
RESEARCH ARTICLE

Model-based stationarity filtering of long-term

memory data applied to resting-state blood-

oxygen-level-dependent signal

Ishita Rai Bansal1, Arian Ashourvan2,3, Maxwell Bertolero2, Danielle S. Bassett2,3,4,5,6,7,

Sérgio PequitoID
1*

1 Delft Centre for Systems and Control, Delft University of Technology, Delft, Netherlands, 2 Department of

Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA,

United States of America, 3 Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania,

Philadelphia, PA, United States of America, 4 Department of Neurology, Hospital of the University of

Pennsylvania, Pennsylvania, United States of America, 5 Department of Psychiatry, Perelman School of

Medicine, University of Pennsylvania, Philadelphia, PA, United States of America, 6 Department of Electrical

& Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania,

Philadelphia, PA, United States of America, 7 Department of Physics & Astronomy, College of Arts and

Sciences, University of Pennsylvania, Philadelphia, PA, United States of America

* Sergio.Pequito@tudelft.nl

Abstract

Resting-state blood-oxygen-level-dependent (BOLD) signal acquired through functional

magnetic resonance imaging is a proxy of neural activity and a key mechanism for assessing

neurological conditions. Therefore, practical tools to filter out artefacts that can compromise

the assessment are required. On the one hand, a variety of tailored methods to preprocess

the data to deal with identified sources of noise (e.g., head motion, heart beating, and breath-

ing, just to mention a few) are in place. But, on the other hand, there might be unknown

sources of unstructured noise present in the data. Therefore, to mitigate the effects of such

unstructured noises, we propose a model-based filter that explores the statistical properties

of the underlying signal (i.e., long-term memory). Specifically, we consider autoregressive

fractional integrative process filters. Remarkably, we provide evidence that such processes

can model the signals at different regions of interest to attain stationarity. Furthermore, we

use a principled analysis where a ground-truth signal with statistical properties similar to the

BOLD signal under the injection of noise is retrieved using the proposed filters. Next, we con-

sidered preprocessed (i.e., the identified sources of noise removed) resting-state BOLD data

of 98 subjects from the Human Connectome Project. Our results demonstrate that the pro-

posed filters decrease the power in the higher frequencies. However, unlike the low-pass fil-

ters, the proposed filters do not remove all high-frequency information, instead they preserve

process-related higher frequency information. Additionally, we considered four different met-

rics (power spectrum, functional connectivity using the Pearson’s correlation, coherence,

and eigenbrains) to infer the impact of such filter. We provided evidence that whereas the

first three keep most of the features of interest from a neuroscience perspective unchanged,

the latter exhibits some variations that could be due to the sporadic activity filtered out.
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Introduction

Functional magnetic resonance imaging (fMRI) has gained popularity as a noninvasive

method for measuring brain activity across different brain regions. The fMRI studies assess the

fluctuations in blood oxygenation level-dependent (BOLD) signals of the brain generated as a

time series during either rest or as a response to some task or externally applied stimulus. The

observations by Biswal et al. about the temporal correlation between the BOLD fluctuations of

left and right hemispheric regions of the primary motor cortex during rest laid the foundation

for a new era of research for understanding the neuroanatomy by analysing the resting-state

fMRI (rs-fMRI) time series data [1]. From its discovery, a rapid growth in rs-fMRI literature

has been witnessed [2] in order to understand the state of brain in neurodegenerative disease,

psychological behaviour, effect of anaesthesia, among other applications [3–8].

The fluctuations in BOLD signal in rs-fMRI studies consists of contribution from neural

activity of the brain and also from several physiological and non-physiological sources. Physio-

logical sources of noise include artefacts arising from both neuronal and non-neuronal com-

ponents such as due to cardiac and respiratory cycles, blood pressure oscillations [9, 10]. Non-

physiological noises include fluctuation due to drift, slice time correction, subject motion and

hardware instabilities [9, 11, 12]. Marcus et al. in [13] showed that of the total variance in rest-

ing-state BOLD data considered by them, nuisance components accounted for 16% of vari-

ance, motion regressors for 14%, neural components for 4% and rest was due to other

unstructured artefacts. These confounds pose a risk of artificially influencing the functional

connectivity between different brain regions and thus yielding spurious results [10]. The com-

position of the BOLD signal and the examples mentioned highlight the fact that the study of

FC of the brain by resting-state BOLD is highly data-driven and hence emphasise the impor-

tance of preprocessing of rs-fMRI data for artefact removal.

Many denoising approaches have been developed for isolating true neural activity from

acquired resting-state BOLD data. These include the following: (i) model-based approaches

which estimate contributions to BOLD signal from physiological sources [10, 14] or due to

head motion [15]; (ii) data-driven approaches which estimate noise from data using ICA

[11]; (iii) scrubbing (removing) time points acquired during period of high motion [16–18]

and (iv) combining data-driven methods with multiecho data acquisitions, which were

observed to perform better in terms of removing noise from BOLD signal fluctuations

[12, 19].

Nonetheless, even after the application of different preprocessing methods, the rs-fMRI

data obtained may include signal fluctuations due to unknown unstructured sources of noise

or spurious fluctuations caused by the reintroduction of some artefacts previously removed in

preprocessing steps in later preprocessing steps [20]. In what follows, we propose to take pre-

processed (i.e., free from motion and nuisance artefacts) resting-state BOLD signals and per-

form time-domain filtering using a parametric filter to mitigate the effects of unstructured

noise due to unknown sources.

The presence of long-term memory in the data as captured by their autocorrelation func-

tions led us to propose a univariate autoregressive fractional integral moving average

(ARFIMA) [21] model-based filter that is suitable to retain the signal with long-term mem-

ory and filter out the signal (noise) which does not conform with the long-term autocorrela-

tion structure nor with the white Gaussian noise driving the process. In fact, this is the first

time such a filter is proposed for this purpose to the best of the authors’ knowledge. In the

context of this study, whenever we refer to the resting-state BOLD dataset, we mean the pre-

processed signals and filtered BOLD signals, imply, the signals obtained after ARFIMA

filtering.
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The results hereafter suggest that such processes are suitable to model resting-state BOLD.

