032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Here, we propose a new workflow for the annotation of
lipidomics and metabolomics LC−MS AIF datasets based on
pseudo-MS/MS reconstruction and matching of the fragment
ions to fragment databases. The workflow is designed to
annotate features obtained from LC−MS experiments
processed using software such as XCMS23 or MZmine,24

which may include all types of ions, namely, isotopologues,
adducts, and in-source fragments. The workflow has been
implemented as an open-source R package MetaboAnnotatoR,
providing tools for automated annotation, reporting, and
visualization. We also provide an extensive fragment library for
lipids (based on theoretical m/z values of the expected
fragments adapted from LipidMatch R package19) and other
small molecules (based on experimental MS/MS spectra)
which can be expanded and tailored by the user to their own
requirements. The software and libraries are available from
Github (https://github.com/gggraca/MetaboAnnotatoR).

■ EXPERIMENTAL SECTION
Implementation of the Automated Annotation Work-

flow. The workflow was designed for feature-by-feature
annotation on one or more LC−MS AIF samples, as illustrated
in Figure 1.
The workflow can be divided into seven steps detailed

below:

(1) Data input. The workflow starts with a table of features
(m/z and RT values) to be annotated (target features)
and samples where the target features have been
detected. This is used to load the raw AIF LC−MS
data which should be in the vendor-neutral formats
mzML or netCDF. Alternatively, a RAMClustR5 R
object containing deconvolved pseudo-MS/MS spectra
for the features can also be used as data input. Positive
and negative ionization modes for the same chromatog-
raphy are analyzed separately, to make effective use of
mode-specific reference libraries. The files containing
the reference libraries of candidate parent and fragment
m/z values are also loaded. Optionally, expected RT
windows for particular metabolite classes can be loaded
to further restrict the number of candidate matches.

(2) Pseudo-MS/MS generation. For each target feature, we
obtain the extracted ion chromatogram (EIC) from the
no-fragmentation (MS1) scans and all EICs from the
AIF scans in the same RT window. We then calculate
the Pearson correlation coefficient r, between the
intensity of the feature EIC (MS1) and each EIC from
the AIF ions. The peaks from the AIF spectra with
correlation greater than a threshold θ defined by the user
(usually 0.7−0.8, default 0.8) are gathered to form the
pseudo-MS/MS spectrum. If a RAMClustR object is
used, the target feature m/z and RT values will be used
to locate the corresponding pseudo-MS/MS spectrum
(cluster).5 If no pseudo-MS/MS spectrum is obtained
(i.e., no peaks with r > θ), the full AIF spectrum at the
feature RT is used as the pseudo-MS/MS spectrum.

(3) Isotopologue check. The workflow was designed to
annotate features including isotopologue peaks, adducts,
and in-source fragments. Therefore, the type of
isotopologue must be determined to ensure that only
the monoisotopic mass of each isotopic distribution is
used in the search for candidates. This is important
because the fragment database is composed solely of

monoisotopic masses. Currently, the workflow only
considers carbon isotopologues. In an isotopic distribu-
tion of the same compound, the peak intensities will be
highly correlated, and for small molecules, the
monoisotopic peak is expected to have the highest
intensity. The peaks of MS1 spectra within the same RT
window as the target feature that show a high EIC
correlation (e.g., r > 0.8) with the target feature are
inspected. The intensity of the target feature is then
compared with that of the peak at target m/z1 Da if
one exists. If the target feature intensity is higher, then it
is assumed to represent the monoisotopic mass.
Otherwise, the feature intensity will be iteratively
compared with the intensity of the peak at target feature
m/z2 Da (then −3 Da and so on) until the peak with
the highest intensity (monoisotopic peak) is found. The
m/z difference between the feature m/z and the
monoisotopic peak will define the type of isotopologue.
Typically, most of the LC−MS peaks obtained from
XCMS outputs are either monoisotopic (M + 0) or
correspond to the second (M + 1), third (M + 2), and
fourth (M + 3) peaks of the isotopic distribution.

