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A B S T R A C T   

This study investigated cyclic magneto-hydrodynamic radiative effects in Casson and Maxwell 
fluids, including nonlinear radiation and Arrhenius activation energy. It promotes non-Newtonian 
fluid use in diverse fields like industry, manufacturing, sciences, medicine, and engineering. 
Using boundary layer approximations, non-dimensional equations are formulated. For numerical 
solutions, widely recognized explicit finite difference method (EFDM) has been utilized. To ensure 
the robustness of EFDM results, stability and convergence tests are performed. Exploration 
involve a detailed sensitivity analysis by using RSM, offering a thorough understanding of 
influential parameters. These analyses explore complex interactions among physical parameters, 
affecting Nusselt number, skin friction, and Sherwood number. Maxwell fluid’s velocity is more 
affected by periodic magnetic force than Casson fluid, during the presence of nonlinear radiation. 
Additionally, nonlinear thermal radiation has a greater impact on temperature and concentration 
profiles compared to linear radiation for both fluids. Moreover, Casson fluid has a stronger in-
fluence on the average heat transfer rate compared to Maxwell fluid with nonlinear thermal ra-
diation which is 8.6 % greater than the Maxwell fluid. On the other hand, at constant thermal 
radiation (Ra), due to decrease of Brownian motion (Nb), the rate of heat transfer is reduced by 
1.2 % and 0.3 % respectively for Maxwell and Casson fluid. Also, for thermophoresis parameter 
(Nt), this rate is reduced by 2 % and 1.6 % respectively. The investigation also revealed that the 
Ra exhibits a positive sensitivity towards average Nusselt number, while Nb and Nt are displayed 
a negative sensitivity.   

1. Introduction 

Nowadays, modern nanotechnology gives innovative scopes to produce and process different sorts of manufacturing materials with 
traditional crystallite sizes less than 100 nm. For this reason, research on nanofluid is becoming much better interesting from the last 
few years. In 1995 from Argonne National Laboratory in the U.S.A, Choi et al. [1] introduced a fluid mixture that contained solid 
nanoparticles (for example: Cu, CuO, Ag, Al2O3, TiO2 etc.) which was called nanofluid. In fact, these solid particles are stably and 
uniformly distributed into a base fluid (such as: water, engine oil, pump oil, ethylene glycol, etc.). It is anticipated that nanofluid will 
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be the foreseeable future of heat transfer fluids since it offers novel opportunities to enhance heat transfer execution with regard to 
pure liquids. Moreover, due to the unique superior thermal performance, chemical properties, and physical properties of nanofluid, it 
plays a significant role in abundant industrial and technological applications. Furthermore, nanofluid can grow abrasion-related 
properties rather than fluid mixtures/conventional solid. Typically, these dispersed nanoparticles increase the thermal conductivity 
of nanofluids (normally metal or metal oxide). This unique property of nanofluid has a lot of uses in thermal process which include 
hybrid-powered engines, heat exchanger, fuel cells, pharmaceutical processes, nuclear reactors, industrial freezing, smart fluids, 
microelectronics, nanofluids coolant, and withdrawal of geothermal power. In recent years, a number of investigations on nanofluids 
have been completed by various researchers. Beg et al. [2] analyzed mixed convective nanomaterial flow through porous space 
originating from exponential stretched sheet. Biswas et al. [3] studied a dense gray nanofluid model through a vertical plate. 
Furthermore, to complete their work, an explicit finite difference method was used where temperature, concentration, and velocity 
profile were investigated graphically. Between two heated rotating disks Hayat et al. [4] investigated entropy for a radiative water 
based nanofluid. With the presence of two different nanoparticles into base fluid, Wang et al. [5] presented a numerical analysis on a 
microchannel porous media. On the other hand, over a stretched nonlinear surface, Mamun et al. [6] investigated Sisko-nanofluid flow 
by considering thermal radiation and magnetohydrodynamic (MHD) effect. Actually, MHD refers to the research that examines the 
effects of magnetism in electrically conducting fluids. Very recently, Xu et al. [7] described the mode of heat transfer of metal foam and 
nanofluid in a porous medium. Again, Asadi et al. [8] considered thermal properties, heat transfer efficiency, colloidal dispersion, and 
numerous ultra-sonication parameters for different nanofluids models where they concluded that uninterrupted ultra-sonication 
breaks down the outsized clusters into the minor clusters of nanoparticles. Kamel et al. [9] expressed boiling heat transfer proper-
ties for nanofluids with convective heat transfer and pool flow boiling for a nanofluid. Furthermore, recently, several investigations 
were completed on the nanofluid flow with the purpose of regulating the heat transfer mechanisms in various systems [10,11]. Also, 
Esfe et al. [12] expolred the natural convective heat transfer behaviour on a U-shaped cavity. Hayat et al. [13] studied on entropy 
generation for the radiative flow of nanomaterials across two heated spinning disks. Sayed et al. [14] employed Legendre-Galerkin 
method to examine the nanofluid flow across an upward cone and how heat transfers under the impacts of thermal radiation and 
heat creation. 

Researchers’ interest in non-Newtonian fluids has increased in the modern era due to growing its uses in the fields of industrial 
processes and manufacturing, applied science, medical and engineering. In fact, a fluid whose flow curve is not linear, which doesn’t 
convey the Newtonian law of viscosity, is entitled as a non-Newtonian fluid. Once more, the deceptive viscosity of a non-Newtonian 
fluid varies for a wide range of values of temperature and pressure. The most liquids, such as tomato ketchup, condensed milk, apple 
sauce, sugar solution, soap, mud, shampoo, suspension solutions, animal blood, and exotic lubricants show the properties of non- 
Newtonian fluids which have taken an imperative place by this time in human life. Due to the fact that a specific fluid model did 
not calculate all of the non-Newtonian fluids’ physical characteristics so in different times a lot of scholars recommended various non- 
Newtonian fluids models [15,16]. Such as, a power-law non-Newtonian fluid in deformable, fractured porous media was investigated 
by Hageman et al. [17]. Mustafa et al. [18] quantitatively evaluated the effects of a helical absorber tube on the thermal efficiency of a 
solar collector (PTSC) filled with non-Newtonian nanofluid. Ali et al. [19] used the finite element technique to study heat and mass 
transmission in Jeffrey and Oldroyd-B nanofluids in the existence of chemical processes and radiation. Raihan et al. [20] conducted 
research on non-Newtonian fluids with unique rheological characteristics and water using a planar single-cavity micro channel. 
Actually, three main categories of these fluid models-integral, rate, and differential-were used to categorize them. The rate type and 
differential type have drawn the most attention of these three categories but specifically, the subclass of rate type model of 
non-Newtonian fluids is used widely which is known as Maxwell fluid, introduced by Maxwell in 1867 [21]. Moreover, Maxwell fluid 
demonstrates both elasticity and viscosity properties. This fluid model does not accurately talk about the usual correlation between 
shear stress and shear rate for a simple shear flow, nevertheless, this fluids model has acquired a number of successes to refer to the 
features of optical fibers, numerous polymeric liquids of small molecular weight, and many others. Furthermore, this fluid model can 
be anticipated the effects of relaxation time which cannot possible to calculate by any other differential-type fluids. In different times, 
diverse efforts have been taken by considering Maxwell fluid model such as: to explain heat transfer for steady Maxwell fluid, Abel 
et al. [22] made numerical computations through a stretching sheet. Again, in another study, for a mixed convection Maxwell fluid the 
Cattaneo-Christov model by inconstant thickness sheet was studied by Hayat et al. [23]. With the manifestation of nanoparticles, 
Arifuzzaman et al. [24] scrutinized MHD flow Maxwell fluid vertical porous plate where the effects of chemical reactions, radiation 
absorption, and heat generation were considered. Ahmad et al. [25] looked at the flow of a 3D Maxwell nanofluid with variable 
viscosity and thermal conductivity across a stretched surface. Safdar et al. [26] used gyrotactic microorganisms across a porous 
stretched sheet to theoretically and numerically study MHD Maxwell nanofluid flow. 

