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Thermal Conductivity of Graphene-
hBN Superlattice Ribbons
Isaac M. Felix & Luiz Felipe C. Pereira   

Superlattices are ideal model systems for the realization and understanding of coherent (wave-like) 
and incoherent (particle-like) phonon thermal transport. Single layer heterostructures of graphene and 
hexagonal boron nitride have been produced recently with sharp edges and controlled domain sizes. 
In this study we employ nonequilibrium molecular dynamics simulations to investigate the thermal 
conductivity of superlattice nanoribbons with equal-sized domains of graphene and hexagonal boron 
nitride. We analyze the dependence of the conductivity with the domain sizes, and with the total 
length of the ribbons. We determine that the thermal conductivity reaches a minimum value of 89 W 
m−1K−1 for ribbons with a superlattice period of 3.43 nm. The effective phonon mean free path is also 
determined and shows a minimum value of 32 nm for the same superlattice period. Our results also 
reveal that a crossover from coherent to incoherent phonon transport is present at room temperature 
for BNC nanoribbons, as the superlattice period becomes comparable to the phonon coherence length. 
Analyzing phonon populations relative to the smallest superlattice period, we attribute the minimum 
thermal conductivity to a reduction in the population of flexural phonons when the superlattice 
period equals 3.43 nm. The ability to manipulate thermal conductivity using superlattice-based two-
dimensional materials, such as graphene-hBN nanoribbons, opens up opportunities for application in 
future nanostructured thermoelectric devices.

Over the past few decades, heat transport in high-performance nanostructured thermoelectric materials has been 
controlled primarily by the introduction of atomic-scale impurities, interfaces and defects1–6. Such structural 
changes reduce heat flow by scattering phonons diffusely. A recent approach used for controlling nanoscale heat 
transport involves phonon wave interference effects, such as the one due to specular reflection and transmission 
of thermal vibrations at interfaces7–9. Superlattices are excellent candidates for this approach because of their 
atomically flat interfaces, since wave-interference effects depend on the interface conditions. Smoother interfaces 
lead to greater wave interference effects whereas very rough interfaces scatter phonons diffusely. That is to say, 
high-quality interfaces favor specular reflection and transmission of phonons8–10.

A superlattice corresponds to a periodic or quasi-periodic arrangement of different materials, and can be 
described by a superlattice period which confers a new translational symmetry to the system, impacting their 
phonon dispersions and subsequently their thermal transport properties11. Superlattices are ideal model systems 
for the realization and understanding of both coherent (wave-like) and incoherent (particle-like) phonon trans-
port. Coherent phonons are subject to wave interference whereas incoherent phonons are subject to diffuse scat-
tering. A prime example has been experimentally demonstrated in GaAs/AlAs superlattices, where the phase of 
coherent phonons is preserved across interfaces and they can travel ballistically over long distances7. Similarly, it 
has been experimentally verified in epitaxial perovskite oxide superlattices that there is a crossover from coherent 
to incoherent phonon transport, which manifests itself as a minimum in lattice thermal conductivity as a function 
of interface density8. In spite of the recent advances, the idea of using periodic structures such as superlattices to 
control thermal transport by manipulating coherent phonons has been around for a few decades12. The existence 
of a minimum thermal conductivity for a given superlattice period, due to the competition between particle and 
wave nature of phonons in epitaxial perovskite oxide superlattices is one of the most important and long-standing 
predictions regarding thermal transport in superlattices10,13.

Graphene shows weak Umklapp scattering due to its two-dimensional phonon dispersion relation14,15. 
This feature makes graphene attractive for studying coherent phonon transport in nanostructures, such as 
graphene-hexagonal boron nitride monolayer superlattices (BNC superlattices). The lattice parameter of the 
honeycomb structures of graphene and hexagonal boron nitride monolayer (hBN) are nearly the same, enabling 
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the synthesis of superlattices with smooth interfaces16, which favors specular scattering of phonons, as discussed 
above. Graphene is a semi-metal17 whereas hBN could be seen as its insulating counterpart18,19. Concerning their 
thermal transport properties, graphene presents the highest thermal conductivity among know materials20–23, 
while hBN’s thermal conductivity is one order of magnitude smaller, but still larger than many bulk semiconduc-
tors19,24. In both graphene and hBN, at room temperature, phonons are the main heat carriers.