The proposed filter in addition to attenuating higher frequencies, is able to preserve process-

related information in these frequencies.

Materials and methods

Dataset and preprocessing

We considered rs-fMRI BOLD dataset from the Human Connectome Project (HCP) [22] that

was preprocessed by us. Specifically, the resting-state BOLD data was acquired in two sessions

consisting of two runs each of approximately 15 minutes. Within each session, in one run,

phase encoding was done in the right-to-left (RL) direction and left-to-right (LR) in another

run. Participants were instructed to relax with their eyes open and visual fixation on a pro-

jected bright cross-hair on a dark background (and in a darkened room).

The data was acquired on HCP 3T Siemens “Connectome Skyra” scanner and was part of

the HCP S1200 release. The rs-fMRI data was obtained using BOLD contrast sensitive gradi-

ent-echo echo-planar imaging having a multiband factor of 8, TE of 33.1 ms, TR of 720 ms, a

spatial resolution of 2 mm isotropic voxels and a flip angle of 52 deg ([22, 23] provides the

detailed description of acquisition protocol). The HCP rs-fMRI dataset was first preprocessed

by the Human Connectome Project using FMRIB’s ICA-based Xnoiseifier (ICA-FIX) method-

ology [22, 24, 25] to remove artefacts related to motion and nuisance signals. In the next step,

we applied global signal regression preprocessing [26], and the obtained preprocessed data is

used for further analysis in the research. We considered the dataset of 98 subjects with the least

head movement artefacts. The dense time series of each subject is cortically parcellated [27]

into n(= 100) brain regions of interest (ROI). The BOLD signal is collected from each ROI at

1200 time points for 4 different runs for each subject. Therefore, in what follows, we consider a

total of n(= 100) time series with 1200 data points of the resting-state BOLD signal for each of

the four runs of each subject.

ARFIMA modelling

Let us consider a stationary stochastic process Xt, t 2 N, whose time series realization xt,
t 2 1, . . ., M, consists of M successive observations made at equidistant time intervals. In the

context of our study this will represent the resting-state BOLD data of a single region of inter-

est. We can use autoregressive fractional integral moving average (ARFIMA) model to model

the stochastic process Xt [28–30]. Therefore, we obtain an ARFIMA (p, d, q) model, where the

parameters p, d and q describe the order of the autoregressive, fractional integrative, and mov-

ing average component respectively. Specifically, an ARFIMA (p, d, q) is described by:

�ðBÞð1 � BÞdðXt � mÞ ¼ cðBÞεt; ð1Þ

where μ is the mean of the process Xt, εt is the independent and identically distributed (i.i.d.)

noise with mean zero and bounded variance. In particular, we can assume the noise to be

white gaussian noise, which is described by a normal distribution with zero mean and variance

s2
ε, denoted by εt �WN 0;s2

ε

� �
. Additionally, (1 − B)d is the difference operator, d 2 Rþ is the

fractional-order difference parameter, B is the backshift operator [31]. Furthermore, ϕ(B) and

ψ(B) are the autoregressive and moving average operators, respectively. The autoregressive

and moving average operators represented in terms of backshift operator are defined as:

�ðBÞ ¼ 1 � B�1 � B2�2 � . . . � Bp�p ð2Þ
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and

cðBÞ ¼ 1þ Bc1 þ B2c2 þ . . .þ Bqcq; ð3Þ

where �1; �2; . . . ; �p 2 R are the autoregressive parameters, p 2 N is the order of the autore-

gressive component, c1;c2; . . . ;cq 2 R are the moving average parameters and q 2 N is the

order of moving average component.

Differencing operation is used to remove non-stationarity and long-term memory property

present in the time series. The difference operator can be represented in terms of the gamma

function by solving its binomial expansion when d> −1 [32] as

ð1 � BÞd ¼
X1

k¼0

Gðk � dÞ
Gðkþ 1ÞGð� dÞ

Bk; ð4Þ

where Γ(�) is the gamma function defined by GðzÞ ¼
R1

0
xz� 1e� xdx; for all complex numbers

with <(z)>0 [33]. Notwithstanding, we can generalize for any value of d by noticing that

the operator (1 − B) is linear. Specifically, for any d0 2 Z and d> − 1, we can have

ð1 � BÞd
0þd
¼ ð1 � BÞd

0

ð1 � BÞd, where the first term is a difference equation and the second is

given in Eq 4.

Subsequently, we performed the fractional differencing of the time series as follows:

ð1 � BÞdxt ¼
X1

k¼0

Gðk � dÞ
Gðkþ 1ÞGð� dÞ

Bk

 !

xt;

¼ ð1 � dBþ dðd � 1ÞB2=2! � . . .Þxt

¼ xt � dxt� 1 þ dðd � 1Þxt� 2=2! � . . . :

ð5Þ

Notice that the fractional differencing operation has an infinite impulse response (as can be

seen from the infinite series expansion of fractional differencing); specifically, it models an

infinite order autoregressive process whose parameters are defined by the fractional differenc-

ing weights. For the practical implementation, this infinite impulse response process is con-

verted to finite impulse response by limiting the number of weights (i.e., by truncating the

series). Specifically, we only consider weights whose absolute value is greater than 0.0001.

ARFIMA filtering on resting-state BOLD signals. We perform ARFIMA (p, d, q)

(model-based) filtering on each resting-state BOLD time series. The procedure of ARFIMA

(p, d, q) filtering can be broadly divided into two parts: (i) estimation of the fractional differ-

ence parameter followed by determining the autoregressive and moving average parameters of

the filter, and (ii) use the ARFIMA model to obtain an infinite impulse response filter which is

used to filter out any potential noise present in the data, see flowchart in Fig 1.

