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Abstract: Genome–environment Associations (GEA) or Environmental Genome-Wide Association
scans (EnvGWAS) have been poorly applied for studying the genomics of adaptive traits in bread
wheat landraces (Triticum aestivum L.). We analyzed 990 landraces and seven climatic variables (mean
temperature, maximum temperature, precipitation, precipitation seasonality, heat index of mean
temperature, heat index of maximum temperature, and drought index) in GEA using the FarmCPU
approach with GAPIT. Historical temperature and precipitation values were obtained as monthly
averages from 1970 to 2000. Based on 26,064 high-quality SNP loci, landraces were classified into
ten subpopulations exhibiting high genetic differentiation. The GEA identified 59 SNPs and nearly
89 protein-encoding genes involved in the response processes to abiotic stress. Genes related to
biosynthesis and signaling are mainly mediated by auxins, abscisic acid (ABA), ethylene (ET), salicylic
acid (SA), and jasmonates (JA), which are known to operate together in modulation responses to heat
stress and drought in plants. In addition, we identified some proteins associated with the response
and tolerance to stress by high temperatures, water deficit, and cell wall functions. The results
provide candidate regions for selection aimed to improve drought and heat tolerance in bread wheat
and provide insights into the genetic mechanisms involved in adaptation to extreme environments.

Keywords: Triticum aestivum L.; landraces; adaptation; drought stress; heat stress; Genome–environment
Associations (GEA)

1. Introduction

Since its domestication more than 10,000 years ago, common wheat has experienced
a series of selective events caused by humans and the environment, contributing to the
increase in its genetic diversification [1]. Climate change has severely reduced wheat
production in recent years due to extreme temperature episodes and unpredictable precip-
itation patterns [2,3]. Simulation models predict losses of more than 20% in agricultural
production by 2050 [4].

There is an urgent need to discover new sources of adaptation to drought and heat
that contribute to maintaining crop productivity [2]. To address this scenario, landraces are
valuable, because they have developed survival mechanisms for challenging environments
through natural and human selection [5,6]. This is why they preserve loci of adaptation to
climate change in their places of origin [7].

Recent advances in sequencing technologies have allowed the exploration of entire
genomes in various species with increasingly dense single-nucleotide polymorphism (SNP)
data that identify selective events [8]. Likewise, novel bioinformatic analysis approaches,
such as genome-wide association studies (GWAS), are very efficient in time, cost, and
precision for identifying genes that control important agricultural traits [9].

Genome–environment Associations (GEA) or Environmental Genome-Wide Associa-
tion scans (EnvGWAS) have been used successfully for studying adaptive traits in local
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populations. They consist of associating SNPs distributed throughout the genome with
environmental variables of the accession sampling sites [10].

Associations between the genome and environment of origin were initially docu-
mented in wild populations, with the successful identification of adaptive loci and pre-
diction of phenotypic variations [11–14]. However, its application in crops is recent, with
research carried out on sorghum through bioclimatic and soil gradients to predict adaptive
traits [15]. Subsequent applications have been made in crops such as corn [16], beans [10,17],
barley [7,18], soybean [19], tomato [20], chickpea [21], peach [22] and wheat [23].

In the last decade, significant progress has been reported in the characterization of
wheat genomes through high-throughput genotyping with DArT-seq technology. More
than 100,000 accessions belonging to the germplasm bank of the International Maize and
Wheat Improvement Center (CIMMYT) have been characterized through the Seeds of
Discovery initiative [24,25].

Considering the effectiveness of GWAS for the identification of genomic regions
associated with traits of agronomic importance, as well as the functional genetic variation
to adapt crops to climate change, this research aims to identify genomic regions related to
the adaptation process to arid climates through Genome–environment Association studies
in the Triticum aestivum collection maintained in the CIMMYT germplasm bank.

2. Results
2.1. Exploratory Analysis

As expected, the highly significantly (p ≤ 0.001) and correlated variables share with
each other temperature in their definition (Table 1). For instance (Table 1a), AMT was con-
sistently significantly and positively correlated with the variables MaxTWM (r = 0.79),
MeanTDQ (r = 0.71), and MeanTWQ (r = 0.77), similar to MaxTWM with MeanTWQ
(r = 0.94). For those based on precipitation, only PDM with PDQ (r = 0.99) exhibited a
significant correlation. Similarly, Table 1b shows positive correlations between the variables
associated with temperature, such as the case of AMT with the variables MaxT (r = 0.98),
HITmead (r = 0.92), and HITmax (r = 0.93); MaxT with HITmead (r = 0.92) and HITmax
(r = 0.96); and HITmead with HITmax (r = 0.97). On the other hand, negative correlations
were observed only for MeanTDQ with PWQ (r = −0.84) and AP with DI (r = −0.83), which
reflect contrasting trends between temperature and precipitation.

In the PCA, we observed that the evaluated variables had contrasting contribu-
tions to the total variation of each component, especially for the second set of variables
(Figures S1 and S2). In the biplot graphs of the PCA (Figure 1), we identified that the acces-
sions sites are well-differentiated with respect to their Köppen-Geiger climate, revealing
a greater representation of collections from the temperate (C) and cold (D) groups. For
the first set (Figure 1a), those related to temperature (AMT, MaxTWM, MeanTDQ, and
MeanTWQ) are oriented along PC1, while the precipitation-derived variables (PDM, PS,
and PDQ) predominate in PC2. Similarly, for the second set (Figure 1b), PC1 includes the
temperature-related variables (AMT, HITmead, MaxT, and HITmax), while PC2 includes
AP and DI. The PCA helpfully identified some variables with discriminating potential of ac-
cessions according to the Köppen-Geiger climate groups (Figure 1b). For example, the high
DI sites are related to dry climates (B), whereas the temperature-related variables (HITmax,
HITmead, AMT, and MaxT) define gradients from tropical (A) to temperate (C) groups. On
the other hand, we identify the variables of most significant importance concerning the
monitoring, follow-up, and informativeness of drought and heat stress events and their
contribution to the total variation.
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Table 1. Above the diagonal, correlations between bioclimatic variables, indices, and elevation. Below
the diagonals, p-values for the significance test.

(a) Correlation table for the bioclimatic variables related to aridity.