Recently, uniform monolayer graphene-hBN structures have been successfully synthesized via lithography 
patterning coupled with chemical vapor deposition (CVD)16,25–27. It was observed that the formation of BNC 
structures with zigzag interfaces was preferred over that with armchair interfaces during growth27. This approach 
enables fabrication of large-scale hybrid graphene-hBN heterostructures that are continuous and easily trans-
ferable to substrates16. It has also been shown that these materials possess unusual physical properties, different 
from pristine graphene and h-BN25,28–34. For instance, both theoretical analysis and experimental results show 
that the band gap of BNC could be tuned by arranging graphene and hBN domains in various ways25,28–30. It has 
been reported that graphene embedded in hBN with zigzag interfaces always originates semiconducting struc-
tures29. It was also reported that the Seebeck coefficient of BNC superlattices can be 20 times larger than that of 
graphene, and that it is highly sensitive to the proportion of hBN in the lattice35,36. It has also been found that the 
thermal conductivity of graphene embedded in hBN depends on hBN concentration and cluster size37–39. There 
are other examples of how the chemical and structural diversities in BNC monolayers affect their thermal trans-
port properties37–40.

In this work we investigate the heat transport properties of BNC superlattice ribbons with fixed width and 
equal-sized domains of graphene and hBN, as shown in Fig. 1, via non-equilibrium molecular dynamics sim-
ulations. We have considered only zigzag-oriented graphene-hBN interfaces, since those are preferred dur-
ing growth27, but we do not expect our main results to depend on the interface orientation. We analyze the 
dependence of the conductivity with the domain sizes, and with the total length of the ribbons. We observe a 
non-monotonic behavior of the conductivity with the superlattice period and identify the corresponding value for 
which the thermal conductivity is a minimum. Considering the dependence of the conductivity with the length 
of the ribbons, we determine an effective phonon mean free path (MFP), which also has a minimum value for the 
same superlattice period.

Figure 1.  Unit cell of graphene-hBN structures with increasing superlattice period 
p. All ribbons have nominal 

width of 5 nm and thickness of 0.33 nm. Gray spheres represent carbon atoms, pink spheres are boron atoms 
and blue spheres are nitrogen atoms. First Brillouin zone and corresponding high-symmetry points are also 
shown in the top-right panel.
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Results
Thermal conductivity dependence with sample length.  Due to strong size effects arising from the 
limitation of the phonon MFP to the region between the heat reservoirs, the conductivity for a system of length 
Lx is expected to behave as:41
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where κ∞ is the intrinsic (length-independent) conductivity of the material, and Λph is the effective MFP of the 
heat carriers. Therefore, by fitting the above expression to the simulation data obtained for systems of increasing 
length we can calculate both, the intrinsic thermal conductivity of the material as well as its effective MFP. In our 
case, the thermal conductivity is expected to depend on the ribbon length Lx, as described in Eq. (1), but also on 
the superlattice period 

p. From this dependence we can extract the intrinsic thermal conductivity and the effec-
tive phonon MFP for each superlattice period. Figure 2 shows the length dependence of κ for four superlattice 
periods, starting from the smallest period considered, 0.86 nm and up to 6.86 nm. For each superlattice period we 
observe an increase in conductivity with ribbon length, which is described by Eq. (1) represented by the continu-
ous lines in Fig. 2. The fitting was performed without the three longest systems, which were obtained later and 
present larger uncertainties, but agree with the fitted lines within the error bars. In fact, including the three longer 
systems in the fitting of Eq. (1), the intrinsic thermal conductivity κ∞ would change by less than 5%. This agree-
ment shows the remarkable predictive power of Eq. (1), which can be used to predict the intrinsic lattice thermal 
conductivity from simulations with relatively short systems42–44.