First the fractional difference parameter d in Eq 1 is estimated from resting-state BOLD

data using its sampled autocorrelation function (sACF). Specifically, resting-state BOLD time

series is fractionally differenced for different values of d in the range [0.1, 5.0] and the number

of statistically significant lags (i.e., the lags for which autocorrelation value lies outside the

range�2=
ffiffiffiffi
N
p

) are calculated. The final value of d considered is that for which the number of

statistically significant lags is minimum.

The ARMA models assume that the process is stationary [30]. Therefore, we inspect that

the differentiated resting-state BOLD data with the selected parameter d satisfies the Kwia-

towksi, Phillips, Schmidt and Shin (KPSS) test [34]. This statistical test tests the null hypothesis
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that the observed time series is stationary around a deterministic trend (for a significance level

of p< 0.05).

In the next step, we process towards the estimation of the parameters p and q of ARFIMA

(p, d, q) process. In order to devise a causal filter [30], the moving average parameter q is set to

0. Therefore, in this study, we do not use the moving average component, which, reduces

ARFIMA model to ARFI (Autoregressive fractional integrative) model. Since the commonly

used term is ARFIMA modelling, therefore, we use the same terminology in this study.

Due to the inherent existence of an infinite order autoregressive process in the fractional

differencing operation in ARFIMA (p, d, q) modelling, we limit the order p to 1. This helps in

restricting the number of degrees of freedom in the process. The infinite autoregressive param-

eters, in this case, are specified by one parameter, d.

Additionally, in order to check that indeed AR (1) process is capable of capturing the

dynamics of the fractionally differenced stationary time series, wt, we start by fitting an AR

model of order 1. The coefficient (ϕ) of this model is estimated using maximum likelihood

principle [30] and the residual between wt and the simulated time series ŵt from the fitted

model are observed. If the residual error is statistically indistinguishable from white noise (i.e.,

having flat power spectrum and uncorrelated residuals), then it suggests that there is no need

for higher-order fitting; otherwise order p is increased, and then residuals are tested again [35,

36]. We performed student’s t -test [37] to test the statistical significance that the residual error

follows a normal distribution (at a significance level of p< 0.05). In our case, the residuals

behaved as a standard white noise process for an AR process of order 1.

Finally, after the estimation of the AR (1) coefficient, the resting-state BOLD data is filtered

through the designed infinite impulse response AR (1) filter.

The above procedure is repeated for each of the resting-state BOLD data from n(= 100)

ROIs of all 98 subjects in all 4 runs to obtain (100 × 98 × 4 = 39200) ARFIMA (1, d, 0) filtered

resting-state BOLD time series. In the procedure, the value of fractional difference parameter d
and AR coefficient ϕ varies for each BOLD time series. Fig 2 shows the mean of the estimated

values of the AR (1) parameter, ϕ across different ROIs. Lastly, Table 1 shows the mean value

of d for n(= 100) ROI averaged across all subjects in all runs. Thus, implying that this ARFIMA

Fig 1. Block diagram of the proposed method to filter resting-state BOLD data.

https://doi.org/10.1371/journal.pone.0268752.g001
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(1, d, 0) filtering approach is deployed channel-wise. Additionally, Kruskal-Wallis test [38] on

both parameters ϕ and d showed that the mean between these parameters for different subjects

across different runs was significantly different (at a significance level of 0.05).

Results

This section presents the results of the proposed model-based ARFIMA filtering on a synthetic

example and the resting-state BOLD time series based upon different measures: normalised

power spectrum, functional connectivity (FC) (i.e., Pearson’s correlation and coherence) and

eigenmode analysis of directed connectivity.

Specifically, we consider a synthetic BOLD signal which has properties similar to the resting-

state BOLD signal (e.g., long-term memory [39–41] and higher power in lower frequencies [9, 42,

43] as captured by the sACF and power spectrum, respectively), to which white noise is added.

Afterwards, the designed fractional filter is applied to the original resting-state BOLD data.

Synthetic BOLD signal

To validate the impact of the proposed methodology to filter out the effect of unwanted fluctu-

ations or fluctuations due to unstructured noise, we created a synthetic signal such that we

have a “ground-truth” signal. We generated a synthetic BOLD signal as a sum of sinusoidal sig-

nal of different frequencies to obtain a signal with long-term memory property and specific

power spectrum, mathematically represented as

xt ¼
XN

i¼1

Aisinð2pfitÞ; ð6Þ

Fig 2. Mean value of the absolute AR(1) parameter averaged across all 98 subjects across all 4 runs.

https://doi.org/10.1371/journal.pone.0268752.g002
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where xt is the synthetic signal, Ai and fi is the amplitude and frequency of the ith signal,

respectively, and N is the number of signals. For the purpose, we generated a random vector of

10 different frequencies in the range 0.1 − 0.15 Hz to mimic the presence of the low-frequency

fluctuations in the resting-state BOLD signals.

The generated BOLD signals have properties similar to the original resting-state BOLD sig-

nal (from the dataset). Specifically, the synthetic signal was sampled at 1.3889 Hz in order to

emulate the sampling frequency of the resting-state BOLD signal. Fig 3 compares the time-

series and power spectrum plot of the original rs-BOLD signal and generated synthetic BOLD.

Here, we present the results from one of the synthetic BOLD signal. The long-term memory

property (which can be seen from inverse power law envelop on the sACF plot on the left-

hand side in Fig 4A) and fluctuations in the low-frequency range 0.1 − 0.15 Hz (plot on the

right-hand side in Fig 4A) can be observed in the generated signal. It was then corrupted with

two different white gaussian noise sequence, εt�WN(0, 100) and WN(0, 10). After the addi-

tion of noise, we use the proposed methodology to implement ARFIMA filtering to get a fil-

tered synthetic BOLD signal. The parameters of the ARFIMA filter for the shown synthetic

BOLD signal with variance of noise 100 and 10 were identified as ARFIMA (1, 2.6, 0) and

ARFIMA (1, 3.8, 0), respectively. Fig 4B and 4C provides the sACF and normalized power

spectrum of the filtered synthetic BOLD signal in both the cases. Similar results were obtained

with other synthetic BOLD signals.