Due of its significance in several domains such as polymer extrusion, pharmaceutical process, purification of crude oil, paints, 
petroleum industry, fluid droplet sprays, glass fiber drawing, and several others, the Casson fluid (honey, soup, tomato sauce, human 
blood, concentrated fruit juices, jelly, etc.), another non-Newtonian fluid, has recently drawn the attention of current researchers. This 
fluid, which was expressed by Casson in 1959 [27], has distinct features. This fluid demonstrates rheological characteristics. Compared 
to Newtonian fluid, this fluid exhibits stress-strain relationships that are significantly different. It behaves as a solid body when the 
shear stress is less than the yield stress. On the other side, it starts to move when shear stress exceeds yield stress. The Casson fluid has 
recently experienced greater success in numerical and experimental studies, making it a more popular research topic than any other 
non-Newtonian fluid models. For these useful applications, numerous researchers have analyzed the Casson fluid flow through dis-
similar geometries with adding different effects [28,29]. Chen et al. [30] studied a 2D heat transfer phenomena of a non-conducting 
Casson fluid across a surface that stretched using thermophoretic particle deposition. A magnetic dipole was used to interact with an 
external magnetic field. Bilal et al. [31] discussed the consequences of a radiative Casson fluid over a Riga surface which was 
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chemically reactive, and concluded that increasing the chemical reaction and heat absorption parameters caused a decrease in mo-
mentum distributions. Khan et al. [32] investigated an unsteady radiating stagnation point flow of a Casson fluid through a porous 
shrinking/stretching surface using an external magnetic field, and a non-uniform heat source, and solved the related ODEs using 
MATLAB’s bvp4c built-in function. In a stenotic tube with an absorptive wall, Das et al. [33] accompanied a study on blood using the 
Casson model. Over a stretching sheet, the H2O–Fe3O4-MWCNT hybrid nanofluid flow, which includes dust particles, was scrutinized 
by Khan et al. [34] to see how Lorentz forces affected the flow. Dawar et al. [35] studied the flow of a Casson fluid containing gyrotactic 
microorganisms in both magnetized and non-magnetized conditions over a stratified stretched cylinder. Sulochana et al. [36] 
expressed a 3D Casson nanofluid model on a stretched sheet to analyze the rheological characteristics, and the Runge-Kutta (RK) 
process was used to get velocity, temperature, and concentration profiles. With the existence of the effects of thermal radiation, Lorentz 
force, heated horizontal wall, and motion of nanoparticles, Thumma et al. [37] described a time dependent 3D Casson fluid by the 
generalized differential quadrature method. Again, through a horizontal circular duct, the hydro-magnetic effects of blood flow were 
described by Ali et al. [38]. With the presence of magnetic nanoparticles on a stenosis artery, Priyadharshini et al. [39] inspected the 
effect of MHD for blood flow. To inspect the flow behavior of a steady Casson fluid, that is electrically conducted, Ali et al. [40] 
expressed another model by using Darcy’s law in a 2D constricted walls channel through a porous medium. Bukhari et al. [41] recently 
conducted another analysis for a pulsatile Casson fluid flow in a rectangular channel with the appearance of heat radiation and 
magnetic field. Awais et al. [42] looked at the consequences of heat generation, the Lorentz force, and the mass as well as heat transfer 
of an MHD Casson fluid flow over a diminishing porous wall. Furthermore, many scientific and technical fields such as processing of 
food, nuclear reactor’s cooling, oil emulsions, geothermal reservoirs, and chemical engineering contain mass transfer occurrence 
carried out by chemical reaction and activation energy which has been given spectacular consideration due to these distinct useful 
applications. When there exists a concentration difference of different species in a mixture then the mass transfer arises for this 
mixture. The concentration of these species changes simultaneously from upper to lesser concentration. The amount of least energy 
required for performing a definite chemical reaction is known as activation energy. Generally, the Arrhenius equation for activation 

energy is expressed by the form [43]; K = B
(

T
T∞

)n
exp
(
− Ea
κT
)
, where K,B,T,T∞, n,Ea, κ denotes the reaction rate constant, 

pre-exceptional factor, ambient temperature, fixed-rate constant, activation energy, and Boltzmann constant respectively. The 
chemical process and Arrhenius activation energy were first introduced by Bestman et al. [44] in 1991, and explained how a porous 
media and heat and mass transfer work together. Subsequently, to analyze the consequence of activation energy for heat and mass 
transfer Khan et al. [45] developed another unsteady free convective flow model. For a second-grade nanofluid flow, Kalaivanan et al. 
[46] figure out the effect of activation energy and concluded that the concentration profile expands by means of activation energy. For 
bi-convective Casson nanofluid model the Darcy-Forchheimer was investigated by Saeed et al. [47] by considering Arrhenius acti-
vation energy over a rotating disk. Subsequently, Shi et al. [48] analyzed the consequence of activation energy for bioconvective 
Cross-nanofluid over a stretching surface. The previous study by Ahmed et al. [49] examined linear and nonlinear radiation patterns in 
the setting of MHD non-Newtonian nanofluid flow with Arrhenius activation energy. In the end, their research revealed that the 
activation energy has a significant impact on how the Maxwell fluid and nonlinear radiation interact, which has implications for both 
industrial use and cancer therapy. Ali et al. [50] conducted a thorough investigation of hydro-magnetic flow including Casson fluid 
over a stretched sheet, focusing on the combined effects of thermoelectric and thermal radiation processes. Their results highlighted a 
stronger influence on non-Newtonian (Casson) fluid than on its Newtonian equivalent. Mass and heat movement were numerically 
analyzed by Dharmaiah et al. [51], accounting for temperature conditions and activation energy. Their investigation showed that the 
impact of activation energy is what causes the concentration to increase. Furthermore, the authors [52] examined the effect of 
nonlinear thermal radiation on Jeffrey fluid flow and found that the Nusselt number increases as the radiation parameter increases. 
Furthermore, as the Casson parameter increased, the researchers [53] saw a rise in the temperature of blood flow. The investigation by 
Kumar et al. [54] concentrated on the transitory circumstances influencing Casson fluid flow when magnetic influences are present. 
Their results showed that the influence of Casson parameters led to improvements in temperature and concentration. A research on 
MHD flow in the presence of heat radiation and activation energy was carried out by Shankar Goud et al. [55]. As the melting pa-
rameters increased, they observed a decrease in velocity that was mirrored on the momentum boundary layer. 

The goal of this study is to investigate the pace at which the periodic magnetic parameters and Arrhenius activation energy interact 
with nonlinear radiative Maxwell and Casson nanofluid flow on a stretching surface. To the author’s best knowledge, prior to this 
study, there had been no dedicated research in the literature that investigated periodic magneto-hydrodynamics of Casson and 
Maxwell fluids, considering both nonlinear radiation effects and Arrhenius activation energy in the context of flow over an enlarging 
surface. Furthermore, the response surface methodology (RSM) is involved to analysis the sensitivity rate of the involved significant 
factors for both Casson and Maxwell fluids. This study is a significant attempt to fill this substantial gap in scholarly exploration. The 
following is a list of the specific goals of this numerical investigation.  