Analyzing the behavior of κ(Lx) we observe three heat transport regimes, as indicated in Fig. 2. First the bal-
listic regime where κ ∝ Lx, which is valid in the small Lx region B, up to ≈50 nm. In this region the phonon MFP 
is larger than the system length, and is thus limited by it. For >L 150x  nm, we observe the diffusive regime where 
κ shows a weak dependence on system length. Here the phonon MFP is shorter than the system length. Finally, 
between these two regions we find a ballistic-diffusive transition regime, region T, where the system length 
becomes comparable to the phonon MFP and the dependence of κ on Lx decreases.

Thermal conductivity and effective phonon MFP as a function of superlattice period.  In Fig. 3(a) 
we present the intrinsic thermal conductivity κ∞ of the BNC nanoribbons as a function of superlattice period 

p at 
300 K. We observe that the overall superlattice thermal conductivities are remarkably reduced, by ~98% when 
compared with the thermal conductivity of graphene20,22,23, and by ~78% when compared with the thermal con-
ductivity of hBN24,45. Another noticeable feature in Fig. 3(a) is the non-monotonic dependence of κ∞ on 

p. An 
increase in 

p initially causes κ∞ to decrease until it reaches a minimum value of 89 W m−1K−1 when = . 3 43p  nm, 
and then it increases. Our results are in general agreement with previous reports which investigated the influence 
of the superlattice period on the thermal conductivity of BNC superlattices. The observation of a minimum ther-
mal conductivity for a specific superlattice period, as found in our simulations, has been reported by Jiang et al.46, 
Zhu and Ertekin47, da Silva et al48. and Chen et al.49. However, in our work there are two factors not considered in 
previous works. First, we deal with nanoribbons rather than 2D superlattices, as done in the previous works46–49. 
Therefore, our systems are expected to present more of a 1D character than a 2D one. Second, we consider the 
intrinsic thermal conductivity of the BNC nanoribbons by employing Eq. (1), while previous works have reported 
length-dependent conductivities46–49. Our numerical estimate for the superlattice period which yields the mini-
mum thermal conductivity is in excellent agreement with the one reported by Chen et al.49, although their mini-
mum conductivity is approximately twice as much as ours, which can be explained by the fixed system length they 
used or due to the different width of their supercell.

Figure 2.  Thermal conductivity as a function of length for increasing superlattice period 
p. The dashed lines 

indicate the ballistic transport regime (B), the diffusive regime (D), and the ballistic-diffusive transition (T). 
Lines are fit to Eq. (1), excluding the three largest systems, which shows its predictive power. We only show error 
bars for larger system sizes, for all others the uncertainties are smaller than symbol sizes.
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In general, the minimum thermal conductivity is a consequence of a crossover from coherent to incoherent 
phonon transport. To the left of the minimum, Brillouin zone folding occurs due to the phonon wave effect, 
which explains the reduction of thermal conductivity when increasing 

p
49. To the right of the minimum, the 

number of interfaces (or thermal resistors) decreases with 
p, thus easing heat conduction50–53. Indeed, it has been 

shown that thermal conductivity decreases when the structure periodicity is dominated by wave interference 
effects and increases when it depends on diffuse interface scattering10. This can also be understood considering 
that, in general, low-frequency phonons are more likely to experience wave interference effects, such as specular 
reflection and transmission, due to their large wavelengths, whereas high-frequency phonons are likely to be 
scattered diffusely at the interfaces9,10. Thus, the combination of wave interference effects and diffuse interface 
scattering leads to a local minimum of thermal conductivity as a function of superlattice period.