(4) Candidate selection. The monoisotopic mass of the
target feature is used to search for candidate
metabolite(s) in the library. The libraries are organized
as a collection of .csv files, one for each combination of a
metabolite or class of metabolites (lipids) and an
adducting species (e.g., Na+ and K+). Each entry in a
library file contains the (parent) metabolite name and
adduct m/z and expected fragment m/z values (Figure 1,
step 6). The corrected target monoisotopic m/z (from
step 3) is used for a first screening of candidates. If no
match is found, a second search is performed through
the library fragment m/z values in case the target feature
is an in-source fragment. In both cases, a tolerance of 25
ppm is used (default for Q-ToF instruments, users can
modify this).

(5) Spectral match. For each candidate, the m/z of adduct
and fragments will be compared with those of pseudo-
MS/MS peaks using a 0.01 Da tolerance (default for Q-
ToF type instruments, modifiable by the user). If some
of the expected fragments from a candidate are not
matched to the pseudo-MS/MS peaks or if no pseudo-
MS/MS spectrum was generated, the AIF spectrum will
be searched for these remaining fragments. This second
search allows for fragments shared by co-eluting
molecules which may not be captured by pseudo-MS/
MS (e.g., head groups of some phospholipids) to be
accounted for in the matching process.

(6) Candidate scoring and ranking. The score indicating the
quality of the match between a library candidate and a
target feature is composed of two parts: one measuring
the similarity in m/z between the target and candidate
and one gauging the similarity of the fragmentation
patterns: S = Smz + Sma. For the former, we use the
reciprocal of the m/z error between the target and
candidate parent, E (in ppm) bounded at unity: Smz =
min(1/E, 1). For the latter, each parent and fragment in
the library is given an occurrence score (s, Figure 1).
These scores reflect the likelihood of observing the
fragment and allow the user to include metabolites in the
library whose fragmentation can only be predicted in
silico or obtained from the literature. The match score
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Sma is then the sum of occurrence scores for all
fragments which match pseudo-MS/MS. Where frag-
ments are matched to the AIF, these are downweighted
by a factor of two, reflecting their lower specificity
compared to pseudo-MS/MS matches. Thus, for the ith
candidate, the final score combines the two contribu-
tions
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where the weights wmz = 1 − wma (default both 0.5)
allow users to vary the influence of each subscore,
balancing m/z errors with fragmentation pattern
matching. Here, P denotes the set of all matches to
the pseudo-MS/MS spectrum and A is the set of
matches to the AIF spectrum.

(7) Output. The matches for each target feature are
compiled and output to a table (.csv) and graphical
outputs are saved as .pdf files. For each target feature, a
list of the candidates ranked by score is produced, which
includes the metabolite name, m/z matched, m/z error
(ppm), the number of matched fragments, and score.
Additionally, a list containing all rank 1 annotations is
produced for quick result inspection. Graphical outputs
contain, for each ranked result, the pseudo-MS/MS
spectrum comprising the matched peaks and the
corresponding EICs; and for each target feature, the
pseudo-MS/MS and pseudo-MS (MS1 spectrum con-
taining all ions correlated to the target feature) spectra
and the corresponding EICs are stored for later
inspection. If RAMClustR is used, no EICs are
produced, as in this case, the annotation is performed
using preprocessed pseudo-MS/MS data.

Metabolite Fragment Libraries. We prepared libraries of
metabolites, which consist of records that include parent ion
m/z and expected MS/MS fragments from positive and
negative electrospray ionisation (ESI) experiments. The
libraries include both lipids and small-molecule (nonlipid)
metabolites observed in mammalian biofluids and tissues. The
lipid libraries were adapted from those of the LipidMatch R
package,19 which is a library of theoretical m/z values for
experimentally observed lipid fragments. The libraries were
adapted to retain only fragments that were commonly observed
experimentally in ESI MS/MS spectra and well-documented in
the literature.25,26 Overall, 90,425 lipid entries, comprising
several combinations of adducts, observed in both positive and
negative modes of ionization were included in the library.
These included adducts of H+, Na+, K+, and NH4