• To investigate periodic magnetic force, nonlinear thermal radiation, mass diffusion, and radiation absorption effects on unsteady 
chemically reactive Casson and Maxwell fluid flow with nanoparticles across a stretching surface.  

• To simulate the governing equations using the recognized explicit finite difference technique (EFDM).  
• To analyze the stability and convergence test of EFDM solutions for choosing suitable values for the involved parameters.  
• To explore 2D and 3D response surfaces, and sensitivity analysis of comprehending key variables using graphical representations.  
• To examine how different physical parameters with other effects affect various important flow fields.  
• To depict streamlines and isotherms in order to demonstrate proficient fluid flow visualization. 
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Finally, the physical characteristics of the various parameters have been researched here, and this study has also been validated. A 
general framework of this numerical investigation is represented in Fig. 1. 

2. Problem formulation 

The enactment of 2D unsteady radiative periodic magnetic hydrodynamics Casson and Maxwell fluids with nonlinear thermal 
radiation, actuality of nanoparticles, and Arrhenius activation energy are analyzed in this article. Due to stretching constant B, here the 
fluid velocity is assumed to be u = Bx, and an external magnetic field B0 is acted along Y-axis. The X-axis represented the direction of 
stretching, while the Y-axis was taken perpendicular to the surface. Also, T stands for the temperature of the fluid, and C for the 
concentration next to the wall which is get raised at t > 0. Additionally, U∞, T∞ and C∞ denote the fluid’s velocity, temperature, and 
concentration far from the wall, respectively that is described in Fig. 2. 

The rheological expression for an incompressible Casson fluid model is defined in equation (1) as: 

τij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

2μb +

̅̅̅
2
π

√

Ey

)

eij if π > πc

(

2μb +

̅̅̅̅̅
2
πc

√

Ey

)

eij if π < πc

(1)  

where μb is the non-Newtonian fluid’s plastic dynamic viscosity, the crucial component of this product is πc, the element deformation 
rate in relation to itself is π, fluid’s yield stress is represented by Ey, and the (i, j)th component of the deformation rate is shown by the 
symbol eij. Therefore, it behaves like a fluid when share stress is greater than yield stress. Conversely, it behaves as a solid body when 

share stress is lower than yield stress. Again, Ey =
μb
β

̅̅̅̅̅̅
2π

√
. That is, υ′ = υ

(
1+1

β

)
where ρ and υ stand for density and kinematic viscosity 

of the base fluid, and β represents the non-Newtonian Casson factor. 

2.1. Continuity equation 

The continuity equation is another name for the conservation law of mass, and the continuity equation for incompressible laminar 
flow (in vector form) is: Δ.q = 0, where q = ûi + v̂j indicates velocity vector and Δ is the vector differential operator. In Cartesian 
coordinate system, this continuity equation is expressed by: 

∂u
∂x

+
∂u
∂y

= 0 (2)  

2.2. Momentum equation 

In fluid dynamics, we employ the momentum equation, based on Newton’s second law of motion. Specifically, for incompressible 
fluid flow, equation (3) is often referred to as the Navier-Stokes equation, and its vector form is: 

∂q
∂t

= −
1
ρ∇p + υ∇2q − (∇.q)q + F (3) 

Fig. 1. General procedure to complete this work.  
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where υ, ρ, p, F are the kinematic viscosity, density, pressure, and body force of fluid. The external forces as like buoyancy force, 
magnetic effect are considered as body force for this fluid model. Moreover, for Casson fluid, the viscous factor υ will be replaced by 
(

1 + 1
β

)
υ. Also, for Maxwell fluid, another effect − λ

(
u2∂2u

∂x2 +v2∂2u
∂y2 +2uv ∂2u

∂x∂y

)
will be included with body forces. So, the above vector 

expression of momentum equation for both Casson and Maxwell fluid can be represented in Cartesian coordinate as like [24,28]: 

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= − λ
(

u2∂2u
∂x2 + v2∂2u

∂y2 + 2uv
∂2u
∂x∂y

)

ν
(

1+
1
β

)(
∂2u
∂y2

)

−
σB2

0

ρ sin2
(πx

λ

)
u+ gβT(T − T∞) + gβC(C − C∞) −

(

1+
1
β

)
υu
k1

(4)  

2.3. Energy equation 

For fluid flow, the energy equation expresses the conservation law of energy i.e., energy balance of a system. For incompressible 
fluid, the vector form of energy equation is: 

∂T
∂t

+ q.∇T =
1

ρcp

[

∇.(κ∇T)+ ρcp
DT

T∞
DB(∇T.∇T)+ ρcpDB(∇T.∇C)

]

(5)  

In Cartesian coordinate system, the above equation (5) for Casson and Maxwell fluid is represented in the following form considering 
boundary layer approximation and heat radiation [56]: 

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
κ

ρcp

(
∂2T
∂y2

)

+ τ
[

DB

(
∂T
∂y

∂C
∂y

)

+
DT

T∞

(
∂T
∂y

)2
]

+

(

1+
1
β

)
υ
cp

(
∂u
∂y

)2

−
σB2

0

ρcp
sin2
(πx

λ

)
u2 −

1
ρcp

∂qr

∂y  

Here, qr = − 16σ∗T3

3k∗
∂T
∂y. In this context, σ∗ and k∗ denote the constants commonly referred to as the Stefan-Boltzmann constant and the 

mean absorption coefficient, respectively. Hence, the above equation becomes: 

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
κ

ρcp

(
∂2T
∂y2

)

+ τ
[

DB

(
∂T
∂y

∂C
∂y

)

+
DT

T∞

(
∂T
∂y

)2
]

+

(

1+
1
β

)
υ
cp

(
∂u
∂y

)2

−
σB2

0

ρcp
sin2
(πx

λ

)
u2 −

1
ρcp

16σ
3k∗

[

T2
(

∂T
∂y

)2

+ T3∂2T
∂y2

]

(6)  

2.4. Concentration equation 

For chemical reaction among a fluid, the vector form of concentration equation of incompressible fluid is: 

∂C
∂t

+ q.∇C =
DT

T∞

(
∇2T

)
+ DB

(
∇2C

)
(7) 

Furthermore, for the boundary layer approximation and the Arrhenius activation energy, the above equation (7) can be represented 
by in Cartesian form as like [28]: 

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

=DB
∂2C
∂y2 +

DT

T∞

(
∂2T
∂y2

)

− Kr2(C − C∞)

(
T

T∞

)n

exp
(
− Ea
κT

)

(8)  

Here, K = Kr2(C − C∞)
(

T
T∞

)n
exp
(
− Ea
κT
)

denotes the modified Arrhenius equation, Ea represents the activation energy, Kr stands for the 

reaction rate, n be the fixed rate constants, and Boltzmann constant κ = 8.61× 10− 5 eV/K. Also, Brownian diffusivity and the ther-
mophoresis diffusion are DB and DT respectively. 