Nonetheless, for phonons experiencing wave interference, the thermal conductivity decreases with superla-
ttice period due to the modification of the bulk phonon dispersion relation. This is caused by zone folding and 
band flattening, which reduce phonon group velocities as the lattice period increases, thereby decreasing the 
thermal conductivity54. Therefore, we can say that, the combination of wave interference effects and diffuse inter-
face scattering leads to a local minimum of thermal conductivity as a function of superlattice period10. Note that, 
for region II in Fig. 3, κ rises with increasing period, an indicator that the thermal energy is carried primarily by 
particle-like phonons (incoherent) that are scattered diffusely at the interfaces. On the other hand, for region I, κ 
decreases with increasing period. This behavior is not compatible with the presence of diffuse scattering only, and 
one can assume that part of the heat is carried by wave-like phonons (coherent) experiencing interference effects. 
Thus, the observation of a minimum thermal conductivity as a function of superlattice period presents direct 
evidence of the crossover from coherent to incoherent phonon transport in these superlattices. Our results reveal 
that wave interference for thermal phonons and the crossover from coherent to incoherent phonon transport can 
be present at room temperature for BNC nanoribbons. Similar behavior has been observed in experiments with 
epitaxial perovskite oxide superlattices8.

The lowest thermal conductivity is observed when 
p is comparable to the phonon coherence length in the 

superlattice11,47. This critical length can be much smaller than the effective phonon MFP of the superlattices. In 
our simulations, the smallest thermal conductivity κ∞ = 89 W m−1K−1 was found for a superlattice with = . 3 43p  
nm. Thus, this corresponds to the coherence length of phonons in graphene-hBN superlattice ribbons, in agree-
ment with the predictions by Zhu and Ertekin47. From the data in Fig. 3(b) we estimate Λph in a superlattice with 

= . 3 43p  nm to be 32 nm. This value is one order of magnitude larger than the coherence length, also in agree-
ment with Zhu and Ertekin47. Notice that phonons experience ballistic transport for system lengths shorter than 
Λph, which can reach distances much larger than the coherence length, in agreement with the increasing trend in 
thermal conductivities shown in Fig. 2.

Phonon dispersions.  In order to better understand the dependence of the thermal conductivity on the 
superlattice period we have investigated the phonon dispersion for several periods. The phonon dispersion rela-
tions were calculated with the General Utility Lattice Program (GULP), which implements lattice dynamics 
methods55. The interatomic potential used was the same as in the MD simulations. Figure 1 illustrates the unit 
cells with superlattice periods of 0.86 nm, 1.72 nm and 3.43 nm. It also shows the first Brillouin zone of the struc-
tures, along with its high-symmetry points. For = . 0 86p  nm, the unit cell is composed of 8 non-equivalent 
atoms, 4 carbon atoms (gray spheres), 2 boron atoms (pink spheres) and 2 nitrogen atoms (blue spheres). In Fig. 1 
we also illustrate the first Brillouin zone for our unit cell, with high-symmetry points Γ = (0, 0, 0), X = (1

2
, 0, 0), in 

units of reciprocal lattice vectors.

Figure 3.  (a) Intrinsic thermal conductivity and (b) effective phonon mean free path as a function 
of superlattice period. Both quantities reach a minimum value at = . 3 43p  nm, which marks the interface 
between coherent and incoherent phonon transport. The dashed lines are just a guide to the eye.
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In Fig. 4 we present phonon dispersions for increasing superlattice periods. Only the frequency range cov-
ered by the acoustic modes is shown, since those are the main heat carriers. It is important to remember that the 
number of non-equivalent atoms in the unit cell is proportional to the period, so that the number of vibrational 
modes follows the same trend. There is a reduction of phonon group velocities (slope of the dispersion curves) 
with increasing superlattice period due to zone folding. This explains the reduction of thermal conductivity in 
region I of Fig. 3, where coherent phonons dominate thermal transport and where there must be a superposition 
of Bloch waves10,56. However, this analysis cannot elucidate what happens in region II of Fig. 3, where diffuse 
scattering dominates, because boundaries scatter phonons diffusely. It is commonly assumed that such scattering 
processes randomizes the phonon phases such that interference effects, and the resultant modification of the 
phonon dispersion, can be neglected7.