+ for the
positive mode and adducts of Cl−, HCOO−, CH3COO

−, and
H2PO4

− and the characteristic proton loss for the negative
mode. The lipid library covers diverse lipid classes including
fatty acids, acylcarnitines, phosphatidic acids (PAs), phospha-
tidylcholines (PCs), phosphatidylethanolamines (PEs), phos-
phatidylserines (PSs), phosphatidylglycerols (PGs), sphingo-
myelins (SMs), lysophospholipids (LysoPA, LysoPC, LysoPE,
LysoPS, and LysoPI), ceramides, glucosylceramides, and
mono-, di-, and triacylglycerol lipids (MG, DG, and TG,
respectively).
The nonlipid small-molecule library was generated from

experimental CID MS/MS spectra from proton or sodium
adducts and deprotonated ions corresponding to metabolites

commonly found in human biofluids, such as urine and blood
serum or plasma deposited in MassBank12 and GNPS13

databases (additional information regarding the spectra
sources are given in the Supporting Information). In contrast
to lipids, the structural diversity and resulting variety of MS/
MS fragmentation patterns of small molecules complicates the
attribution of experimental fragment m/z values to the
corresponding fragment ion formulas and structures. There-
fore, the experimental MS/MS m/z values were used for the
nonlipid libraries. A total of 179 small-molecule entries
covering positive and negative mode fragment ions have
been included in the library. More details about the
construction of the libraries can be found in the Supporting
Information. In summary, the libraries can be considered in
four groups: lipids positive, lipids negative, nonlipid metabo-
lites positive, and nonlipid metabolites negative.

Datasets for Workflow Development and Testing. For
development and testing of the annotation workflow, we used
human serum LC−MS AIF datasets from the Multi-Ethnic
Study of Atherosclerosis (MESA).27,28 Human serum samples
were analyzed on a Waters Acquity UPLC system connected to
a Waters Xevo-G2 Q-ToF system operated in the MSE

mode(see Supporting Information). Three datasets were
used: two lipidomics datasets (C8 reverse-phase (RP)
chromatography acquired in electrospray (ESI) positive and
negative polarities: Lipid+ and Lipid−) and a polar extract
acquired using hydrophilic interaction chromatography in the
ESI positive mode (HILIC+). Annotations were made by
manual inspection of MSE and MS/MS spectra on selected
samples and matching accurate mass, isotope patterns, and
fragmentation spectra to databases such as LipidMaps,29

Human Metabolome Database (HMDB),30 and MassBank.12

Manual annotations were mostly of confidence level 2
according to the Metabolomics Standards Initiative (MSI),31

except for some lipids in the positive mode RP and HILIC. In
the latter cases, annotations (PC, PE, PS, PG, PA, DG, and
TG) where the chain lengths could not be determined with the
available MS/MS information were regarded as MSI
confidence level 3 (Supporting Information).
The performance of the annotation workflow was tested on

four additional datasets on different matrices and instruments.
(a) Two datasets acquired in-house of hydrophilic extracts
from adipose tissue (AT). Samples were analyzed by HILIC
UPLC-MS using a Waters Acquity UPLC system connected to
a Waters Synapt Q-TOF system in the MSE mode in both ESI
positive and negative polarities (see the Supporting Informa-
tion).32 Annotations were made by manual inspection of MSE

and MS/MS spectra to confidence levels 2 and 3 as described
above for MESA datasets. (b) Two publicly available datasets
from the MetaboLights repository,33 corresponding to
amniotic fluid (MTBLS666, level 2 and 3 annotations) and
urine (MTBLS816, mostly level 1 annotations). These studies
were selected to cover additional sample matrices. The
annotations obtained using MetaboAnnotatoR were compared
with those reported by the authors. Performance was
summarized using precision and recall calculated from the
number of correctly and incorrectly annotated and unan-
notated metabolite features (eqs 2 and 3)

precision
correctly annotated

correctly annotated incorrectly annotated
=

+
(2)
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recall
correctly annotated

correctly annotated unnannotated
=

+ (3)

Data Conversion and Processing. Raw LC−MS
chromatograms were converted either to netCDF using
Databridge software (Waters, Milford, MA, USA) or to
mzML using Proteowizard’s msconvert version 3.0.34 A
random selection of 100 LC−MS AIF chromatograms from
both Lipid+ and Lipid− as well as HILIC+ datasets from the
MESA cohort was processed in R using XCMS23 version 3.4.4
and RAMClustR package5 to obtain pseudo-MS/MS spectra
(dataset-wide reconstruction) (see the Supporting Informa-
tion).
Automated Annotations Using MetaboAnnotatoR.