Fig. 2. Physical configuration of this fluid flow.  
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Boundary conditions in physics have significant physical implications as they directly affect the behavior and characteristics of the 
system being studied. Boundary conditions have profound physical implications as they govern the behavior, conservation principles, 
wave propagation, stability, and response of physical systems to external influences. Properly defining and understanding boundary 
conditions are essential for accurately modeling and predicting the behavior of systems in various scientific and engineering disci-
plines. The equivalent initial and boundary conditions are represented in equation (9) as [28]: 

When t = 0; {u = Bx, v = 0,T = T∞,C = C∞ at everywhere

When t ≥ 0;

⎧
⎪⎪⎨

⎪⎪⎩

u = 0, v = 0,T = T∞,C = C∞ at x = 0

u = Bx, v = 0,T = Tw,C = Cw at y = 0

u = 0, v = 0, T→T∞,C→C∞ at y→∞

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(9)  

The velocity in the x direction is equal to Bx at initial time, or when time equals zero, where B denotes the surface’s stretching rate. In 
addition, the temperature and concentration are T∞ and C∞, respectively, and the velocity in the y direction is equal to zero. The 
concentration and temperature remain the same as they were at the beginning of time, but the velocity values in both directions equal 
zero at the x = 0 point when time is higher than zero. Conversely, at y = 0 regions, concentration and temperature are Tw (wall 
temperature) and Cw (wall temperature), respectively, and velocity is equal to Bx in the x direction and v = 0. However, when y 
approaches to infinity, the temperature and concentration both tend to ambient temperature and the values of the velocity in both 
directions tend to zero. The u and v velocity components, together with the x and y axes, are presented in this situation. Also, to make 
dimensionless of involved governing equations, we have considered the following variables. 

u =
υ
λ

Gr1
2U, v =

υ
λ

Gr1
4V,X =

x
λ
,Y = Gr1

4
y
λ
,

τ =
υ
λ2 Gr1

2t, θ =
T − T∞

Tw − T∞
,φ =

C − C∞

Cw − C∞

⎫
⎪⎪⎬

⎪⎪⎭

(10) 

By using equation (10), equations ((2), (4), (6) and (8) are obtained as follows: 

∂U
∂X

+
∂V
∂Y

= 0 (11)  

∂U
∂τ +U

∂U
∂X

+V
∂U
∂Y

=

(

1+
1
β

)
∂2U
∂Y2 − Nv

[

U2∂2U
∂X2 + 2UV

∂2U
∂X∂Y

+V2∂2U
∂Y2

]

− M2 sin2(πX)U + θ +

(
Gm
Gr

)

φ −

(

1+
1
β

)

KpU (12)  

∂θ
∂τ +U

∂θ
∂X

+V
∂θ
∂Y

=
1

Pr

[
1+Ra{1 + (θw − 1)θ}3

] ∂2θ
∂Y2 +

(

1+
1
β

)

Ec
(

∂U
∂Y

)2

+Nb
(

∂θ
∂Y

∂φ
∂Y

)

+Nt
(

∂θ
∂Y

)2

+EcM2U2 sin2(πX)

+
Ra
Pr

{1 + (θw − 1)θ}3
(

∂θ
∂Y

)2

(13)  

∂φ
∂τ +U

∂φ
∂X

+V
∂φ
∂Y

=
1
Le

∂2φ
∂Y2 +

(
Nt

Le Nb

)
∂2θ
∂Y2 − Kc φ(1 + δθ)n exp

(
− AE

1 + δθ

)

(14)  

where Nv = νλ1
λ2 Gr1

2 is Maxwell Parameter, M2 =
σβ2

0λ2

ρνGr
1
2 

is magnetic parameter, Gm =
gβCλ3

ν2 (Cw − C∞) is mass Grashof number, Gr =

gβTλ3

ν2 (Tw − T∞) is thermal Grashof number, Kp = λ2

k1Gr
1
2 

is porous term, Pr = νρcp
κ is Prandtl number, Ra =

16σ′T3
∞

3kk∗ is radiation parameter, 

θw = Tw
T∞ 

is the temperature ratio of fluid’s, Ec = ν2Gr
λ2cp(Tw − T∞)

is Eckert number, Nb =
τDB(Cw − C∞)

ν is Brownian motion parameter, Nt =
τDT(Tw − T∞)

νT∞ 
is thermophoresis parameter, Le = α

DB 
is Lewis number, Kc = λ2Kr2

νGr
1
2 

is chemical reaction parameter, δ =
(Tw − T0)

T∞ 
is temperature 

difference factor, AE = Ea
κT∞ 

is Arrhenius activation energy parameter. 
The local skin friction, Nusselt number, and Sherwood number are illustrated in equation (15) as [58]: 

Cf = − 2.8284
(
1+ ε− 1)Gr− 3

4

(
∂U
∂Y

)

Y=0
,Nu= 0.7071Gr− 3

4

(
∂θ
∂Y

)

Y=0
and Sh= 0.7071Gr− 3

4

(
∂C
∂Y

)

Y=0
(15)  

Moreover, the stream function ψ that is correlated to the velocity constituents as like U =
∂ψ
∂Y and V = −

∂ψ
∂U, that satisfies the con-

tinuity equation (11). 
In addition, the corresponding boundary conditions for the non-dimension case are presented in equation (16): 
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when τ ≤ 0; {U = 0,V = 0, θ = 0,C = 0 at everywhere

when τ > 0;

⎧
⎪⎪⎨

⎪⎪⎩

U = 0,V = 0, θ = 0,C = 0 at X = 0

U = βX = β,V = 0, θ = 1,C = 1 at Y = 0

U = 0,V = 0, θ = 0,C = 0 as Y→∞

(16)  

3. Numerical computation 

This section outlines the approach for solving the dimensionless governing equations 11–14 along with boundary conditions. Due 
to the substantial nonlinearity and time-dependent nature of these partial differential equations (PDEs) connected to the boundary 
conditions, analytical solutions are not feasible. Therefore, we employed a renowned numerical solver known as the finite difference 
method, originally introduced by Carnahan et al. [57], to obtain a solution for this evolving model. The non-dimensional temperature, 
velocity, and concentration numerical results in the boundary layer for different non-dimensional parameter values have been 
computed with EFDM through the FORTRAN program. Once more, the inner boundary layer is separated into grid spaces of lines 
parallel to the X and Y-axes in order to convince this solver’s procedure correctly. As indicated in Fig. 3, the stretching sheet is the 
X-axis, and the Y-axis is measured perpendicular to the sheet. In the present work, the numerical numbers X (=20) and Y (=40) denote 
the height of the plate. In addition, m (=100) and n (=200) denote the grid space. 

Using explicit finite difference approximation method, equations 11–14 and equation (16) have been converted into equations 
17–21 

Ui,j − Ui− 1,j

ΔX
= −

Vi,j − Vi,j− 1

ΔY
(17)  

U′
i,j − Ui,j

Δτ = − Ui,j

(
Ui,j − Ui− 1,j

ΔX

)

− Vi,j

(
Vi,j+1 − Vi,j

ΔY

)

+

(

1+
1
β

)(
Ui,j+1 − 2Ui,j + Ui,j− 1

(ΔY)2

)

− Nv

[

U2
i,j

(
Ui+1,j − 2Ui,j + Ui− 1,j

(ΔX)2

)]

− Nv
[

2Ui,jVi,j

(
Ui+1,j+1 − Ui+1,j− 1 − Ui− 1,j+1 + Ui− 1,j− 1

4ΔXΔY

)]

− Nv

[

V2
i,j

(
Ui,j+1 − 2Ui,j + Ui,j− 1

(ΔY)2

)]

− M2 sin2(πX(i))Ui,j + θi,j +

(
Gm
Gr

)

φi,j

−

(

1+
1
β

)

KpUi,j

}

(18)  

Fig. 3. Finite difference grid spacing [58–60].  
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θ′
i,j − θi,j

Δτ = − Ui,j

(
θi,j − θi− 1,j

ΔX

)

− Vi,j

(
θi,j+1 − θi,j

ΔY

)