Vibrational spectrum and period-induced changes in phonon populations.  In order to under-
stand the physical origins of the minimum thermal conductivity for a specific superlattice period, we analyze the 
vibrational spectrum of BNC superlattices. First, we calculated the velocity autocorrelation function (VACF) by 
post processing 100 ps trajectories, in which atomic velocities are printed out every 5 fs. The VACF is then nor-
malized such that VACF(t  = 0) = 1, and averaged over all atoms in the supercell. The vibrational density of states 
(VDOS) is then calculated from the Fourier transform of the averaged VACF

∫ω =
〈 ⋅ 〉
〈 ⋅ 〉

ω∞ −v v t
v v

e dtVDOS( ) (0) ( )
(0) (0)

,
(2)

i t

0

where v is the atomic velocity, 〈v(0) ⋅ v(t)〉 is the VACF and ω is the angular frequency.
In Fig. 5(a) we present the total VDOS for each 

p. The number of pronounced peaks decreases as the superla-
ttice period increases, which is due to the increase in size of the unit cell. In general, pronounced peaks in the 
phonon spectra indicate the presence of coherent phonons. Therefore, as 

p increases, fewer coherent phonons 
should be present in the superlattice. For two-dimensional materials, the flexural modes ZA/ZO are the major 
contributors in thermal transport, while longitudinal LA/LO and transverse TA/TO modes play a smaller 
role21,23,57–59.

Figure 5(b–e) show the changes in phonon populations due to an increase in superlattice period, relative to 
= . 0 86p  nm, which are calculated from the ratio between the occupation of phonon modes, defined as
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Therefore, Δn(ω) = 0 corresponds to no change in occupation, Δn(ω) < 0 indicates a decrease in population 
and Δn(ω) > 0 to an increase relative to = . 0 86p  nm. Notice that for = . 1 72p  nm the total occupation of pho-
non modes shows no major alterations up to frequencies around 4 THz, while there is a clear decrease in phonon 
populations in the low-frequency region for superlattice periods = . 3 43p  nm and = . 6 86p  nm. Furthermore, 
our data shows that the largest decrease in populations happens for = . 3 43p  nm, which is the superlattice period 
for the structures with the lowest conductivity. Analyzing the changes in populations for each polarization 
branch, we notice a small increase of LA/LO and TA/TO modes up to frequencies of 20 THz. In panel (e) we 
notice a pronounced decrease in phonon populations for ZA/ZO modes, and that the largest decrease below 10 
THz happens for = . 3 43p  nm. Therefore, we can attribute the minimum thermal conductivity observed for 
BNC superlattices with a period of 3.43 nm to the reduction in population of flexural phonons for that period. 
This behavior has not been considered in any of the previous works dealing with BNC superlattices.

Figure 4.  Phonon dispersion for superlattices of increasing period. Only the region around the acoustic 
phonon modes is shown.
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Discussion
From our interpretation of the physical origins of the conductivity reduction in BNC superlattices, we can con-
struct a pictorial representation of phonon scattering at the interfaces between graphene and hBN, which is 
shown in Fig. 6. For < . 3 43p  nm, the wavelength of heat carrying phonons is larger than the individual domains, 
so they suffer small influence of the interfaces, and transport is coherent. For > . 3 43p  nm, the wavelength of 
heat carrying phonons is smaller than the individual domains, and they experience a larger influence of the inter-
faces, therefore transport is incoherent. In the case of = . 3 43p  nm the wavelength of heat carrying phonons is 
comparable to the size of individual domains, and we have a transition from the coherent to the incoherent trans-
port regimes, which is responsible for the minimum thermal conductivity observed for this superlattice period.