Automated annotations were obtained for manually annotated
features in the MESA and validation datasets. The automated
annotations were obtained separately using the lipid and
nonlipid metabolite libraries and the results were combined.
MZ and matching weights (eq 1) were both set to wmz = wma =
0.5. This value gave an adequate proportion of true positive
annotations in preliminary tests using the MESA Lipid+
dataset (Supporting Information Figure S1) and should
provide a reasonable scoring weight when all features are
unknown hence annotation agreement cannot be assessed.
Although the workflow contains the option to use retention
time information of expected metabolite classes, this option
was not used, to reflect real-life scenarios, where this
information is not known.
LC−MS Annotations Using MS-DIAL. Performance was

compared to MS-DIAL7 (version 4.38) which is an established
software package for automated pseudo-MS/MS reconstruc-
tion and annotation of AIF and other MS datasets. In MS-
DIAL, mzML files were input and the default parameters for
AIF analysis were used. These included minimum peak height
of 1000; m/z search tolerance 0.01 Da for both MS1 and AIF
scans; and pseudo-MS/MS deconvolution for single chromato-
gram using MS2Dec algorithm.7 The expected adducts were
set to the same as those in MetaboAnnotatoR’s libraries. The
default lipidomics databases (LipidBlast35) containing over 1
million spectra, and the full public MS/MS databases (V15),
containing 327,763 MS/MS spectra, both obtained from MS-
DIAL website (http://prime.psc.riken.jp/compms/msdial/)

were used for spectral matching. Results from both databases
were combined into a single table.

■ RESULTS AND DISCUSSION

Typical Output of the Automated Annotation Pipe-
line. Representative outputs based on a single sample are
shown in Figure 2. The matched ions for the rank 1 annotation
are illustrated by overlapped EICs, which reveal the retention
time agreement between the fragments of the candidate
(Figure 2A). The matched ions are shown in a pseudo-MS/MS
spectrum (Figure 2B). The graphical results of each annotation
are accompanied by a table containing the ranked candidates
for the target feature (Figure 2C), which provides information
on the type of feature (parent or fragment), adduct, and
isotope. Additionally, the m/z error between the feature and
candidate is shown, as well as the number fragments of each
candidate that have been matched to pseudo-MS/MS
(fraction). The outputs when using RAMClustR deconvolved
pseudo-MS/MS are equivalent except that EICs for the
matched features are not shown (Supporting Information
Figure S2). The outputs from Figure 2 allow the analyst to
evaluate the quality of the annotation and decide on its
confidence.

Performance Evaluation: Comparison with Manual
Annotations. To evaluate the performance of the automated
annotation workflow, a comparison was made with annotations
from manual assessment of AIF, MS/MS, accurate mass, and
isotopic patterns. A total of 599 manually annotated features
were obtained from human serum datasets from the MESA
cohort, namely, Lipid+ (192 features), Lipid− (147 features),
and HILIC+ (260 features) (Supporting Information). These
annotations were then compared to the corresponding
automated annotations obtained from (1) a representative
quality control (QC) sample and (2) a RAMClustR (RC)
object generated from 100 samples per dataset (see the
Supporting Information). The features corresponded to
different types of adducts, isotopologues, and in-source
fragments from both lipid and nonlipid metabolites (Figures
S3 and S4). The features used in this comparison correspond
to all manually annotated features available at the time of
analysis and include adduct entries that might not be found in

Figure 2. Automated annotation using MetaboAnnotatoR of feature 468.309 m/z 83 s from a representative sample of the MESA human serum
Lipid+ dataset: (A) matched EICs and (B) corresponding pseudo-MS/MS spectrum of ions matched for the rank 1 candidate. (C) Table with
ranked candidates for the same feature. Legend: mz.errorm/z error, E, in ppm; mz.metabolitem/z of the parent ion of the matched candidate;
matched.mzm/z of the matched parent or fragment; fractionnumber fragments of each candidate that have been matched to the target
pseudo-MS/MS; and pseudo-MS/MSlogical value indicating if a pseudo-MS/MS was obtained (TRUE) or not (FALSE).
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the fragment libraries and thus cannot be correctly annotated
by the workflow (e.g., [2M + Na]+ or [M + 2H2PO4Na]