Variable AMT TS MaxTWM MeanTDQ MeanTWQ AP PDM PS PDQ PWQ

AMT −0.65 0.79 0.71 0.77 0.07 −0.03 −0.08 0.01 −0.4
TS 0.000 −0.14 −0.76 −0.03 −0.13 −0.3 0.53 −0.35 0.56

MaxTWM 0.000 0.000 0.5 0.94 −0.17 −0.38 0.21 −0.38 −0.34
MeanTDQ 0.000 0.000 0.000 0.32 −0.08 −0.01 −0.5 0.03 −0.84
MeanTWQ 0.000 0.374 0.000 0.000 −0.02 −0.29 0.33 −0.29 −0.09

AP 0.023 0.000 0.000 0.009 0.552 0.41 0.01 0.44 0.38
PDM 0.408 0.000 0.000 0.645 0.000 0.000 −0.59 0.99 0.19

PS 0.012 0.000 0.000 0.000 0.000 0.814 0.000 −0.62 0.49
PDQ 0.784 0.000 0.000 0.357 0.000 0.000 0.000 0.000 0.16
PWQ 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000

(b) Correlation table for precipitation, temperature-related variables, calculated indices, and elevation.

Variable AMT MaxT HITmead HITmax AP DI ELEV

AMT 0.98 0.92 0.93 0.07 0.42 −0.16
MaxT 0.000 0.92 0.96 −0.02 0.49 −0.14

HITmead 0.000 0.000 0.97 0.06 0.45 −0.38
HITmax 0.000 0.000 0.000 −0.05 0.53 −0.27

AP 0.023 0.602 0.042 0.117 −0.83 −0.13
DI 0.000 0.000 0.000 0.000 0.000 −0.11

ELEV 0.000 0.000 0.000 0.000 0.000 0.000
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2.2. Population Structure

The cross-entropy validation implemented in the LEA package, based on SNP markers,
suggested an optimal number of 10 subpopulations (Figure 2). This subdivision reflects
diversity according to the climate in the subpopulations, since there is no explicit repre-
sentation between these and their geographic or regional origin. The main contribution
of accessions comes from Turkey and China of 49.5% and 27.8%, respectively. This is
followed by Afghanistan, Tajikistan, and Iran of 5.2%, 4.2%, and 3.4%, respectively. The
rest of the countries contribute with less than 2% of the accessions. Subpopulations II, IV,
VI, and X constitute 60.4% of the total population under study. On the other hand, the
dispersion pattern observed in the molecular PCA biplot revealed that the subpopulations
were well-differentiated, reflecting the high genetic diversity of the analyzed accessions
(Figure 3a). The correspondence analysis (Figure 3b) between the subpopulations and
Köppen-Geiger climate groups showed that dry weather accessions (B) were better asso-
ciated with subpopulation VII. This subpopulation comprised 83 accessions from eight
countries (Afghanistan, Armenia, Azerbaijan, China, Iran, Iraq, Tajikistan, and Turkey)
cataloged principally within the region of Southern Asia (SAS) with records of an aridity
index (DI) greater than 5, whose values indicated water deficiency.
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2.3. Genome-Wide Association Studies

We identified 59 SNP markers associated with the climatic variables evaluated in all
21 bread wheat chromosomes (Table 2). The chromosomes with the highest number of
associated markers were 2B (seven SNPs), 7A (six SNPs), 3B (five SNPs), and 5B (five SNPs).
The chromosomes with a single associated marker were 1B, 5A, 6A, 6D, and 7D.
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Table 2. Number of genes detected from Genome–environment Associations (GEA) for seven climatic
variables with 26,064 SNPs in 990 landraces of bread wheat.

Chr Physical Position (bp) SNP Variables Genes

1A 277825486 108825112|F|0-19:T>A-19:T>A AMT, MaxT y HITmax 1
1A 388440316 108891114|F|0-33:A>G-33:A>G AMT, MaxT, HITmead y HITmax 1
1A 588647447 108256081|F|0-24:C>G-24:C>G AP 1
1B 201700273 108853213|F|0-26:C>T-26:C>T HITmead 1
1D 2113561 108739422|F|0-31:T>A-31:T>A AMT 1
1D 413939387 107880401|F|0-66:C>T-66:C>T HITmead 2
1D 485539732 107874524|F|0-37:G>C-37:G>C PS 3
2A 640221452 109058266|F|0-7:C>T-7:C>T AP 2
2A 711971015 108020469|F|0-43:T>C-43:T>C PS 2
2A 729345577 108514047|F|0-10:A>C-10:A>C PS 2
2B 29129965 107488994|F|0-17:T>C-17:T>C HITmead 3
2B 38321752 108024073|F|0-47:C>T-47:C>T HITmax 2
2B 76022529 107794074|F|0-23:T>C-23:T>C PS 2
2B 91596926 107797386|F|0-11:T>G-11:T>G AP 1
2B 584134131 108980638|F|0-33:T>C-33:T>C DI 1
2B 768567114 107593284|F|0-50:T>A-50:T>A AP 1
2B 795754781 109021888|F|0-34:T>C-34:T>C PS 1
2D 79989524 108968402|F|0-23:C>T-23:C>T AMT 2
2D 302776397 107489027|F|0-34:C>T-34:C>T DI 1
3A 502971897 106510612|F|0-30:C>T-30:C>T MaxT 2
3A 507114154 108476623|F|0-32:T>A-32:T>A MaxT y HITmax 2
3A 574516154 108028914|F|0-20:A>G-20:A>G MaxT y HITmax 2
3B 50526285 108953425|F|0-21:A>G-21:A>G PS 1
3B 535641207 109122135|F|0-40:A>G-40:A>G HITmax 1
3B 741467423 107601308|F|0-23:G>A-23:G>A PS 0
3B 758205945 108516380|F|0-24:T>C-24:T>C PS 1
3B 764282419 108146856|F|0-65:T>A-65:T>A HITmead 1
3D 97153088 107698139|F|0-48:C>T-48:C>T AMT y HITmead 1
3D 546672913 108308207|F|0-18:G>A-18:G>A AMT y HITmax 2
3D 575639014 109610030|F|0-20:C>T-20:C>T HITmax 2
4A 598521397 109242168|F|0-13:A>G-13:A>G HITmead y HITmax 2
4A 714179675 108145069|F|0-52:C>A-52:C>A AP 2
4B 39759168 106772473|F|0-11:T>G-11:T>G PS 1
4B 56276689 108145974|F|0-24:T>C-24:T>C HITmead 1
4D 62303691 109363420|F|0-34:G>A-34:G>A HITmead 2
4D 97959582 108773963|F|0-37:C>T-37:C>T HITmead 2
4D 370691683 109431634|F|0-54:G>A-54:G>A AMT, MaxT, HITmead y HITmax 3
5A 619468262 107001591|F|0-37:T>C-37:T>C PS 2
5B 68925700 109240982|F|0-38:G>C-38:G>C HITmead 1
5B 526249013 109305833|F|0-34:C>G-34:C>G AP y DI 1
5B 530916378 108773279|F|0-51:C>T-51:C>T HITmead 2
5B 548120559 108348543|F|0-58:A>G-58:A>G PS 1
5B 577227418 109119258|F|0-68:T>C-68:T>C PS 2
5D 379130055 108305241|F|0-68:A>G-68:A>G AMT 1
5D 528660566 108652995|F|0-58:G>C-58:G>C MaxT 1
6A 5854616 109126792|F|0-49:C>T-49:C>T MaxT 2
6B 223441723 109177937|F|0-11:A>G-11:A>G AP 1
6B 269818400 109523315|F|0-24:C>T-24:C>T AP 0
6B 485290761 109354013|F|0-58:A>G-58:A>G PS 2
6D 143959936 108582786|F|0-49:T>G-49:T>G MaxT y HITmax 2
7A 64789408 108830300|F|0-9:T>G-9:T>G MaxT 2
7A 67617920 108206445|F|0-49:C>A-49:C>A DI 1
7A 498861613 107952026|F|0-63:G>C-63:G>C DI 1
7A 552606647 108619258|F|0-17:C>T-17:C>T PS 1
7A 628906923 107178221|F|0-24:T>G-24:T>G HITmead 2
7A 662017143 109126469|F|0-35:G>A-35:G>A MaxT 2
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Table 2. Cont.