Table 1. Mean value of the fractional difference parameter d averaged across the ROIs of all 98 subjects in all 4 sessions (i.e., 98 × 4).

ROI d (mean ± std. deviation) ROI d (mean ± std. deviation) ROI d (mean ± std. deviation) ROI d (mean ± std. deviation)

1 0.6679 ± 0.1779 26 0.6566 ± 0.1636 51 0.6051 ± 0.1860 76 0.6849 ± 0.1396

2 0.9617 ± 0.1751 27 0.3702 ± 0.1398 52 0.9411 ± 0.1770 77 0.4186 ± 0.1269

3 0.7202 ± 0.2031 28 0.1946 ± 0.1036 53 0.9130 ± 0.1762 78 0.1880 ± 0.0980

4 0.9416 ± 0.1769 29 0.2464 ± 0.1112 54 0.7268 ± 0.2078 79 0.2292 ± 0.1200

5 0.5003 ± 0.1811 30 0.4533 ± 0.1769 55 0.4906 ± 0.1643 80 0.7051 ± 0.1501

6 0.5191 ± 0.1796 31 0.8339 ± 0.1467 56 0.8758 ± 0.1753 81 0.6849 ± 0.1500

7 0.7643 ± 0.1936 32 0.7163 ± 0.1451 57 0.4406 ± 0.1344 82 0.6003 ± 0.1437

8 0.7209 ± 0.1926 33 0.6227 ± 0.1436 58 0.6865 ± 0.1809 83 0.6967 ± 0.1691

9 0.6110 ± 0.1782 34 0.5980 ± 0.1502 59 0.4722 ± 0.1642 84 0.9449 ± 0.1646

10 0.5097 ± 0.1778 35 0.7921 ± 0.1466 60 0.6158 ± 0.1790 85 0.7056 ± 0.1501

11 0.2804 ± 0.1293 36 0.6031 ± 0.1508 61 0.4934 ± 0.1772 86 0.7140 ± 0.1655

12 0.5640 ± 0.1562 37 0.3344 ± 0.1371 62 0.3161 ± 0.1343 87 0.3158 ± 0.1285

13 0.7452 ± 0.1917 38 0.6421 ± 0.1441 63 0.5069 ± 0.1516 88 0.7212 ± 0.1320

14 0.6209 ± 0.1615 39 0.7008 ± 0.1496 64 0.7457 ± 0.1732 89 0.8622 ± 0.1764

15 0.6370 ± 0.1719 40 0.6306 ± 0.1481 65 0.7110 ± 0.1711 90 0.6770 ± 0.1477

16 0.7791 ± 0.1689 41 0.6306 ± 0.1716 66 0.6541 ± 0.1658 91 0.6599 ± 0.1425

17 0.6969 ± 0.1779 42 0.6719 ± 0.1578 67 0.7821 ± 0.1678 92 0.5258 ± 0.1444

18 0.5747 ± 0.1651 43 0.9824 ± 0.1789 68 0.6648 ± 0.1723 93 0.7344 ± 0.1601

19 0.5714 ± 0.1709 44 0.8013 ± 0.1789 69 0.6084 ± 0.1615 94 0.3426 ± 0.1427

20 0.5347 ± 0.1485 45 0.6819 ± 0.1537 70 0.5227 ± 0.1531 95 0.6395 ± 0.1733

21 0.6875 ± 0.1536 46 0.3482 ± 0.1529 71 0.7712 ± 0.1670 96 0.4566 ± 0.1344

22 0.2370 ± 0.1408 47 0.7358 ± 0.1775 72 0.4531 ± 0.1301 97 0.2566 ± 0.1188

23 0.4365 ± 0.1363 48 0.4526 ± 0.1259 73 0.3495 ± 0.1186 98 0.3880 ± 0.1505

24 0.3495 ± 0.1317 49 0.2503 ± 0.1807 74 0.4622 ± 0.1551 99 0.5635 ± 0.1582

25 0.4561 ± 0.1528 50 0.5658 ± 0.1637 75 0.8531 ± 0.1610 100 0.5685 ± 0.1727

https://doi.org/10.1371/journal.pone.0268752.t001
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Resting-state BOLD signal

We perform both subject level and group level analysis to show the effect of proposed

ARFIMA filtering on the resting-state BOLD data. Notably, as highlighted in Table 1, the value

of parameter d varies for each of the ROI for each subject and also across runs.

Normalised power spectrum of the ARFIMA filtered resting-state BOLD data. In

order to show the spatial disparity in the power spectrum, we illustrate the results of the pro-

posed filtering on the power spectrum of three different ROIs highlighted in red/green/blue

on the brain surface of one of the subject in Fig 5. The three shown power spectrums are such

that they have different characteristics in terms of the presence of power in the frequency

region. Specifically, Fig 5A depicts the effect of filtering on the normalised power spectrum of

ROI: 7 (present in the visual peripheral network of the brain), which has maximum power in

the lower frequencies. In contrast, Fig 5B shows the effect of filtering on the normalised power

spectrum of ROI: 11 which lies in the somatomotor network (has power spreaded out in whole

frequency range) and Fig 5C corresponds to the ROI: 37 lying in the executive control network

(composed of the maximum power in lower frequencies but significant amount of power in

higher frequency region).

We assessed the statistical similarity of the normalised power spectrum of each ROI before

and after filtering, using two-sample Kolmogorov–Smirnov test [44] at a significance level of

0.05. The statistical comparison between the normalised power spectrum of each of the ROI of

all the subjects across all runs before and after proposed filtering indicates that of all the power

spectrum corresponding to total 98 × 4 × 100 = 39200 resting-state BOLD signals, around 51%

(i.e., 19966 signals) of the them were statistically distinguishable. Fig 6 shows the total number

of BOLD signals whose power spectrum were statistically different in each ROI.