−).
This allowed a more realistic evaluation of the annotation
performance.
The number of automatically annotated features in agree-

ment or disagreement with the manual annotations as well as
those for which no annotation was obtained (no database
match) is summarized in Table 1. Most of the features are
correctly annotated at rank 1 (highest score) in all datasets.
The highest percentage of correct annotations in rank 1 was

obtained for the Lipid+ datasets with around 70% accuracy or
close to 80% when ranks 1 to 5 are combined. The accuracy for
Lipid− and HILIC+ datasets was just above 50% for rank 1
and up to around 65% or 70−77% when ranks 1−5 are
combined for the QC sample and RC object, respectively. For
Lipid− (QC sample), no correct annotations were found
above rank 4.

A smaller percentage of the features was not annotated in
any of the datasets: 14% and 13% in Lipid+, 27% and 16% in
Lipid−, and 24% and 15% in HILIC+ dataset for the QC
samples and RC object, respectively. There was also a small
percentage of incorrectly annotated features detected in all
datasets: 7% and 9% for Lipid+, 7% and 6% for Lipid−, and
12% and 15% for HILIC+ for the QC sample and RC object,
respectively. Despite these results, moderate-to-good precision
can be claimed for the annotation workflow, with values just
above 90% for the lipid datasets and slightly lower for HILIC
datasets. Several factors can lead to not annotated or
incorrectly annotated features. The intensity of the parent
will strongly impact detection of the corresponding fragments.
We investigated the relationship between feature intensity and
annotation rank, incorrectness, and the absence of annotation
(Figure 3).

Table 1. Comparison between Automated and Manual Annotations of MESA Datasetsa

number of correct annotations at each rank

dataset rank 1 rank 2 rank 3 rank 4 rank 5 incorrect not annotated precision (%) recall (%)

Lipid+ QCa N = 192 134 (69.8%) 12 (6.3%) 4 (2.1%) 1 (0.5%) 1 (0.5%) 14 (7.3%) 26 (13.5%) 91.6 85.4
Lipid+ RC N = 192 134 (69.8%) 7 (3.6%) 5 (2.6%) 4 (2.1) 1 (0.5%) 17 (8.9%) 24 (12.5%) 89.9 86.3
Lipid- QC N = 147 75 (50.7%) 19 (12.8%) 2 (1.4%) 1 (0.7%) 10 (6.8%) 40 (27.1%) 90.6 70.8
Lipid− RC N = 147 92 (62.2%) 19 (12.8%) 2 (1.4%) 0 (0%) 1 (0.7%) 9 (6.1%) 24 (16.2%) 92.9 82.6
HILIC+ QC N = 260 143 (55.0%) 14 (5.4%) 6 (2.3%) 3 (1.2%) 31 (11.9%) 63 (24.2%) 84.3 72.5
HILIC+ RC N = 260 131 (50.4%) 23 (8.8%) 7 (2.7%) 6 (2.3%) 14 (5.4%) 39 (15.0%) 40 (15.4%) 82.3 81.9

aThe QC sample corresponds to a pool of study samples. The RC (RAMClustR) object contains pseudo-MS/MS spectra arranged into clusters
from the 100 study samples from the three datasets using XCMS and RAMClustR. Results are organized according to the rank where the correct
annotation was found after ranking the annotation scores in the descending order. For precision and recall, an annotation was defined as correct if it
was found in ranks 1−5.

Figure 3. Relationship between annotation accuracy and feature intensity. Box plots show distribution of feature intensities for each rank of correct
annotation, incorrectness, or the absence of annotation. Nondetected features (below min intensity) are not presented.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c03032
Anal. Chem. 2022, 94, 3446−3455

3451

https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c03032?fig=fig3&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c03032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In all datasets, rank 1 annotations span a wide range of
intensities with higher median intensity values (Mann−
Whitney p < 0.05) when compared to not annotated features,
except for Lipid+ dataset. In the lipid datasets, rank 1
annotations had higher median intensities than incorrectly
annotated features only in the Lipid− dataset (Mann−Whitney
p < 0.05). This illustrates that feature intensity plays a role in
whether a feature is annotated and in the Lipid−, if it is
correctly annotated.
Two other factors that could give rise to incorrect and

missing annotations are the absence of the true candidates
from the libraries and the incorrect attribution of feature
isotopologue. The latter will have an effect on the selection of
candidate metabolites from the fragment libraries. These
factors are investigated for the HILIC+ results in Figure S5A,B
(Supporting Information).
Missed annotations for the high-intensity features of HILIC