Chr Physical Position (bp) SNP Variables Genes

7B 107522176 107878167|F|0-16:G>A-16:G>A MaxT 2
7B 650581291 108981313|F|0-8:C>T-8:C>T PS 1
7D 88318125 109035950|F|0-29:C>T-29:C>T DI 1

Total 89

For all variables, the QQ plots (Figures 4 and 5) show a good adjustment, with most
−log10 (p-values) for the null hypothesis of no association, being close to the diagonal. In
contrast, some points at the top of each plot may be in linkage disequilibrium (LD) with a
causal polymorphism, indicating that the model has a reasonable control for both false
positives and negatives.
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with the FarmCPU model and the variables: heat index of the mean temperature (HITmead), heat
index of the maximum temperature (HITmax), and drought index (DI) in 990 landraces of bread
wheat and 26,064 SNPs markers. The red dashed horizontal line marks the -log10 (p-value) threshold
after Bonferroni correction for multiple comparisons. The proteins associated with the significant
SNPs are labeled in each graph.

Regarding the individual detection of association for each variable, there were different
levels of associated SNPs (Table S1). These differences in detecting different SNPs in highly
correlated variables may be due to the possible presence of atypical data in the collection
sites. Likewise, it is known that the effects produced by drought and heat are differential in
certain phases of reproductive development, during which plants are more susceptible. We
observed a lower association with variables DI, AMT, and AP, with less than eight markers
for each one. In contrast, the variables with more associated loci were PS, HITmead, MaxT,
and HITmax, with 15, 14, 12, and 11 SNPs, respectively.

At least 10 SNP located in seven chromosomes (1A, 3A, 3D, 4A, 4D, 5B, and 6D) were
detected more than once for variables AMT, MaxT, HITmead, and HITmax. The most
frequent SNPs were 108825112|F|0-19:T>A-19:T>A and 108891114|F|0-33:A>G-33:A>G
on chromosome 1A and allele 109431634|F|0-54:G>A-54:G>A on chromosome 4D. These
SNPs are related to the genes Auxin response factor (ARF), CONSTANS-like (COL), and
proteins abundant during late embryogenesis (LEA).
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2.4. Identification of Genes Related to Adaptation to Abiotic Stress in Plants

For the associated regions, we found 89 candidate genes encoding proteins related to
various biological processes in plants (Table 2). Among these, we identified the significant
presence of 26 proteins involved in the signaling network (Table 3), 15 cell wall structural
proteins (Table 4), 21 response proteins to various types of abiotic stress (Table 5), and
7 proteins related to morphological changes (Table S2).

Table 3. Signaling genes and proteins identified for Genome–environment Associations (GEA) with
seven climatic variables.

Chr SNP Gene Variable Protein Function

1A 108825112|F|0-19:T>A-19:T>A TraesCS1A02G156600 AMT, MaxT and HITmax Auxin response factor (ARF) Auxin-activated signaling.

1D 108739422|F|0-31:T>A-31:T>A TraesCS1D02G003900 AMT Peroxisome membrane
anchor (PEX14).

Transduction of stress
signals by ROS.

1D 107880401|F|0-66:C>T-66:C>T TraesCS1D02G319600 HITmead
S-adenosyl-L-

methionine-dependent
methyltransferases (SAMe).

Methylation of DNA and
proteins, ET biosynthesis,

phenylpropanoid
biosynthesis.

1D 107874524|F|0-37:G>C-37:G>C TraesCS1D02G438700 PS Swi-Independent 3
(SIN3)-Like 1 (SNL1).

ABA and
ET-activated signaling.

2A 108020469|F|0-43:T>C-43:T>C TraesCS2A02G467400 PS Protein enhanced pseudomonas
susceptibility 1 (EPS1).

SA biosynthesis and
response to JA.

2A 108514047|F|0-10:A>C-10:A>C TraesCS2A02G500200 PS Ser/Thr phosphatase (PstP). Signaling in response to ABA.

2B 108024073|F|0-47:C>T-47:C>T TraesCS2B02G071900 HITmax Ser/Thr kinase (STPK). Signaling cascades.