Functional connectivity measures: Pearson’s correlation and coherence of the ARFIMA

filtered resting-state BOLD data. Functional connectivity (FC) is defined as the temporal

co-activation in the measured brain signals between two ROIs. The FC matrix is a n × n sym-

metrical matrix, where n is the number of ROIs in which the brain is parcellated. Each element

of the FC matrix defines the strength of the connection between two ROIs. We display the

Fig 3. Comparison between the generated noisy synthetic BOLD and the rs-BOLD signal from one of the ROI from dataset. (A) The time series

plot of the generated noisy synthetic BOLD (cyan-colored) and preprocessed rs-BOLD (dashed orange curve). (B) Power spectrum plot of the noisy

synthetic BOLD (cyan) and rs-BOLD (orange).

https://doi.org/10.1371/journal.pone.0268752.g003
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Fig 4. Autocorrelation and normalised power spectrum plots of unfiltered and filtered synthetic BOLD signal. (A)

The designed synthetic BOLD signal with a sampling frequency of 1.3889 Hz (similar to the sampling rate of rs-fMRI

HCP dataset) which has inverse power law autocorrelation plot (left panel) (similar to the observed original resting-

state BOLD signal). The synthetic BOLD signal thus created consists of low frequency fluctuations in the range of 0.01

− 0.15 Hz (similar to the observation about intrinsic BOLD fluctuation in the resting brain in [9, 42, 43]), right panel.

An artificial white noise is added to the created synthetic BOLD signal. (B) The left panel shows the sACF of the

fractionally differenced (d = 2.6) synthetic BOLD signal (with white noise, WN(0, 100)). The right panel shows the

normalised power spectrum plot of unfiltered dummy BOLD signal (cyan curve, WN(0, 100)) and the ARFIMA (1, 2.6,

0) filtered BOLD signal (dashed orange curved) embedded with zoomed in plot at higher frequency. (C) The sACF of

the fractionally differenced (d = 3.8) synthetic BOLD signal (with white noise, WN(0, 10)) and normalised power

spectrum plot of unfiltered dummy BOLD signal (cyan colored curve, WN(0, 10)) and the ARFIMA (1, 3.8, 0) filtered

BOLD signal (dashed orange curve) embedded with zoomed in plot at higher frequency is depicted in the left and right

panel respectively.

https://doi.org/10.1371/journal.pone.0268752.g004
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results of two different FC measures (i.e., Pearson’s correlation and coherence) of the resting-

state BOLD and ARFIMA filtered resting-state BOLD in Figs 7 and 8. Specifically, Fig 7 illus-

trates the results of group-level analysis of the Pearson’s correlation FC, whereas Fig 8 depicts

the FC matrix using the coherence. For an overview on Pearson Correlation and coherence,

see S1 and S2 Sections in S1 File. Lastly, we emphasise that the two-sample Kolmogorov–Smir-

nov statistical test [44] between the mean FC matrices of preprocessed and filtered BOLD sig-

nals fails to reject the null hypothesis that the FC matrices are statistically indistinguishable

(p< 0.05).

Eigenmode analysis of directed connectivity: Before and after proposed filtering.

Directed functional connectivity is defined as the system that one obtains from the linear

time-invariant approximation of the underlying dynamics of the BOLD signals. The system,

thus, obtained can be decomposed into its so-called eigenmodes. Eigenmodes (represented by

Fig 5. Normalised power spectrum of the unfiltered and filtered resting-state BOLD signal for three different

ROIs. The color-coded power spectrum plots, i.e. cyan and dashed orange, represent the plots of the resting-state

BOLD signal and ARFIMA (1, d, 0) filtered BOLD signal respectively of one of the subjects. The location of each of the

three ROI is presented in the brain overlay (in the centre) in different colours. The power spectrum of the

corresponding ROI is outlined in the same colored box. (A-C) Normalised power spectrum of the resting-state and

ARFIMA filtered BOLD signal corresponding to the ROI: 7 lying in the visual peripheral brain network (a green

colored region in brain), ROI: 11 in the somatomotor auditory network of the brain (a blue colored region in the

brain) and ROI: 37 in control network (a red colored region), respectively, is shown. The filter used in each of the case

is: ARFIMA (1, 0.7, 0) (in A), ARFIMA (1, 0.3, 0) (in B) and ARFIMA (1, 0.5, 0) (in C).

https://doi.org/10.1371/journal.pone.0268752.g005
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corresponding eigenvalue-eigenvector pair) can be used to capture the spatiotemporal charac-

teristics of the process. Specifically, each eigenvector represents an independent pattern of co-

active brain regions and its corresponding eigenvalue describes the oscillation frequency of the

activation pattern, see details in S3 Section in S1 File.

An example of these is provided in both Fig 9, where the larger the value in a given region

defined by an arbitrary unit (AU), larger is the involvement of that region in the underlying

dynamics at any given time. Additionally, at the different regions, different dynamical signals

exhibit a variety of behaviors mainly captured by the stability and frequency in the vertical and

horizontal axis of the central plot, respectively. Specifically, the lower the stability, the dynam-

ical signal will vanish in a short period of time, whereas if it gets closer to one, then it will oscil-

late continuously. On the other hand, the frequency dictates how fast or slow the signal varies

between its peaks. Altogether, it is apparent that a combination of regions has a superposition

of the dynamical activities that are captured by the combination of stability and frequency.

To capture these spatiotemporal dynamics of the system, we use our method to filter the

BOLD time series of each of the 98 subjects in all 4 runs in the HCP dataset. Further, eigenvec-

tors from all the subjects before and after filtering are computed and clustered into k = 5 clus-

ters using k-means clustering [45] to capture the resting state networks [46]. For in-depth

analysis of the eigenvector clusters’ community organization and the selected resolution, see

[47]. Fig 9 shows the 5 clusters with associated eigenvectors of the resting-state BOLD signals

in the left panel and the corresponding ARFIMA (1, d, 0) filtered BOLD signals in the right

panel, plotted on the brain overlays (also known as “eigen brains”). In the figure, the nomen-

clature used in this study is as follows: the eigen brains inside blue colored box correspond to

cluster 1, cluster 2 is outlined in orange colored box, cluster 3 in yellow outline, cluster 4 in

purple colored box and cluster 5 in green colored outlined box.