+ can be explained in part by the wrong attribution of the
isotopologue (Figure S5B top) rather than missing candidates
from the libraries (Figure S5A top). This was not observed for
the incorrectly annotated features (Figure S5A,B bottom).
Features could also be incorrectly annotated if the wrong

fragments are matched or if the fragments were missing
because they were not detected. For HILIC, features with high
intensity that were incorrectly annotated occurred at RTs with
high ion density (around 240 s and close to 300 s, Figure
S5C). This may have led to a higher degree of cross-compound
fragment matching resulting in incorrect annotations.
Evaluation of Annotation Performance: Comparison

with MS-DIAL. The automated annotation workflow was
tested against another software package for LC−MS analysis,
MS-DIAL.7 This performs automated processing, deconvolu-
tion, and annotation of AIF data (among other tandem-MS
modalities) and uses lipid and other metabolite libraries for
spectral matching. Therefore, it seemed the most appropriate
software against which to compare our workflow. For this
purpose, the same AIF QC datasets used for comparison
against the manual annotations were processed in MS-DIAL
using MS2Dec deconvolution algorithm7 and matched against
the software lipid and metabolite MS/MS spectra libraries.
Since MS-DIAL only considers M + 0 isotopologues for further
annotation, the comparison was made using features
corresponding to this isotopologue. Only features annotated
by MS-DIAL and MetaboAnnnotatoR and those manually
annotated were compared. This corresponded to 161 features
for Lipid+, 53 for Lipid−, and 50 for HILIC+ observed in the
representative QC sample. For MetaboAnnotatoR, only rank 1

annotations were used, to make a fairer comparison against
MS-DIAL, which only yields top-ranked matches as annotation
results. Annotations are provided in the Supporting Informa-
tion. All datasets showed good agreement between manual and
automated annotations with overlaps above 50% (Figure 4).
We observed that MetaboAnnotatoR achieved a better

overlap with manual annotations than MS-DIAL for Lipid+
[121/161 (75%) vs 89/161 (55%)] and HILIC+ [37/50
(74%) vs 31/50 (62%) (Figure 4)]. The reason for the slightly
superior accuracy of MetaboAnnotatoR could be a better
recognition of features corresponding to [M + Na]+ and [M +
K]+ adducts than MS-DIAL, particularly for common lipid
classes such as PCs, LPCs, SMs, and TGs (Supporting
Information). In fact, the default lipid MS/MS spectral library
used by MS-DIAL, LipidBlast, does not include [M + K]+

adducts.35 Nevertheless, MS-DIAL can detect many types of
adducts in MS1 analysis. However, this adduct information
might have not been taken into account at the spectral
matching between the pseudo-MS/MS and database MS/MS
spectra, which resulted in incorrect annotations. For Lipid−,
differences in overlap between manual and automated
annotations were less pronounced with 37/53 (70%) for
MetaboAnnotatoR and 39/53 (74%) for MS-DIAL. There
were also a few instances in all datasets where MetaboAnno-
tatoR and MS-DIAL both picked the same incorrect
annotations (overlap between MetaboAnnotatoR and MS-
DIAL, Figure 4).
Overall, these results demonstrate that the workflow

implemented in MetaboAnnotatoR can outperform the well-
established software MS-DIAL in LC−MS AIF annotation.
The workflow has another practical advantage over MS-DIAL,
which is the possibility for the user to choose the features to be
annotated. These can be, for instance, those that have a
statistical significance in a study. In MS-DIAL, such a selection
is currently not possible, and the annotations are performed in
an untargeted manner. This increases the runtime, which can
take several hours for one sample, with no guarantee that the
desired features will be peak-picked and annotated. Metab-
oAnnotatoR can take from 1 s or less (RAMClusteR objects)
to 2 min (raw chromatogram) per feature. The user can focus
on features of interest in specific samples, for instance, where
the features are found in high abundance.
A key factor that needs some consideration when comparing

the two software packages is the reference libraries. There are
considerable differences in the numbers of entries between
both approaches: over 327,763 MS/MS records in MS-DIAL
for several metabolite classes (publicly available spectra) and