2B 107794074|F|0-23:T>C-23:T>C TraesCS2B02G112600 PS MYB108 TF (MYB). Response to signaling by
ABA and JA.

2B 107797386|F|0-11:T>G-11:T>G TraesCS2B02G123900 PS Nonspecific Ser/Thr
kinase (CIPK2). Signaling cascades.

2D 107489027|F|0-34:C>T-34:C>T TraesCS2D02G252400 DI Sugar/inositol
transporter 2 (INT2).

Transduction of
hormonal signals.

3A 106510612|F|0-30:C>T-30:C>T TraesCS3A02G274000 MaxT Ser/Thr kinase (STPK). Signaling cascades.

3B 109122135|F|0-40:A>G-40:A>G TraesCS3B02G331800 HITmax Pentatricopeptide
repeat (PPR). Signaling in response to ABA.

3B 108516380|F|0-24:T>C-24:T>C TraesCS3B02G516800 PS Mitochondrial ribosomal
S4 (RPS4).

Proteins encoded in the
mitochondrial genome

exported to the cytoplasm.

3D 108308207|F|0-18:G>A-18:G>A TraesCS3D02G433200 AMT and HITmax Similar to helix-loop-helix
DNA (bHLH)

Signaling in response to
auxin and cell

wall modification.

4A 109242168|F|0-13:A>G-13:A>G TraesCS4A02G301600
TraesCS4A02G302000 HITmead and HITmax

2-methyl-6-phytyl-1,4-
hydroquinone

methyltransferase (VTE3).
Ser/Thr kinase (STPK).

Vitamin E biosynthesis and
stress signaling.

Signaling cascades.

4D 109363420|F|0-34:G>A-34:G>A TraesCS4D02G087000 HITmead Ethylene-responsive
TF (ERF022). ET-activated signaling.

4D 109431634|F|0-54:G>A-54:G>A TraesCS4D02G216300
TraesCS4D02G216600

AMT, MaxT, HITmead
and HITmax

Ethylene-responsive
TF (ERF014).

Ser/Thr kinase (STPK).

ET-activated signaling.
Signaling cascades.

5B 108348543|F|0-58:A>G-58:A>G TraesCS5B02G369300 PS Metallophone domain
(MPE).

GPI biosynthesis the cell
membrane.

7A 107952026|F|0-63:G>C-63:G>C TraesCS7A02G340300 DI Basic helix-loop-helix
(bHLH).

Signaling in response to
auxin and cell

wall modification.

7A 108619258|F|0-17:C>T-17:C>T TraesCS7A02G377500 PS EIN3-binding F-box 1
(EBF1). ET-activated signaling.

7A 107178221|F|0-24:T>G-24:T>G TraesCS7A02G435700 HITmead IAA-amino acid hydrolase
(ILL). Auxin metabolic process.

7A 109126469|F|0-35:G>A-35:G>A TraesCS7A02G465400
TraesCS7A02G465500 MaxT

Kinase (Kinase).
Glycine-rich domain 2

(GRDP2).

Signaling cascades.
Auxin-activated signaling.

7B 108981313|F|0-8:C>T-8:C>T TraesCS7B02G385700 PS HTH myb-type domain
(MYB).

Response to signaling by
ABA and JA.
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Table 4. Cell wall genes and proteins identified for Genome–environment Associations (GEA) with
seven climatic variables.

Chr SNP Gene Variable Protein Function

1A 108256081|F|0-24:C>G-24:C>G TraesCS1A02G439300 AP ArfGAP domain 2G (ArfGAP). Membrane trafficking.

1D 107874524|F|0-37:G>C-37:G>C TraesCS1D02G439900 PS RING-CH-type domain/E3
ubiquitin ligase (MARCH).

Protein degradation by the
ubiquitin pathway
with abnormalities.

2B 107488994|F|0-17:T>C-17:T>C TraesCS2B02G059400 HITmead Wall-associated kinase (WAK).
Regulation of wall functions
and signaling of extracellular

environment.

2B 108024073|F|0-47:C>T-47:C>T TraesCS2B02G071600 HITmax Acyl-CoA–sterol O-acyltransferase
(ASAT1).

Synthesis of long-chain
esters (waxes).

2B 109021888|F|0-34:T>C-34:T>C TraesCS2B02G621600 PS
C2 calcium/lipid-

phosphoribosyltransferase
(QKY).

Signal transduction or
calcium-dependent

membrane trafficking.

2D 108968402|F|0-23:C>T-23:C>T TraesCS2D02G136300 AMT Glycosyltransferase STELLO2
(STL2).

Cell wall
cellulose biosynthesis.

3A 106510612|F|0-30:C>T-30:C>T TraesCS3A02G274200 MaxT
Mannan

endo-1,4-beta-mannosidase 2
(MAN2).

Lignocellulose component in
primary cell walls.

3A 108476623|F|0-32:T>A-32:T>A TraesCS3A02G277100 MaxT and HITmax Glucan endo-1,3-beta-glucosidase
13 (1,3-β-glucanasa).

Defense against pathogens,
cell wall biogenesis
and reorganization.

3D 107698139|F|0-48:C>T-48:C>T TraesCS3D02G138700 AMT and HITmead O-methyltransferase (OMT). Lignin biosynthesis.

3D 108308207|F|0-18:G>A-18:G>A TraesCS3D02G433400 AMT and HITmax Glycosyltransferase (GT).
Biosynthesis polysaccharides

of cell walls: cellulose,
hemicellulose, and pectin.

3D 109610030|F|0-20:C>T-20:C>T TraesCS3D02G474800 HITmax Putative expansin-B2 (EXPB2). Loosening of plant cell walls.

5B 109240982|F|0-38:G>C-38:G>C TraesCS5B02G061500 HITmead Root hair defective 3 (RDH2).
Biogenesis of the cell wall

and organization
of the cytoskeleton.

5D 108305241|F|0-68:A>G-68:A>G TraesCS5D02G276400 AMT Cinnamoyl-CoA reductase 4 (CCR). Primary alcohols and leaf
cuticular wax synthesis.

7A 108830300|F|0-9:T>G-9:T>G TraesCS7A02G107500 MaxT 3-ketoacyl-CoA synthase (KCS). Synthesis of long-chain
esters (waxes).