+

(

1+
1
β

)

Ec
(

Ui,j+1 − Ui,j

ΔY

)2

+
1

Pr

[
1+Ra

{
1 + (θw − 1)θi,j

}3
]
(

θi,j+1 − 2θi,j + θi,j− 1

(ΔY)2

)

+EcM2U2
i,j sin2(πX(i))

+Nb
(

θi,j+1 − θi,j

ΔY

)(φi,j+1 − φi,j

ΔY

)
+Nt

(
θi,j+1 − θi,j

ΔY

)2

+
Ra
Pr
{

1 + (θw − 1)θi,j
}3
(

θi,j+1 − θi,j

ΔY

)2
}

(19)  

φ′
i,j − φi,j

Δτ =
1
Le

(
φi,j+1 − 2φi,j + φi,j− 1

(ΔY)2

)

− Ui,j

(φi,j − φi− 1,j

ΔX

)
− Vi,j

(φi,j+1 − φi,j

ΔY

)

+

(
Nt

LeNb

)(
θi,j+1 − 2θi,j + θi,j− 1

(ΔY)2

)

− Kc φi,j
(
1 + δθi,j

)ne

(
− AE

1 + δθi,j

)
} (20)  

With
Up

i,o = 1,Tp
i,o = 1,Cp

i,o = 1
Up

i,o = 0,Tp
i,L = 0,Tp

i,L = 0 where, L→∞

}

(21) 

Here, the grid points with the X and Y coordinates are represented by the subscripts i and j, respectively, and time τ = nΔτ, n = 1, 2, 
3, 4 ….. …. 

4. Analysis of stability and convergence 

The stability and convergence test for this technique is crucial to demonstrate for choosing the appropriate values of the associated 
parameters because an explicit finite difference procedure will be used to complete this model. For equation (17), stability analysis is 
not required due to the absence of Δτ. First of all, at time τ = 0 we have to consider eiαX eiβY (where, i =

̅̅̅̅̅̅̅
− 1

√
) as the common term of 

Fourier expansion. For the dimensionless variables U, θ and φ. However, for any subsequent time, the Fourier expansion formulas for 
U, θ and φ can be expressed as an equation (22). Additionally, for following the time step Δτ, the terms of the Fourier expansion for U, θ 
and φ and can be recognized in the form of an equation (23). 

U : S1 eiαXeiβY

θ : S2 eiαXeiβY

φ : S3 eiαXeiβY

⎫
⎬

⎭
(22) 

and 

U′ : S′
1 eiαXeiβY

θ′ : S′
2 eiαXeiβY

φ′ : S′
3 eiαXeiβY

⎫
⎪⎪⎬

⎪⎪⎭

(
After a time

step
) (23)  

Now, substitute the values of (22) and (23) into equations (18)–(20), and consider U, V as constants. Then the outcome will be as 
like: 

S1
′ = S1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −
Δτ
ΔX
(
1 − e− iαΔX)U −

Δτ
ΔY
(
eiβΔY − 1

)
V +

(

1 +
1
β

)
2Δτ
(ΔY)2 (cos βΔY − 1) −

2ΔτNv
(ΔX)2 (1 − cos αΔX)U2

−
2ΔτNv
(ΔY)2 (cos βΔY − 1)V2 −

2ΔτNv
4ΔXΔY

UV
{

eiα(X+ΔX)eiβ(Y+ΔY) − eiα(X+ΔX)eiβ(Y − ΔY)}

+
2ΔτNv
4ΔXΔY

UV
{

eiα(X− ΔX)eiβ(Y+ΔY) − eiα(X− ΔX)eiβ(Y − ΔY)}+ ΔτM2 sin2(πX) −
(

1 +
1
β

)

ΔτKp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ΔτS2

+

(
Gm
Gr

)

ΔτS3 (24)  
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S′
2 = S2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −
Δτ
ΔX

U
(
1 − e− iαΔX) −

Δτ
ΔY

V
(
eiβΔY − 1

)
+

Δτ
(ΔY)2 Nb

(
eiβΔY − 1

)2φ

+
1

Pr
2Δτ
(ΔY)2

{
1 + Ra(1 + (θw − 1)θ)3}

(cos βΔY − 1) +
Δτ

(ΔY)2 Nt
(
eiβΔY − 1

)2θ

+
Ra
Pr

(1 + (θw − 1)θ)3 Δτ
(ΔY)2

(
eiβΔY − 1

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ S1

[(

1+
1
β

)
ΔτEc
(ΔY)2 U

(
eiβΔY − 1

)2
+ΔτEcM2 sin2(πX)U

]

(25)  

S′
3 = S3

[

1 −
Δτ
ΔX

U
(
1 − e− iαΔX) −

Δτ
ΔY

V
(
eiβΔY − 1

)
+

1
Le

2Δτ
(ΔY)2 (cos βΔY − 1) − ΔτKc(1 + δθ)ne

(

− AE
1+δθ

)
]

+ S2

[(
Nt

Nb Le

)
2Δτ
(ΔY)2 (cos βΔY − 1)

]

(26)  

Subsequently, equations (24)–(26) can be represented as: 

S′
1 = ξ1 S1 + ξ2 S2 + ξ3 S3

S′
2 = ξ4 S1 + ξ5 S2

S′
3 = ξ6 S2 + ξ7 S3

⎫
⎪⎪⎬

⎪⎪⎭

(27)  

where, 

ξ1 = 1 −
ΔτU
ΔX

(
1 − e− iαΔX) −

ΔτV
ΔY

(
eiβΔY − 1

)
+

(

1+
1
β

)
2Δτ
(ΔY)2 (cos βΔY − 1) −

2ΔτNvU2

(ΔX)2 (1 − cos αΔX)

−
2ΔτNvUV
4ΔXΔY

{
eiα(X+ΔX)eiβ(Y+ΔY) − eiα(X+ΔX)eiβ(Y − ΔY)}+

2ΔτNvUV
4ΔXΔY

{
eiα(X− ΔX)eiβ(Y+ΔY) − eiα(X− ΔX)eiβ(Y − ΔY)} −

2ΔτNvV2

(ΔY)2 (cos βΔY − 1)

− ΔτM2 sin2(πX) −
(

1+
1
β

)

ΔτKp  

ξ2 =Δτ; ξ3 =

(
Gm
Gr

)

Δτ  

ξ4 =

(

1+
1
β

)
ΔτUEc
(ΔY)2

(
eiβΔY − 1

)2
+ ΔτEcUM2 sin2(πX)

ξ5 = 1 −
Δτ
ΔX

U
(
1 − e− iαΔX)

−
Δτ
ΔY

V
(
eiβΔY − 1

)
+

ΔτNb
(ΔY)2

(
eiβΔY − 1

)iβΔY φ+
1

Pr
2Δτ
(ΔY)2

{
1+Ra(1 + (θw − 1)θ)3}

(cos βΔY − 1)+
ΔτNt
(ΔY)2

(
eiβΔY − 1

)2θ

+
Ra
Pr

(1 + (θw − 1)θ)3 Δτ
(ΔY)2

(
eiβΔY − 1

)2  

ξ6 =

(
Nt

NbLe

)
2Δτ
(ΔY)2 (cos βΔY − 1)

ξ7 = 1 −
Δτ
ΔX

U
(
1 − e− iαΔX) −

Δτ
ΔY

V
(
eiβΔY − 1

)
+

1
Le

2Δτ
(ΔY)2 (cos βΔY − 1) − ΔτKc(1 + δθ)ne

(

− AE
1+δθ

)

Moreover, equation (27) can be reorganized in a matrix form as like in equation (28): 
⎡

⎢
⎢
⎣

S′
1

S′
2

S′
3

⎤

⎥
⎥
⎦=

⎡

⎣
ξ1 ξ2 ξ3
ξ4 ξ5 0
0 ξ6 ξ7

⎤

⎦

⎡

⎣
S1
S2
S3

⎤

⎦ (28)  

Again this system can be rewritten as: 
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η′=M′η,where η′ =

⎡

⎢
⎢
⎣

S′
1

S′
2

S′
3

⎤

⎥
⎥
⎦,M

′ =

⎡

⎣
ξ1 ξ2 ξ3
ξ4 ξ5 0
0 ξ6 ξ7

⎤

⎦, and η=

⎡

⎣
S1
S2
S3

⎤

⎦.