Finally, it is important to comment on the possible experimental realization of these BNC superlattice ribbons. 
Our results should be seen as an upper bound for the conductivities that could be measured in experiments, 
since we consider perfect superlattices, with perfect edges and interfaces, and in the absence of isotopic disorder. 
Any experimental realization of these superlattices is bound to present some of these defects, which are known 
to reduce heat transport. Another limitation is related to the superlattice period which yields the minimum con-
ductivity. Producing a BNC superlattice with a period smaller than 5 nm could be challenging. Therefore, it is 
possible that the experiments would not observe the minimum value of κ∞ but only the weakly increasing trend 
observed in region II of Fig. 3.

Methods
Molecular dynamics (MD) simulations in the present work were performed with LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator)60. We employed the Tersoff empirical potential recently re-parametrized 
to accurately reproduce the vibrational properties of carbon and hBN nanostructures39,61,62. The thermal conduc-
tivity of BNC nanoribbons was calculated via non-equilibrium molecular dynamics (NEMD) simulations with 
periodic boundary conditions along the heat current direction, and free boundary conditions in the other direc-
tions. In all simulations the equations of motion were integrated with a 0.5 fs timestep. The systems were initially 

Figure 5.  (a) Vibrational density of states for BNC superlattices. (b–e) Changes in phonon populations due to 
superlattice period increase relative to = . 0 86p  nm.
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thermalized with a Nosé-Hoover thermostat at 300 K for 100 ps. Each ribbon was relaxed at finite temperature 
in order to achieve zero-stress along the periodic direction, the stress along the other two directions is zero on 
average. The thermostat was turned off once the system reached equilibrium, such that the equations of motion 
were then integrated under microcanonical conditions.

We employed the so-called reverse NEMD method, proposed by Müller-Plathe, to impose a heat flux in the 
system63. The heat flux is imposed by exchanging the kinetic energy of slow moving particles in the “hot” region 
with fast moving particles in the “cold” region, as shown in Fig. 7. The cold region is at the left end of the simula-
tion box, while the hot region is at its center. Due to periodic boundary conditions, the image of the cold region 
becomes the N-th layer, such that regions 0 and N are the same. On average each region had 100–200 atoms in 

Figure 6.  Representative scheme of both coherent (wave interference) and incoherent (diffuse scattering) 
phonon transport.

Figure 7.  Set-up for the reverse NEMD method. A heat flux is imposed by exchanging the kinetic energy 
of slow particles in the hot region with fast particles in the cold region. The image of the cold layer becomes 
the N-th layer, such that layers 0 and N are the same. Also shown is the temperature profile from which the 
temperature gradient is calculated.
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total. The kinetic energy swaps were performed every 1000 timesteps. The heat flux is obtained from the differ-
ence in kinetic energy of the exchanged particles as

∑=
−

J t
tA

m v m v
( ) 1

2 2
,

(4)exchanges

i i j j
2 2

where A is the cross sectional area of the sheet which we define as the width of the ribbon multiplied by its thick-
ness. All ribbons have nominal width of 5 nm (in y-direction) and we assume a thickness of 0.33 nm for graphene 
and hBN (in z-direction).

After a transient time interval the stationary regime is achieved, where the heat flux reaches a constant average 
value. In most simulations the stationary regime is stablished after 20 ns, corresponding to 40 × 106 simulation 
steps. With the system in its stationary regime, we divide it in several slabs along the direction of the heat flux and 
calculate the temperature in each slab from the average kinetic energy of the particles within the slab, according 
to the equipartition theorem, as:
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where Ti is the temperature of i-th slab, ni is the number of atoms in i-th slab, kB is Boltzmann’s constant, mj and 
pj are atomic mass and momentum of atom j, respectively. Thus, the temperature gradient is calculated from the 
average temperature in each region of the system.

Once the heat flux and the temperature gradient are stationary we obtain the thermal conductivity for a sam-
ple of size Lx directly from Fourier law

κ =
〈 〉
∇

L J
T

( ) ,
(6)x

x

x

where ∇xT is the arithmetic mean of the temperature gradient considering both directions of heat transport (as 
shown in Fig. 7)
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Data availability.  The datasets generated and analyzed during the current study are available from the cor-
responding author on reasonable request.
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