7B 107878167|F|0-16:G>A-16:G>A TraesCS7B02G093900 MaxT Glyco_trans_2-like (GT2). Cell wall organization.

Given that a response to stress begins with the perception and signal transduction of
environmental stimuli, it is not surprising that we found an abundance of signaling proteins
with a well-documented role in plant responses to drought and heat stress. This is the case
for protein kinases serine-threonine (Pstp-2A; STPK-2B, 3A, 4A, and 4D; and CIPK2-2B) and
some proteins activated by stress-related plant hormones, such as ethylene (ET), abscisic
acid (ABA), jasmonic acid (JA), salicylic acid (SA), and auxins, reported mainly by the BIO15,
HITmax, and MaxT variables and chromosomes 7A, 4D, 2B, and 1D (Table 3).

Within the genes associated with the cell wall (Table 4), proteins involved in the
biosynthesis of cuticle and cell wall components stand out, such as cuticular wax (ASAT1,
CCR, and KCS); polysaccharides such as cellulose, hemicellulose, and pectin (STL2 and MAN2);
lignin (OMT); and glycoproteins (GT and 1,3-β-glucanase) on chromosomes 2B, 2D, 3A, 3D,
5B, 5D, and 7A. We also found some structural proteins (WAK90, EXPB2, RD22, and GT2);
a membrane trafficking protein (ArfGAP); and two signal transduction proteins (MARCH
and QKY) on chromosomes 1A, 1D, 2B, 3D, 5B, and 7B.

Many morphological changes are induced when the plant is subjected to long periods
of environmental stress (Table S2). For this reason, we also observed some genes regulating
multiple development processes (FBX-2B and 4D), organ morphology (OFP-2B), stomatal
differentiation (SCRM2-4B), cell expansion (GIF1-4B), proteins that affect gravitropism
(AGD12–6B), and sheet curling (ROC5-6B).
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Table 5. Abiotic stress genes and proteins identified for Genome–environment Associations (GEA)
with seven climatic variables.

Chr SNP Gene Variable Protein Function

1B 108853213|F|0-26:C>T-26:C>T TraesCS1B02G146100 HITmead 40S ribosomal S7 (RPS7). Response to
environmental signals.

1D 107880401|F|0-66:C>T-66:C>T TraesCS1D02G319400 HITmead Heat shock protein class VI
(HSP20). Heat and salt tolerance.

1D 107874524|F|0-37:G>C-37:G>C TraesCS1D02G439800 PS Trimethylguanosine synthase
(TGS). Cold tolerance.

2B 107794074|F|0-23:T>C-23:T>C TraesCS2B02G112800 PS Galactinol synthase 7 (GolS). Tolerance to drought,
salinity, and cold.

2B 107593284|F|0-50:T>A-50:T>A TraesCS2B02G581100 AP Leucine-Rich Repeat Kinase
(LRRK1). Tolerance to drought.

3A 108476623|F|0-32:T>A-32:T>A TraesCS3A02G276800 MaxT and HITmax Glutamate carboxypeptidase
(AMP1).

Responses to
oxidative stress.

4A 108145069|F|0-52:C>A-52:C>A TraesCS4A02G446900 AP Cytochrome P450 709B3
(CYP450).

Biosynthesis of
secondary metabolites
and phytohormones in

response to stress.

4D 108773963|F|0-37:C>T-37:C>T TraesCS4D02G117200 HITmead Peroxidase (POD). Response to
oxidative stress.

4D 109431634|F|0-54:G>A-54:G>A TraesCS4D02G216700 AMT, MaxT, HITmead
and HITmax

Late embryogenesis abundant
(LEA). Osmotic stress.

5A 107001591|F|0-37:T>C-37:T>C TraesCS5A02G437900 PS Heat shock factor (HSF). Heat shock proteins.

5B 109305833|F|0-34:C>G-34:C>G TraesCS5B02G341100 AP and DI GrpE protein homolog (GrpE). Thermotolerance to
chronic heat stress.

5B 108773279|F|0-51:C>T-51:C>T TraesCS5B02G350000 HITmead BURP domain (BURP). Responses to drought
stress by ABA.

5B 109119258|F|0-68:T>C-68:T>C TraesCS5B02G399900 PS Probable WRKY TF 57 (WRKY). Response to osmotic
stress, salt, and drought.

5D 108652995|F|0-58:G>C-58:G>C TraesCS5D02G498900 MaxT DNA-directed RNA polymerase
subunit (NRPB1). Response to heat stress.

6A 108582786|F|0-49:T>G-49:T>G TraesCS6A02G012100
TraesCS6A02G013100 MaxT

Cytochrome P450 709B1
(CYP450).

Leucine-rich repeat receptor-like
kinase (LRRK2).

Biosynthesis of
secondary metabolites
and phytohormones in

response to stress.
Tolerance to drought.

6B 109354013|F|0-58:A>G-58:A>G TraesCS6B02G269500 PS Cytochrome P450 (CYP450).

Biosynthesis of
secondary metabolites
and phytohormones in

response to stress.

6D 108582786|F|0-49:T>G-49:T>G TraesCS6D02G164900
TraesCS6D02G165100 MaxT and HITmax

Adenine nucleotide alpha
hydrolases (ANAH).

Cytochrome P450 (CYP450).

Response to salt stress.
Biosynthesis of

secondary metabolites
and phytohormones in

response to stress.

7A 108206445|F|0-49:C>A-49:C>A TraesCS7A02G110500 DI F-box component of the
SKP-Cullin-F-box E3 (SCF). Water deficit.

7A 107178221|F|0-24:T>G-24:T>G TraesCS7A02G435300 HITmead Leucine-rich repeat receptor-like
kinase (LRRK3). Tolerance to drought.