To determine the eigenvalues of the aforementioned M′ matrix, the time step is considered as Δτ→0. Thus ξ2→0, ξ3→ 0, ξ4→ 0 and 
ξ6→0. As a result, M′ becomes in form: 

M′ =

⎡

⎣
ξ1 0 0
0 ξ5 0
0 0 ξ7

⎤

⎦ (29)  

So, from equation (29) the eigenvalues of M′ are λ1 = ξ1,λ2 = ξ5 and λ3 = ξ7, where these eigenvalues don’t exceed unity in modulus, 
that is, 

|λ1| ≤ 1, |λ2| ≤ 1, and |λ3| ≤ 1 (30)  

Furthermore, the supreme modulus of ξ1, ξ5 and ξ7 holds true when αΔX = m′π and βΔX = n′π, where m′ and n′ refers to odd integers. 
We have to remember that the value of non-dimensional U is positive and the value of non-dimensional V is negative. Also consider 
[58–60], 

A′ =Δτ,B′ = U
Δτ
ΔX

,C′ = |− V|
Δτ
ΔY

,D′ =
2Δτ
(ΔY)2,E

′ =
2Δτ
(ΔX)

and F′ =
2Δτ

Δτ ΔY
(31)  

So, by implementing these above conditions (equations (30) and (31)), we can express: 

ξ1 = 1 − 2
[

B′+C′ +

(

1+
1
β

)(

D′ +
A′

2
Kp
)

− Nv
(
D′V2 − E′U2) −

Nvf ′

8
UV +

A′

2
M2 sin2(πX)

]

ξ5 = 1 − 2
[

B′+C′ − D′Nt θ − D′Nb φ+
1

Pr
D′{1+ 2Ra(1 + (θw − 1)θ)3}

]

ξ7 = 1 − 2
[

B′+C′ +
1
Le

D′ +
A′

2
Kc(1 + δθ)ne

(

− AE
1+δθ

)
]

The maximum negative bounded values of ξ1, ξ5 and ξ7 are − 1. As a result, the stability postulates can be depicted by equations 
32–34. 

U
Δτ
ΔX

+ |− V|
Δτ
ΔY

+

(

1+
1
β

)
2Δτ
(ΔY)2 − Nv

(
2ΔτV2

(ΔY)2 −
2ΔτU2

(ΔX)2 +
ΔτUV

4ΔXΔY

)

+
Δτ
2

M2 sin2(πX)+
(

1+
1
β

)
Δτ
2

Kp ≤ 1 (32)  

U
Δτ
ΔX

+ |− V|
Δτ
ΔY

+
1

Pr
2Δτ
(ΔY)2

[
1+ 2Ra{1 + (θw − 1)θ}3

]
− Nb

2Δτ
(ΔY)2 φ − Nt

2Δτ
(ΔY)2 θ ≤ 1 (33)  

Fig. 4. Comparative bar diagrams for code validation of Nusselt number.  
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U
Δτ
ΔX

+ |− V|
Δτ
ΔY

+
1
Lc

2Δτ
(ΔY)2 +

Δτ
2

Kc(1 + δθ)ne

(

− AE
1+δθ

)

≤ 1 (34)  

And here, U = 0,V = 0, θ = 0,φ = 0 at τ = 0 are the key boundary conditions. For Δτ = 0.0005, ΔX = 0.2, and ΔY = 0.2, the 
convergence conditions for this particular study would be founded as Pr ≥ 0.075, and Le ≥ 0.041. 

5. Code validation 

In order to validate the assessment and meticulously scrutinize the precision of the present findings, a meticulous comparative 
numerical analysis has been conducted in juxtaposition with the seminal works of Arifuzzaman et al. [24] and Reza-E-Rabbi et al. [58]. 
Additionally, a numerical contrast of the heat transfer factor field has been artfully represented through a bar chart (Fig. 4). When Ra 
= 3, the error percentages are 0.12 % and 0.41 % in comparison to Refs. [24,58]. This depiction unequivocally signifies the strong 
congruence between the most recent results and their antecedents. Furthermore, it merits mention that we have undertaken the 
experimental confirmation of the applied EFD procedure in the very recent past. 

6. Results and discussion 

To explore the physical phenomena of this problem, a numerical solution is obtained by using a straightforward explicit finite 
difference procedure. The numerical values of non-dimensional velocity, temperature, and concentration within the boundary layer 
for altered values of non-dimensional parameters have been calculated by using EFDM. We have discussed our numerical solutions 
graphically. In Figs. 5–24, the effects of the associated physical parameters on the dimensionless velocity, temperature, and con-
centration are explained. In general, the selected values of these parameters are as follows: Nv = 0.2, β = 0.5, M = 4.0, Gm = 1.0, Gr =
5.0, Kp = 1.0, Pr = 1.0, Ra = 2.0, Ec = 0.01, Nb = 0.3, Nt = 0.5, Kc = 0.2, Le = 5.0, AE = 2.0, δ = 1.0, θw = 1 and 0.6. 

6.1. Significance of velocity field 

In the following Figs. 5–6, the consequences of magnetic field (M) is shown on the velocity distribution (U) for both Casson and 
Maxwell fluid for both linear (θw = 1) and nonlinear (θw = 0.6) thermal radiation. It is discovered that higher values of magnetic field 
caused the velocity profiles to steadily decrease. Fig. 5 indicates the dissimilarity of the velocity field against the greater value of M for 
linear thermal radiation, where the velocity profile reduces. With the intensification of magnetic field, Lorentz forces produces in the 
fluid domain. These Lorentz forces produce more resistance for this fluid flow. As a result, velocity decays consequently for both Casson 
and Maxwell fluid. Moreover, it is clear form this figure that the effect of Casson fluid is stronger than Maxwell fluid for the case of 
linear thermal radiation. On the other hand, Fig. 6 represents that the velocity field for nonlinear thermal radiation of this fluid model 
which is little bit different than linear thermal radiation case. In this case the effect of Maxwell fluid on velocity profile is more than 
Casson fluid for nonlinear radiation. 

Fig. 5. Influence of M on U for linear radiation.  
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6.2. Significance of thermal energy 

Figs. 7–12 display the temperature distribution of Casson and Maxwell fluids for dissimilar values of thermophoresis factor (Nt), 
Brownian motion parameter (Nb), and thermal radiation parameter (Ra) for both cases of linear and nonlinear thermal radiation. It is 
clear that due to the upsurge of Nt, Nb and Ra, the temperature profile gradually shows enhancement for both Casson and Maxwell 
fluids. 