The spatial correlation shown in Fig 10 between the identified clusters (through clustering

of eigenvectors before and after filtering) and the seven resting-state networks (RSNs): visual

(Vis) network, somatomotor (SM) network, dorsal attention network (DN), ventral attention

network (VN), limbic network, executive control network (ECN) and default mode network

(DMN) identified in [48] reveals that each cluster consists of one or more RSNs and the contri-

bution of each RSN in each cluster (before and after filtering) remains the same. Furthermore,

S1 Table compares the R2 statistic and p-value of the spatial correlation between cluster

Fig 6. Number of statistically distinguishable power spectrum (p< 0.05) in each ROI plotted on the brain

overlays.

https://doi.org/10.1371/journal.pone.0268752.g006
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centroid and RSNs before and after filtering. Visual comparison of the so-formed 5 clusters in

Fig 9 reveal that cluster 1 to 4 (in blue, orange, yellow and purple boxes) looks identical. How-

ever, some changes in the visual and default mode RSNs in cluster 5 (green box) can be

observed.

Additionally, the two-sample Kolmogorov–Smirnov test [44] was used to test the statistical

similarity between the eigenvector cluster centroid of the respective cluster before and after

clustering at a significance level of 0.05. The test results failed to reject the null hypothesis that

the corresponding eigenvector cluster centroid before and after filtering are significantly

similar.

Fig 7. Whole brain FC matrix (comprising of 100 ROI) defined based on Pearson’s correlation. The Pearson’s

correlation FC matrix of each subject in each run is averaged across to find one representative FC matrix (mean ± std.

deviation). (A) Pearson’s correlation matrix (mean ± std. deviation) (for 100 ROI) obtained from the resting-state

BOLD time series. (B) Pearson’s correlation matrix (mean ± std. deviation) (for 100 ROI) obtained from the ARFIMA

(1, d, 0) filtered BOLD time series. (C) The difference between the mean Pearson’s correlation matrix of the resting-

state BOLD dataset(A) and the filtered BOLD time series of the whole brain (B).

https://doi.org/10.1371/journal.pone.0268752.g007
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Nonetheless, the result of the implementation of the proposed filter on the temporal

dynamics of the system is observed by witnessing the variation in the spectral content given by

the associated eigenvalues of the resting-state and ARFIMA filtered BOLD signals. The magni-

tude and argument of the eigenvalue describe the stability and frequency respectively of the

signals undergoing in the regions indicated by the associated eigenvectors. The top and the

bottom central plot of Fig 9 shows the distribution of the eigenvalues (frequency vs stability)

before and after ARFIMA (1, d, 0) filtering, respectively.

Fig 8. Whole brain FC matrix (comprising of 100 ROI) based on the coherence. The coherence FC matrix of each

subject in each run is averaged across to find one representative FC matrix (mean ± std. deviation). (A) Coherence FC

matrix (mean ± std. deviation) (for 100 ROI) obtained from the resting-state BOLD time series. (B) Coherence FC

matrix (mean ± std. deviation) (for 100 ROI) obtained from the ARFIMA (1, d, 0) BOLD time series. (C) The

difference between the mean coherence FC matrix of the resting-state BOLD dataset (A) and the filtered BOLD time

series of the whole brain (B).

https://doi.org/10.1371/journal.pone.0268752.g008
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Fig 9. Clustering of eigenvectors and eigenvalues obtained from resting-state BOLD signal and ARFIMA (1, d, 0)

(model-based) filtered resting-state BOLD signals. All eigenvectors from all subjects were normalised and clustered

into 5 clusters using k-means clustering. The clusters were color-coded across all subjects and all runs (98 subjects × 4

runs × 100 eigenmodes = 39,200 eigenvalues). The color codes blue, orange, yellow, purple and green correspond to

cluster 1, 2, 3, 4 and 5, respectively. The plot in the centre shows the distribution of eigenvalues based on their

frequency (the argument of eigenvalue) and stability (the absolute magnitude of eigenvalue) of resting-state and

ARFIMA filtered BOLD signals. Error bars represent the mean and standard deviation of the average eigenvalue of

each cluster. The eigenvalues are color coded based on the five identified clusters. The brain overlays in the left and

right panel represent the spatial distribution of the eigenvector corresponding to the eigenvalue (same color coded) of

resting-state BOLD signals before and after filtering, respectively. The cluster centroid (plotted on the brain overlays)

were normalised by subtracting each centroid by its minimum element. Colorbar represents the normalised values of

cluster centroid for each cluster (left and right panel).

https://doi.org/10.1371/journal.pone.0268752.g009
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Table 2 compares the average value of the stability and frequency between each cluster of

the eigenvalues of the preprocessed system and ARFIMA filtered system. The comparison

shows that the stability of the system improves by around 7% in cluster 1, around 25% in clus-

ter 2 and 5, and by approximately 16% in cluster 3 after the implementation of proposed filter-

ing. To test the hypothesis that the distribution of frequency and stability is significantly

different before and after filtering, Wilcoxon rank sum test [49] is utilised. The Wilcoxon rank

sum test (p< 0.05) was performed between the respective clusters before and after filtering.

The results of the statistical test revealed that their distribution was statistically different for all

the clusters.

Discussion

The long-term memory in the resting-state BOLD signals have been identified through fractal

modelling (self-similarity structures) in various fMRI studies [39, 40, 50]. Herman et al. in [51]

studied fractional properties in spontaneous BOLD fluctuations of a rat brain. Wang et al.
used them to study the effect of different levels of isoflurane anaesthesia on the BOLD fluctua-

tions [8]. The long-memory processes in temporal domain are modelled using ARFIMA (frac-

tional) models [52]; however, to the best of our knowledge they have not been utilised in the

context of filtering BOLD signals.