2.5. Drought and Heat Adaptation Genes

Through genomic association with the variables AP, PS, MaxT, HITmead, and DI, we
identified 12 genes related to the response and tolerance of plants to drought and heat
stress (Table 5 and Figure 6) on chromosomes 1D (one gene), 2B (two genes), 4D (one gene),
5A (one gene), 5B (three genes), 5D (one gene), 6A (one gene), and 7A (two genes). Proteins
from different domains represent biological processes related to water deficit: enzymes
with galactinol synthase activity (GolS-2B); leucine-rich repeat kinase proteins (LRRK-2B, 6A,
and 7A); late embryogenesis abundant proteins (LEA-4D); BURP domain proteins (BURP-5B);
WRKY transcription factors (WRKY-5B); and component box proteins of the SKP–Cullin–F-
box E3 complex (SCF-7A). Likewise, the response to heat stress by some heat shock proteins
(HSP20-1D and HSFA2E-5A), a chronic heat stress thermotolerance protein (GrpE-5B), and a
DNA-dependent RNA polymerase (NRPB1-5D).
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synthase 7; LEA = Late embryogenesis abundant; HSF = Heat shock factor; GrpE = GrpE protein homolog;
BURP = BURP domain; WRKY = Probable WRKY TF 57; NRPB1 = DNA-directed RNA polymerase sub-
unit; SCF = F-box component of the SKP-Cullin-F-box E3; LRRK = Leucine-rich repeat receptor-like kinase.

2.6. Other Genes

Additionally, we observed seven genes involved in the response to biotic stress (PELO,
RIP, NBS-LRR, LFG4, FMO, and CNGC2); six genes involved in photosynthesis (GLO1,
CHLH, PSB33, psbL, γCA1, and PETG); four genes involved in flowering (COL, CK2, FPF1,
and APK); and three genes involved in nutrient assimilation (YSL1, PAP, and wSs2a-3) on
chromosomes 1A, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4D, 5B, 5D, 7A, 7B, and 7D (Table S2).

3. Discussion
3.1. Environmental Variables Involved in the Detection of Adaptive Loci by GEA

Climate change affects diverse geographic areas throughout the world. However, its
effects in arid and semiarid climatic zones have devastating impacts [26]. These selective
environmental effects play an essential role in the local adaptation, genetic diversity, and
population structure of wild accessions [17]. Therefore, using climatic variables to represent
selective environmental pressure can be valuable to capture important components of the
mechanisms of resistance and tolerance to abiotic stress. We observed local adaptation
footprints in multiple genomic regions along the 21 wheat chromosomes, with each climatic
variable having different numbers of genomic associations of biological importance.

It should be remarked that the climate data came from records spanning 1970–2000,
which naturally did not cover the adaptation period of the accessions. However, these
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30-year records are good indicators of the prevailing climate type in the collection sites.
On the other hand, the accessions were collected from 1983 to 2011, with the main bulk
of the collection occurring in 1984 and 2011. One must be aware of the noise arising from
the migration dynamics of those materials, especially for the most recent collection efforts.
Thus, the herein reported results are subject to validation by different approaches.

Exceptionally, the seasonality of precipitation (PS) had the largest number of significant
SNP markers along different chromosomes, placed close to unique genes of resistance and
tolerance to abiotic stress. This makes sense, because it is considered an important variable
in influencing the distribution of species through water availability [27]. On the other
hand, measuring the variations in precipitation [28] at the sites of origin of the collections
over three decades (1970–2000) faithfully represents the alterations in the uniformity and
distribution of precipitation.

The research of Cortés et al. [29] reaffirmed the above; they found a strong influence
of rainfall patterns on the population structure and the ecological diversity to tolerance
drought in wild beans. Usually, prolonged periods of drought cause the expression of
genomic regions associated with the activation of plant survival mechanisms [17].

The associations with the maximum temperature (MaxT), heat index (HITmead),
annual precipitation (AP), and drought index (DI) identified several adaptation genes
to drought and heat stress. This is primarily explained by the nature and importance
of these variables in the monitoring of conditions of meteorological drought. Both AP
and DI are valid descriptors for measuring the drought intensity [30]. DI is calculated
through a combination of climatic and meteorological variables, among which precipitation
is the most important [31]. In addition, the estimate values DI presented an excellent
discriminating potential of accessions from arid climates (B), which gives reliability to
its use. On the other hand, according to López-Hernández & Cortés [10], the maximum
temperature and the heat index are better estimators of the natural adaptation to high
temperatures and identify successfully associated genetic factors markers.

Different variables shared associations with some loci, suggesting that their selective
pressures can shape the same genomic regions [22] and, therefore, remain stable in the
landraces of Triticum aestivum. The most frequent loci on chromosomes 1A and 4D are
related to two genes: CONSTANS-like and proteins abundant in late embryogenesis (LEA). The
first is involved in various biological processes of plants, such as the control of the flowering
time, regulation of growth and development, and responses to abiotic stress [32–34]. LEA
proteins are recognized during the adaptation to abiotic stress, which includes dehydration,
salinity, high temperature, and cold [35–37].

On the other hand, the only matching locus between AP and DI flanked an F-box
domain gene, which is a homolog of the GrpE protein. In Arabidopsis, this gene acts as a
nucleotide exchange factor of the 70-kD heat shock protein complex (HSP70), which specializes
in thermotolerance to heat stress [38,39].

3.2. Adaptation to Drought and Heat Stress

Despite their coexistence in a climate change scenario, the combined effects of drought
and heat stress have been poorly studied [40]. They have a synergistic effect, altering the
metabolism and gene expression in ways other than those induced independently [41].
These combined effects affect several physiological, cellular, and molecular processes in
plant cells [10].

The stress response mechanism in plants is very complex and requires several inte-
grated pathways to be activated in response to external stress [42]. Plant hormones, such
as auxins, abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and jasmonates (JA), operate
together in the modulation of the plants’ heat and drought stress responses [43,44].

Typically, auxin and the auxin pathway regulate thermomorphogenesis in plants,
coordinating the growth and defense against heat stress [45], while ABA and ET interact
positively to activate or repress the expression of numerous stress response genes, such
as LEA proteins and dehydrins [46,47]. Likewise, SA is related to the synthesizing of
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protein chaperones, heat shock proteins, protective membrane proteins, antioxidants, and
secondary metabolites [46,48,49]. Jasmonates significantly improve the tolerance to heat and
drought stress through various TFs, which induce responsive gene expression and organic
osmo-protectant activation, osmotic adjustment, and antioxidant activity [50–52].