Mathematically in Figs. 7 and 8, due to the escalation of Nt, the thermophoretic force also upsurge. As a result, this force causes 
nanoparticles to migrate in the opposite direction as the temperature differential. For this incidence, the temperature of the entire 
domain is raised for Casson and Maxwell fluids. But it is clear from Fig. 7, for linear thermal radiation the effect of Casson fluid is 
stronger than Maxwell fluid in this fluid model. Moreover, a similar impact is also seen for the increased value of the thermophoretic 
force (Nt) for nonlinear thermal radiation case on temperature field in Fig. 8. In that time, the change of fluid temperature is faster for 
nonlinear thermal radiation than linear thermal radiation case for both Casson and Maxwell fluids. Finally, from Figs. 7 and 8, for both 
cases of Casson and Maxwell fluids, it is clear that nonlinear thermal radiation has a better impact than linear thermal radiation on this 
fluid’s temperature profile. 

In addition to, a similar impact is also seen for Casson and Maxwell fluids in Figs. 9 and 10 for the increased value of Nb. For 
increasing value of Brownian motion, nanoparticles motion is becoming stimulated. As a result, Nb supports an upsurge in temperature 
distribution. In Fig. 9, the effect of Casson and Maxwell fluid on temperature field is shown for linear thermal radiation case. In that 

Fig. 6. Influence of M on U for nonlinear radiation.  

Fig. 7. Influence of Nt on θ for linear radiation.  
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case, the temperature changing (increase) behavior for both fluid as like similar. On the other hand, in Fig. 10, the effect of Casson and 
Maxwell fluid on temperature field is shown for nonlinear thermal radiation case. In that time, the temperature changing behavior is 
faster for both of these fluids. Also, for Casson fluid, this behavior become stronger than Maxwell fluid. Finally, from Figs. 9 and 10, for 
both cases of Casson and Maxwell fluids, it is clear that nonlinear thermal radiation has a better impact than linear thermal radiation on 
this fluid’s temperature profile. 

Additionally, a comparable influence is observed in Figs. 11 and 12 for elevated Ra values in the context of Casson and Maxwell 
fluids. The escalation in temperature due to the augmentation of thermal radiation intensity stems from the Stefan-Boltzmann law, 
elucidating the connection between an object’s temperature and the magnitude of radiation it emits. As an object emits more radiation 
due to heightened temperature, it expends energy at an accelerated rate, leading to an energy incongruity that is commonly rectified by 
absorbing additional energy from its surroundings, consequently amplifying its temperature. In Fig. 11, the impact of Casson and 
Maxwell fluids on the temperature field is demonstrated in the scenario of linear thermal radiation. 

In this scenario, the alteration in temperature behavior for both fluids appear analogous. In contrast, in Fig. 12, the temperature 
field’s response to Casson and Maxwell fluids is exhibited under conditions of nonlinear thermal radiation. On this occasion, the 
alteration in temperature behavior is swifter for both fluids. Moreover, for the Casson fluid, this effect becomes more pronounced than 
for the Maxwell fluid. Ultimately, discernible from Figs. 11 and 12, it becomes evident that nonlinear thermal radiation exerts a more 
favorable influence than linear thermal radiation on the temperature distribution of these fluids. 

Fig. 8. Influence of Nt on θ for nonlinear radiation.  

Fig. 9. Influence of Nb on θ for linear radiation.  
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6.3. Significance of concentration field 

In addition to, Figs. 13–16 displays the concentration distribution with (AE = 1) and without Arrhenius activation energy (AE = 0) 
for different values of chemical reaction parameter (Kc). From Figs. 13 and 14, we observed that the concentration profile decreases for 
both cases, i.e. with activation energy (AE = 1) and without activation energy (AE = 0) for rising values of chemical reaction parameter 
(Kc). Clearly, it is noticed that with the increase of the value of Kc, the concentration profile diminished with the higher values of Kc, 
and when activation energy is included (AE = 1), the chemical reaction parameter has a more significant. 

Furthermore, a similar impact is noted in Figs. 15 and 16 for increased AE values in the context of Casson and Maxwell fluids. 
Higher activation energy typically results in slower reaction rates, leading the rate of reactant consumption to be outpaced by pro-
duction or inflow due to the stretched sheet’s border constraints. This leads to reactant accumulation and consequent concentration 
augmentation. 

In Fig. 15, the influence of Casson and Maxwell fluids on concentration fields is portrayed in the scenario of non-linear thermal 
radiation. On this occasion, the change in concentration behavior is more rapid for both fluids. In contrast, Fig. 16 illustrates the 
concentration field response of Casson and Maxwell fluids under conditions of linear thermal radiation. Here, the change in con-
centration behavior for both fluids appear analogous. Moreover, this effect is notably more pronounced for the Casson fluid compared 
to the Maxwell fluid. Ultimately, discerned from Figs. 15 and 16, it becomes evident that non-linear thermal radiation yields a more 
favorable impact on the concentration distribution of these fluids compared to linear thermal radiation. 

Fig. 10. Influence of Nb on θ for nonlinear radiation.  

Fig. 11. Influence of Ra on θ for linear radiation.  
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6.4. Significance of stream lines 

Here, Figs. 17–20 delineate the streamlines of Casson fluids and Maxell fluids, delineating a spectrum of activation energy (AE) 
values within the frameworks of linear and nonlinear thermal radiation. It becomes patently clear that with the ascending AE values, 
there emerges a gradual amplification discernible in the streamlines of both fluids flow, i.e. Casson fluid and Maxwell fluid, as 
eloquently showcased in the graphical illustration presented for Casson fluids within Fig. 18, while a more sophisticated visualization 
is thoughtfully presented in Fig. 17. On the other hand, for Maxwell fluids the line view is drawn in Fig. 20 and flood view in Fig. 19. 

6.5. Significance of isothermal lines 

The isothermal lines of Casson fluids are shown in Figs. 21–24, together with a range of values for thermal radiation (Ra) within the 
contexts of linear and nonlinear thermal radiation. 

As eloquently demonstrated in the graphical representation provided in Fig. 22, a more complex visualization is thoughtfully 
presented in Fig. 21 for Casson fluids, while the flood view of the isothermal lines and line view have been portrayed in Figs. 23 and 24, 
respectively. It is evidently obvious that with the ascending Ra values, there grows an upward enhancement identifiable in the 
isothermal lines for both fluids (Casson fluids and Maxwell fluids). 

Fig. 12. Influence of Ra on θ for nonlinear radiation.  

Fig. 13. Influence of Kc on φ for with activation energy.  
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6.6. Response surface methodology 

To study how the input factors (Nt, Nb, and Ra) act on the Nusselt number (Nu) for this Casson-Maxwell nanofluid model, the 
response surface methodology (RSM) is applied. According to Montgomery [61], RSM is a valuable technique that can be used to model 
multivariate situations. The second-order RSM model that accounts for all linear, square, and interaction components is often 
appropriate to estimate the response, despite the circumstance that there are alternative RSM models existing. The quadratic poly-
nomial model is provided by the following: 

y= c0 +
∑3

i=1
cixi +

∑3

i=1
ciix2

i +
∑3

i=1
cijxixj (35)  

where y is the response function (output), c0 is the intercept, ci is the linear regression coefficient of ith factor, cii is the coefficient of 
quadratic regression of ith factor, cij is the interaction of ith and jth factors. Here, the significant parameters Nt, Nb and Ra are taken as 
input factors whereas Nuca (Nusselt number for Casson fluid) and Numax (Nusselt number for Maxwell fluid) are considered as response 
faction (y). By maximizing the value of variable y, the objective is to create an appropriate correlation between the independent factors 
and the response function. A central composite design (CCD), first proposed by Box and Wilson [62] in 1992, and was utilized to 
convey the second-order model. Currently, it is the utmost widely used subset of designs. Furthermore, in this design, the input 

Fig. 14. Influence of Kc on φ for without activation energy.  