Fig 10. Similarity between eigenvector centroid of the clusters and RSNs. (A-B) denotes the spatial correlation between clusters and resting state

networks before and after ARFIMA filtering on the resting-state BOLD data, respectively. The colorbar depicts the correlation values for both panels.

https://doi.org/10.1371/journal.pone.0268752.g010

Table 2. Comparison of the mean stability (magnitude of eigenvalue) and mean frequency (argument of eigenvalue) of the clusters before and after filtering.

Mean frequency (mean ± std. deviation) Mean stability (mean ± std. deviation)

Before filtering After filtering Before filtering After filtering

Cluster 1 0.2943 ± 0.2341 0.2637 ± 0.2112 0.1665 ± 0.1037 0.1773 ± 0.1011

Cluster 2 0.0210 ± 0.0219 0.0185 ± 0.0167 0.4015 ± 0.2713 0.5250 ± 0.2696

Cluster 3 0.0930 ± 0.1300 0.0632 ± 0.0948 0.3304 ± 0.1981 0.3832 ± 0.2093

Cluster 4 0.3090 ± 0.2598 0.2890 ± 0.2509 0.2281 ± 0.1997 0.2044 ± 0.1617

Cluster 5 0.0236 ± 0.0383 0.0209 ± 0.0262 0.4340 ± 0.2904 0.5312 ± 0.1893

https://doi.org/10.1371/journal.pone.0268752.t002
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A major challenge for evaluating the denoising method of the resting-state BOLD signal is

the unavailability of the ground-truth signal. Therefore, first, we evaluate the proposed filter

with a principled synthetic BOLD signal which has statistical properties similar to the resting-

state BOLD signal identified in the literature (i.e., long-term memory and low-frequency fluc-

tuations [9, 39–43]). The proposed denoising procedure was capable of retrieving the ground-

truth signal from the artificial noise-induced synthetic BOLD signal. Thus, it provides evidence

that the filter is attaining its objective.

It is worthwhile noticing that the approach for the estimation of fractional difference

parameter d was a grid search approach such that the fractional differencing achieves short-

term memory and yields stationary time series. The order of autoregressive component was

limited to 1 to reduce the degrees of freedom and to obtain a stable model as their weights

serve as a scaling factor of the differentiated BOLD. Additionally, we furloughed the moving

average component to ensure that we deal with causal filters.

Impact on power spectrum

Subsequently, we implemented the same methodology with the resting-state BOLD signals.

The comparison of the power spectrum of the resting-state BOLD signals before and after fil-

tering often leads to changes that seem to affect mainly the high-frequency components. For

instance, see Fig 5, where we present three ROIs having different characteristics in their power

spectrum. Fig 5A depicts the effect of filtering on the normalised power spectrum of an ROI

which has most of the power at lower frequencies and a little component of power at higher

frequencies. In contrast, Fig 5B shows the effect of filtering on the normalised power spectrum

of an ROI with power spread out over the whole of its frequency range. Finally, Fig 5C corre-

sponds to the ROI which has most of the power in its lower frequencies but still consists of the

significant power in the higher frequency region. Despite depicting the behaviour similar to a

low-pass filter (LPF), we notice the characteristics of LPF (first-order butterworth) and the

proposed ARFIMA filter are different. It can be observed from Fig 11A that the LPF rejects the

higher frequencies, but the derived filter does not eliminate them completely rather, it attenu-

ates the high-frequency component while keeping some of the information that might be rele-

vant to the neural activity. The magnitude bode plot (Fig 11B) of the transfer function of both

the filters explains the observed behaviour. The attenuation is of the order of 50 dB at higher

frequencies in case of low-pass Butterworth filter and of the order of 6 dB with the derived

ARFIMA (1, 0.3, 0) filter. Hence, it provides evidence that the derived filter has different char-

acteristics from the ordinary LPF.

Furthermore, because the ARFIMA model-based approach is done in the time-domain, a

variety of other scenarios are expected. Specifically, for most signals, ARFIMA filtering per-

forms attenuation at higher frequencies as can be seen in Fig 5, but we found sensitivity in

some frequency distributions where, a small amount of amplification was observed in the

higher frequencies. For instance, Fig 12A shows one such ROI where the high-frequency com-

ponents are actually amplified. The amount of amplification can be observed in the magnitude

bode plot of the proposed filter in Fig 12B, which is of the order of 0.1 dB. This provides evi-

dence of the versatility of the proposed filtering scheme which is tailored for each of the chan-

nels and the associated data under consideration. Although we lack the ground-truth of these

signals, the synthetic examples explored provide converging evidence that the proposed filters

are attaining their objective.

The primitive studies denote that the fluctuations due to neural activity in resting-state

BOLD signals are associated with the low-frequencies [1, 53, 54], however, technical advances

in the MR imaging techniques led to the identification of RSNs in frequencies higher than
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0.1Hz [55–57]. The latter suggests that the high-frequency fluctuations in resting-state BOLD

signals are not only the result of artefacts but also include contribution from underlying neuro-

nal activity. Therefore, completely filtering out the high-frequency components do not seem to

be an ideal denoising approach. Thus, it is remarkable to highlight that the proposed filter

seems to be able to attenuate/amplify the higher frequencies when required.

Fig 11. Comparison between the derived ARFIMA filter and first-order low-pass butterworth filter. Both the figures show the comparison made on

ROI: 11 corresponding to the somatomotor auditory region of the brain. (A) Normalised power spectrum of the unfiltered and filtered BOLD signal.