Figure 4. Venn diagrams showing the number of overlapped annotations between manually annotated features and those from MetaboAnnotatoR
and MS-DIAL for Lipid+ (n = 161 features), Lipid− (n = 53 features), and HILIC+ (n = 50 features).
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over 1 million Lipid MS/MS entries compared to 90,425 Lipid
and 179 small-molecule metabolite entries for MetaboAnno-
tatoR. An almost complete overlap of lipid classes and adducts
between MS-DIAL’s libraries and those of MetaboAnnotatoR
would be expected. A comprehensive evaluation of such an
overlap was not performed given the complexity and size of the
libraries. Nevertheless, the lower number of entries in
MetaboAnnotatoR could also explain in part the somewhat
better false-positive rate for some features in comparison with
MS-DIAL.
Application to Other Datasets. The performance of the

workflow was tested on four additional datasets from different
species, sample types, and instrument combinations. Compar-
isons were made against manual annotations (adipose tissue
datasets) or those reported by the study authors (Metabo-
Lights datasets). The results are summarized in Table 2. The
precision of the automated workflow is generally good (>80%),
with most correct annotations being captured at rank 1. The
exception is the amniotic fluid dataset which had a modest
precision (60%). The recall results are excellent (>80%) for the
adipose tissue datasets, where most features correspond to
lipids, but low for the two MetaboLights datasets. This results
from the high number of false-negatives (no match to a
database entry) for nonlipid metabolites, which highlights the
need for large libraries. Detailed results can be found in the
Supporting Information.

■ CONCLUSIONS

We have described a novel workflow and software package,
MetaboAnnotatoR, to automatically annotate features from
metabolomics and lipidomics untargeted LC−MS experiments
acquired using AIF.
Existing software packages rely on databases of MS/MS

spectra and the majority focus on lipidomics. In contrast,
MetaboAnnotatoR can be applied to both lipids and other
metabolites. Its libraries are composed solely of fragment ion
information, without experimental MS/MS spectra of pure
standards, a strategy which has been used in LipidMatch19 and
R-Metabolist9,20 R packages, for lipids and nonlipids,
respectively. This has the advantage that users can input
fragment information even when MS/MS spectra are not
available in a spectral database, for example, reference spectra
only existing in the literature. In our workflow, we
implemented a novel scoring system based on individual
fragment occurrence scores which allows us to compensate the
absence of relative intensities (as in an experimental MS/MS
spectrum). This also obviates variations in intensity from MS/
MS spectra acquired in different instruments with different
fragmentation energies. Another unique feature is the ability
for peaks not captured by pseudo-MS/MS to be searched in
AIF scans, which can compensate for co-elution of molecules

producing commonly shared fragments. Contrary to other
software such as MS-DIAL, MetaboAnnotatoR is able to
annotate the different isotopologues from isotopic series, as
well as in-source fragments. This enables the direct application
of the workflow to features obtained from XCMS or similar
software. The main weakness of MetaboAnnotatoR as
compared with other approaches is the relatively small library
size (particularly nonlipids) compared to other approaches
such as MS-DIAL. However, these can be customized by the
user, for instance, by importing external libraries as .txt and
.msp files. The default libraries will be expanded in future
versions of the software.
Using default databases and options, good precision (82−

92%) and recall (82−85%) values were obtained for human
serum datasets for high-rank scores (1−5). These results equal
or outperform those obtained using MS-DIAL, the state-of-the-
art software for AIF data annotation. Further validation was
obtained for other biological matrices and different types of
instruments. These showed modest-to-good (60−88%)
precision but low recall due to the small size of the fragment
libraries, in particular, the nonlipid library.
The annotation of AIF datasets acquired on higher mass

accuracy MS instruments (e.g., Orbitraps), although not tested
here, is also possible using MetaboAnnotatoR. This should
lead to equally good or even better annotations results.
Although only AIF is currently supported, future developments
might expand MetaboAnnotatoR’s application to other DIA
schemes, such as SWATH.
We believe this workflow addresses a key need for more

effective annotation of untargeted LC−MS AIF data and will
be of value in many metabolomics and lipidomics applications.
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