Many biochemical and physiological impacts affect the growth and development of
plants [40], as they affect the photosynthetic system, gas exchange, and water relations [45].
Consequently, a series of physiological and molecular responses are produced, which
include root increase, reduction in the number and conductance of the stomata, decrease
in leaf area, and morphological changes in leaves [53]. On the other hand, among the
molecular responses, one should consider the production of antioxidants and osmolytes
for osmotic adjustment and the expression of various proteins, such as HSP, WRKY, MYB,
LEA, and GrpE [40].

The genes reported in this work are involved in most of the mentioned biological
processes, including genes with signaling roles and genes associated with the cell walls
and membranes, photosynthesis, flowering, and, of course, proteins involved in the re-
sponse to heat and drought stress on various chromosomes. Our findings are consistent
with Y. Li et al. [22]: plant genomes have been shaped by natural selection during local
adaptation to different environmental conditions, so there is a close relationship between
species survival and response to climate change.

4. Materials and Methods
4.1. Geographical Data

Through code written in the R language v.3.4.4 [54], the passport data of 174,553 accessions
from the CIMMYT Wheat Germplasm Bank were filtered to select 1151 landraces of Triticum
aestivum with unique and sensible geographic coordinates. Subsequently, the location mapping
was carried out through the geographic information system QGIS version 2.18 [55]. This filtering
process yielded 990 landraces with validated geographic data. The accessions came from
33 countries distributed in 13 geographic regions (Table 6) [56].

Table 6. Landrace countries of origin and geographic regions.

Country Code Country Region Region Code Total Landraces

AFG Afghanistan Southern Asia SAS 51
ARM Armenia Western Asia WAS 7
AUS Australia Australia and New Zealand AUS 1
AUT Austria Western Europe WEU 1
AZE Azerbaijan Western Asia WAS 5
CAN Canada Northern America NAM 1
CHN China Eastern Asia EAS 275
DEU Germany Western Europe WEU 1
DZA Algeria Northern Africa NAF 1
ESP Spain Southern Europe SEU 3
ETH Ethiopia Eastern Africa EAF 4
GEO Georgia Western Asia WAS 10
GRC Greece Southern Europe SEU 1
IND India Southern Asia SAS 17
IRN Iran Southern Asia SAS 34
ESP Spain Southern Europe SEU 3
ETH Ethiopia Eastern Africa EAF 4
GEO Georgia Western Asia WAS 10
GRC Greece Southern Europe SEU 1
IND India Southern Asia SAS 17
IRN Iran Southern Asia SAS 34
IRQ Iraq Western Asia WAS 8
ITA Italy Southern Europe SEU 1
JPN Japan Eastern Asia EAS 1
LBN Lebanon Western Asia WAS 1
MEX Mexico Central America CAM 9
PAK Pakistan Southern Asia SAS 1
PER Peru South America SAM 1
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Table 6. Cont.

Country Code Country Region Region Code Total Landraces

POL Poland Eastern Europe EEU 1
PRT Portugal Southern Europe SEU 8
RUS Russia Eastern Europe EEU 2
SRB Serbia Southern Europe SEU 1
SYR Syria Western Asia WAS 3
TJK Tajikistan Central Asia CAS 42

TUN Tunisia Northern Africa NAF 2
TUR Turkey Western Asia WAS 490
USA United States Northern America NAM 4
UZB Uzbekistan Central Asia CAS 2
VEN Venezuela South America SAM 1

4.2. Genotypic Data

Germplasm genotyping was carried out through DArT-seq technology in CIMMYT un-
der the Seeds of Discovery initiative for 45,871 accessions belonging to the wheat germplasm
bank. The information was integrated using R v.3.4.4 [54] in a data table with the HapMap
format containing the information of 86,683 SNP loci. The markers’ physical locations
were obtained by reference genome sequences provided by Diversity Arrays Technology
(wheat_ChineseSpring04), and only markers unambiguously located in the wheat genome
were retained. Subsequently, they were filtered for quality control through a selection of the
cleanest and most informative SNPs, with a maximum missing data rate of 20%, Shannon
entropy greater than zero, and variants with a minor allele frequency (MAF) ≥ 2%. The
filtered table contained 26,064 SNP loci in 990 landraces with geographic data.

4.3. Climatic Data

For each collection site, we extracted the values of altitude, temperature, precipitation,
and eight bioclimatic variables related to drought and heat stress (Table 7) at a spatial reso-
lution of 2.5 min (4.5 km) from the WorldClim platform (https://www.worldclim.org/ ac-
cessed on 31 July 2022) using the getData function of the R raster package version 3.5–15 [57].
Bioclimatic variables are derived from the monthly temperature and rainfall historical climate
data from 1970 to 2000 in order to generate more biologically meaningful variables [58].

Table 7. List of geographic, climatic, and bioclimatic variables downloaded from the WorldClim platform.

Abbreviation Variable Description and Unit

ELEV Altitude, meters.
MaxT Maximum temperature, ◦C × 10.
AMT Annual mean temperature, ◦C × 10.

TS Temperature seasonality, standard deviation × 100.
MaxTWM Maximum temperature of warmest month, ◦C × 10.
MeanTDQ Mean temperature of driest quarter, ◦C × 10.
MeanTWQ Mean temperature of warmest quarter, ◦C × 10.

AP Annual precipitation, mm.
PDM Precipitation of driest month, mm.

PS Precipitation seasonality, mm.
PDQ Precipitation of driest quarter, mm.
PWQ Precipitation of warmest quarter, mm.

Additionally, we determined the Köppen-Geiger main climate groups (Table 8) through
the R kgc package version 1.0.0.2 [59]. Köppen classification was constructed based on
five vegetation groups that distinguish between plants of the equatorial zone (A), the arid
zone (B), the warm temperate zone (C), the snow zone (D), and the polar zone (E); in the
subclassification, the second letter considers the precipitation while the third letter the
air temperature [60].

https://www.worldclim.org/
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Table 8. Climate types under the Köppen-Geiger climate classification.

Group Climates

A—Tropical Tropical rainforest (Af ), Tropical monsoon (Am), and
Tropical savanna (Aw, As).

B—Dry Desert (BWh, BWk) and Semi-arid (BSh, BSk).

C—Temperate Humid subtropical (Cfa, Cwa); Oceanic (Cfb, Cwb, Cfc, Cwc);
and Mediterranean (Csa, Csb, Csc).