The normalised power spectrum corresponding to the preprocessed resting-state BOLD signal is represented by the cyan curve, low-pass first-order

butterworth filtered by yellow curve and the ARFIMA (1, 0.3, 0) filtered BOLD by the orange curve. (B) Magnitude bode plot of the transfer function of

the low-pass first-order butterworth filter (yellow curve, cut off frequency: 0.1Hz) and the derived ARFIMA (1, 0.3, 0) filter (orange curve).

https://doi.org/10.1371/journal.pone.0268752.g011

Fig 12. Amplification in the high frequencies for one of the ROI. (A) shows the normalised power spectrum of the resting-state BOLD signal (cyan

curve) and the ARFIMA filtered signal (dashed orange curve) for one of the ROI. (B) Magnitude bode plot of the derived ARFIMA filter (for the ROI

shown in (A)) depicting amplification in higher frequencies.

https://doi.org/10.1371/journal.pone.0268752.g012
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Impact on FC measures

Next we look into functional connectivity matrices between different ROIs of brain, particu-

larly, Pearson’s correlation and coherence. Since, FC is dominated by the high power in slow

frequencies; therefore, these measures capture the slow-frequency properties of the signal. As

we observe from the power spectrum analysis that the effect of filtering seems to be more

heavily present at the high-frequency component of the signal, hence, the FC matrix may not

observe any significant changes due to filtering. Figs 7 and 8 indeed depicts that the mean FC

matrices before and after filtering are similar. Additionally, the two-sample Kolmogorov–

Smirnov test [44] on pre and post-filtered mean FC matrices failed to reject the null hypothesis

that they are statistically similar (at a significance level of 0.05).

Impact on eigenmode analysis of directed connectivity

Since, FC measures were not sensitive enough to reveal what is changed by filtering, therefore,

we perform subject-level eigenmode decomposition and k-means clustering to: a) reveal the

heterogeneous spatial profile of the eigenmodes of the brain and b) to leverage these now

teased out clusters to better localize any changes after filtering (that potentially impacted some

brain networks differently [possibly due to their intrinsic spectral profile]).

Finally, we showed that this detailed analysis allowed us to highlight filtering-related

changes. More intriguingly, the spectral profiles associated with the clusters changes after fil-

tering. The Wilcoxon rank sum test [49] on the corresponding distribution of the eigenvalues

of each cluster before and after filtering indicates that they are statistically different (p< 0.05).

Thus, providing additional evidence that the proposed filter modifies the (spatiotemporal)

spectral content of the resting-state BOLD signals. These suggest that the proposed methodol-

ogy filtered out the data that was not consistent with the proposed models which evidence sug-

gests to be properly modeled by fractional-order processes and, further, corroborated by the

synthetic examples explored. That said, we conjecture that we were able to remove some addi-

tional noise that could be due to sporadic activity not eliminated through data preprocessing,

or maybe due to additional artefacts introduced by such preprocessing.

Methodological considerations and limitations

A major challenge in the evaluation of fMRI denoising methods is the unavailability of the

standard signal for distinguishing fluctuations due to neural component from artefacts. There-

fore, it is impossible to state beyond doubt that a signal being filtered out is the noisy compo-

nent or was the source of neural activity.

It is important to highlight that the structured recording noise, such as autocorrelated

noise, has the potential to negatively impact the modeled system [58, 59]. Although we have

regressed out the global mean signal [60] to account for the shared global noise [61–63], our

model is unable to account for other unknown structured (e.g., autocorrelated) and time-vary-

ing recording noise [58, 59]. Furthermore, artifacts may be introduced by global mean signal

regression (GSR), since it removes any global activation patterns (e.g., vigilance [64] or arousal

[65]) in addition to the shared noise and can change the correlation structure. This noise

reduction method’s limits are the focus of ongoing debate [66]. We decided to use this prepro-

cessing step after weighing the possible disadvantages of GSR against the primary concerns

about substantial global artifacts like cardiac and respiratory noise. Nonetheless, it would be

useful to investigate the global signal’s spectral profile and the effect of GSR on the modeled

system’s spectral properties.

It is worth noting that some of the preprocessing steps, for instance removal of structured

and unstructured noise can impact the reported results. Although beyond the scope of the
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current proof-of-concept work, future work should explore how different preprocessing steps

such as mentioned by Glasser et al. in [67], the data-driven ICA-based noise removal, can

effect the ARFIMA model, and consequently filtered outcomes.

Nonetheless, we created a synthetic BOLD signal which follows the observed properties of

the original BOLD signals and consists of low-frequency fluctuations. Furthermore, there are

some methodological limitations. For instance, one of the main parameter in the ARFIMA fil-

tering is the fractional difference parameter, d. Selecting a value too high, may lead to over

differencing of the time series and thus, can introduce artificial memory [21, 32]. Liu et al. in

[28] illustrate that the estimation of d with different methods or software can result in different

values. This is because each of these methods seeks to minimise different objective functions

tailored to their requirements [68]. Therefore, a novel method can be developed to estimate d,

which can also help improve the results obtained in this study.

Additionally, the current research focusses on the univariate filtering of the resting-state

BOLD signals, however, the spatiotemporal dependencies between different ROIs of a brain

cannot be ignored [69, 70]. Thus, future work should focus on extending the proposed filter to

the multivariate domain. Additionally, the value of fractional differencing parameter d in this

study was considered constant over a period of time for resting-state BOLD time series for a

particular ROI. Future research should account for possible variations, as those that occur in

criticality analysis of electrocorticogram signals in epilepsy [71] patients, or critical transition

phenomena found in nature [72].

The proposed ARFIMA filter is limited to the field of resting-state BOLD signals for this

research. Nonetheless, its scope can be extended to various signals which exhibit long-memory

property such as financial time series, electroencephalography signal and underwater signal

[28] and in numerous fields, namely, signal processing, control engineering, biomedical sys-

tems and physics (Magin et al. in [73] provides a reference to literature in each of these

domains). As noticed in this study, the proposed filters are suitable for modelling the low-fre-

quencies, therefore, their usage can be advantageous where a low-frequency signal is of para-

mount interest.

Finally, we have looked into static FC as one of the metric, largely based in their common

usage in the resting-state fMRI data analysis [74, 75]. However, recently FC has been observed

to fluctuate over time [76] and has opened window to the new research area called dynamic

functional connectivity (dFC) [77, 78]. Future work could observe the effect of the proposed

filter on the dFC metrics.
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S1 Table. R2 statistic and p-value of the spatial correlation between the cluster centroid

and the identified RSNs. The comparison of these statistics show that the presence of RSNs in

each of the identified clusters before and after proposed filtering is similar.
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