D—Continental Humid continental (Dfa, Dwa, Dfb, Dwb, Dsa, Dsb) and
Subarctic (Dfc, Dwc, Dfd, Dwd, Dsc, Dsd).

E—Polar Tundra (ET), Ice cap (EF), and Alpine (ET, EF).

4.4. Index Estimation

Two heat indices (HIT) were estimated by the Thornthwaite model [61] using values
of the mean and maximum temperature from 1970 to 2000. We denominated the HITmean
and HITmax, respectively:

HITmean =
12

∑
i=1

(tmeani/5) 1̂.514 (1)

HITmax =
12

∑
i=1

(tmaxi/5) 1̂.514, (2)

For tmeani, tmaxi > 0, where tmeani is the average monthly temperature, and tmaxi is
the maximum monthly, respectively, for the ith month.

Furthermore, a drought index was calculated [29]. This index is based on the rela-
tionship between the potential evapotranspiration and the annual precipitation of each
collection site:

DI = 100 × [(PET − AP) /PET], (3)

where DI is the drought index, PET is the potential evapotranspiration, and AP is the annual
precipitation. In this index, negative values indicate excessive precipitation, while positive
values indicate water deficiency. The calculation of PET was done with the thornthwaite
function of the R SPEI package version 1.7 [62], through the values of the monthly average
temperatures from 1970 to 2000 (tmedi > 0) with the estimated solar radiation being based
on the latitude of each collection site.

4.5. Exploratory Analysis of Climatic Variables

To look for patterns of relationships among climate variables, we used the Pearson cor-
relation coefficient (r) and principal component analysis (PCA). The standardized variables
are used in PCA to estimate the correlation matrix and determine the principal components
(PC). The bioclimatic variables were grouped into two sets, with the first one containing
bioclimatic variables related to aridity (AMT, TS, MaxTWM, MeanTDQ, MeanTWQ, AP,
PS, PDM, PDQ, and PWQ). The second set included AMT; MaxT; AP; constructed indices
(HITmean, HITmax, and DI); and ELEV. AMT and AP were included in both sets, because
they are considered the main variables for indices related to aridity. The biplot graphs
were constructed with the factoextra R package version 1.0.7 [63]. In the latter, the vector’s
length and the angle’s cosine were used to group the variables into different groups. The
Köppen-Geiger climate groups of each collection were also included.

4.6. Population Structure

The stratification of the collection was explored by two methods. The first one was
based on the Landscape and Ecological Associations studies (LEA) package [64], with the
SNPs coded in numerical form (0, 1, and 2). The smnf function was used to estimate the an-
cestry coefficients (K) with cross-entropy. This algorithm was executed with 10 replications
and a K-value from 1 to 10. The optimal number of K was defined to assign genotypes
to subpopulations according to estimates of individual admixture coefficients from the
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genotypic matrix. Subsequently, we visualized principal components through GAPIT
R package version 3.0 [65]. We compared the results of the population stratification in
subpopulations with the Köppen-Geiger climate groups using a correspondence analysis
(CA), which reveals the close relationships between and within two groups of categorical
variables based on data provided in a contingency table.

4.7. Association Analysis

We used 990 landraces of Triticum aestivum genotyped with 26,064 SNP loci and seven
variables (AMT, MaxT, AP, PS, HITmead, HITmax, and DI) to run Genome–environment
Association (GEA) studies with the Fixed and random model Circulating Probability Uni-
fication multiple-locus model “FarmCPU” [66] implemented in the R GAPIT (Genome
Association and Prediction Integrated Tool) package version 3.0 [65]. FarmCPU is charac-
terized by iteratively using two models, a linear mixed model (MLM) and a fixed-effects
model, to select a set of markers associated with a trait of interest.

The significant SNPs were determined according to the Bonferroni threshold to an
alpha of 0.05, with a threshold value of -log10 (0.05/26,064) = 5.72, coupled by the visual
interpretation of the Q-Q plots. The Manhattan and Q-Q plots were built with the R CMplot
package version 4.0.0 [67].

4.8. Candidate Genes and Their Annotation

The sequence of the significant SNP markers was blasted in the wheat reference genome
IWGSC_refseqv1.0 [68] published in the Ensembl Plants database (www.https://plants.
ensembl.org/ accessed on 31 July 2022) to identify the candidate genes. For this, the genes
found in the overlapping region and within one Mb upstream and downstream of the
matched regions were selected as the candidate genes, and their molecular functions were
determined. We identified the proteins in the UniProt (https://www.uniprot.org/ accessed
on 31 July 2022) and InterPro (https://www.ebi.ac.uk/interpro accessed on 31 July 2022)
databases encoded by the candidate genes, the functionality of the sequences, their domains,
and classification. Finally, we elaborated a schematic representation of the physical map of
bread wheat with the significant SNPs associated with response proteins to water stress
and heat stress with the R LinkageMapView package version 2.1.2 [69].

5. Conclusions and Practical Implications

The results suggest that local adaptations have footprints along the 21 wheat chro-
mosomes in multiple genomic regions. We found vital genes that include several critical
points on the abiotic stress response mechanisms—highlighting a considerable number
of signaling genes mediated by plant hormones, regulatory processes of the cell wall,
morphophysiological changes, photosynthesis, flowering, and some response mechanisms
to abiotic stress.

We showed that the climatic variables estimated with historical data help capturing
the environmental variability that occurred in the collection sites of the landraces. The
variables of the maximum temperature, annual precipitation, precipitation seasonality,
and heat and drought indices relevantly participated in identifying genes related to the
response to water deficit and high temperatures. This confirms its representativeness in
determining aridity in some climatic regions.

This study points to 89 genes involved in the adaptation of bread wheat to its native
habitats by association with seven specific climatic variables. The results are consistent
with the idea that environmental pressure has modeled, through natural selection, the
structure of genomic regions in local wheat populations over time.

Our findings constitute a new resource to select accessions carrying alleles linked to
specific climatic responses, which can be exploited through genomic prediction tools to
select germplasms with genetic potential for adaptation to climate change.

www.https://plants.ensembl.org/
www.https://plants.ensembl.org/
https://www.uniprot.org/
https://www.ebi.ac.uk/interpro
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