Fig. 15. Effect of activation energy (AE) on concentration profile for nonlinear thermal radiation.  
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variables’ range Nb, Nt and Ra are 0.1 ≤ Nb ≤ 0.7, 0.1 ≤ Nt ≤ 0.7 and 1 ≤ Ra ≤ 3. Here, in total 20 runs (points) are taken according 
to three factors CCD, and these are sub classified as 6 axials, 6 center and 8 cube points. Table 1 provides a description of the codded 
levels of the input factors. And Table 2 also shows the simulation run setups for coded and real data created by CCD. 

Table 3 and Table 4 display the statistical results of average Nusselt number for Maxwell fluid (Numax) and Casson fluid (Nuca) by 
means of RSM. In these Tables, this model’s greatest quantity of independent elements is represented by the degrees of freedom (DOF). 
A method for representing the total dissimilarity resulting from numerous factors is the sum of squares (SS) which is quite substantial. 
The indication of F-value denotes this model of Numax and Nuca are statistically substantial. Additionally, the p-value, which indicates 
the probability occurring null hypothesis hold true for a certain model, is a highly significant indicator of this statistical study. To put it 
another way, a very little p-value (usually 0.05) point to the model is suitable. Additionally, strong values of the R2, 99.9 % for Numax 
and 88.98 % for Nuca, are suggested that the statistical analysis is quite significant for this model. Lack-of-Fit is another crucial in-
dicator as well, and it must be very little for a model to be effective. For both cases, the Lack-of-Fit is insignificant. 

The general best fitted regression model that RSM created is shown in equation (35). It was created to examine the connection 
between the response function y (Numax and Nuca) with the involved input parameters Nb, Nt and Ra: 

y (Numax,Nuca)= c0 + c1Nb+ c2 Nt+ c3 Ra+ c11Nb2 + c22 Nt2 + c33 Ra2 + c12Nb.Nt+ c13Nb.Ra + c23 Nt.Ra (36) 

where c0, c1, c2, c3, c11, c22, c33, c12, c13 and c23 are coefficients to make an appropriate (best-fitted) regression model. Additionally, 

Fig. 16. Effect of activation energy (AE) on concentration profile for linear thermal radiation.  

Fig. 17. Stream lines of Casson fluids against activation energy AE.  
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the projected coefficients of equation (35) for Numax are included in Table 5, which are generated as coded units. Similarly, the 
projected coefficients for the best fitted regression model of Nuca are included in Table 6. Because of their importance, only the sig-
nificant model terms with low p-values (less than 5 %) have been used to construct a suitable regression equation. On the other hand, 
useless terms (bold indicated) have been disregarded. 

That is, the term Nb2 is totally insignificant for the regression equation (35) of Numax. Similarly, the terms Nt2,Nb . Nt and Nt. Ra 
must be omitted to create a best fitted regression model for Nuca. So, the relation between the response functions (Numax, Nuca) and the 
input variables (Nb, Nt, and Ra) may therefore be summarized mathematically using the following correlations respectively: 

Numax = 1.726 − 0.0545 Nb − 0.0907Nt + 0.3396 Ra − 0.0042Nt2 + 0.0394 Ra2 − 0.0045 Nb.Nt + 0.0039Nb.Ra + 0.0082 Nt.Ra (37)  

Nuca = 1.678 − 0.0718 Nb − 0.3984Nt + 0.2432 Ra − 0.4056Nt2 + 0.0733 Ra2 − 0.3365Nb .Ra (38)  

6.7. Response surface analysis 

To visualize the influence of effective parameters on Numax, the 2D and 3D contour plots obtained by using RSM of response surface 
are described in Figs. 25–27. The impact of Nb and Nt on the response function is seen in Fig. 25(a). This 2D contour map makes it 
evident that as Nb and Nt are increased, the Nusselt number for Maxwell fluid (Numax) decreases while Ra remains constant. For 

Fig. 18. Line view of Fig. 17.  

Fig. 19. Stream lines of Maxwell fluids against activation energy AE.  
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example, the value of Nb and Nt are raised to 0.4 from 0.1, the rate of Nusselt number for Maxwell fluid is decreased by 18.57 %. Also, 
for Nb = Nt = 0, the Numax shows the highest value. 

Additionally, Fig. 25(b) depicts a 3D surface view for observing the impacts of Nb and Nt on Numax. Fig. 26 once more displays the 
Numax oscillations with Nb and Ra. In Figs. 26(a) and (b), when Ra is increased but Nb is decreased, the Numax intensifications by 
holding another factor (Nt) as constant. Furthermore, Fig. 27 expresses yet another 2D and 3D graphical representations to represent 
impact of response function Numax for Maxwell fluid. Also, the rate of Numax is improved due to the boosted of Ra but diminish the Nt. 
On the other hand, using RSM the impression of effective factors on Nuca is described by 2D and 3D contour plots that are given in 
Figs. 28–30. The control of Nb and Nt on the response Nuca is seen in Fig. 28 (a) by a 2D contour plot. This 2D contour map makes it 
evident that when the value of Nb and Nt are enlarged, the Nuca decreases. It is noticeable that the impact of nonlinear thermal ra-
diation (Ra) is clearly visualize on response surface by the contour lines. Rather than the Maxell fluid, this impact of nonlinearity about 
Ra is greater for Casson fluid. Again, Fig. 28(b) depicts a 3D surface view to visualize this impact clearly. In similar manner, Fig. 29(a) 
and (b) depict the consequence of Nb and Ra on the response function Nuca in 2D and 3D perspective. Also, the influence of the Nt and 
Ra on the rate of Nusselt number for Casson fluid (Nuca) is described in Figs. 309a) and 30(b). In both Figs. 29 and 30, it is clearly 
noticeable that the Ra has a greater impact on the average heat transfer rate of Casson fluid. 

Fig. 20. Line view of Fig. 19.  

Fig. 21. Isothermal lines of Casson fluids against radiation Ra.  
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6.8. Sensitivity analysis 

Sensitivity analysis, a method for measuring the amount of significant levels on output, is a key component of numerical simulation. 
Performing a "sensitivity analysis" to regulate how the RSM model’s parameter values affect the resultant variables is another defi-
nition of the term [63]. The most effective parameter can be found by ranking the input factors according to their influence. Math-
ematically, the partial derivatives of the response functions are used to determine the output variables’ sensitivity to effective input 
factors (Nb, Nt, and Ra). This leads to the computation of the response function Numax which is equation (36) to the input parameters as 
follows: 

∂Numax

∂Nb
= − 0.0545 − 0.0045Nt + 0.0039Ra (39)  

∂Numax

∂Nt
= − 0.0907 − 0.0084Nt − 0.0045Nb + 0.0082Ra (40)  

∂Numax

∂Ra
= 0.3396 + 0.0788Ra + 0.0039Nb + 0.0082Nt (41) 

Fig. 22. Lines view of Fig. 21.  

Fig. 23. Isothermal lines of Maxwell fluids against radiation Ra.  
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Now, the response function’s (Numax) sensitivity results, in Table 7, to the input variables Nb, Nt, and Ra may be calculated using 
equations (38)–(40). With Nb at levels of − 1, 0 and 1 (0.1, 0.4, 0.7), Nt at levels of − 1 (0.1), and Ra at levels 0 and 1 (2 and 3), these 
values were derived using the model. Here, a negative sensitivity indicates completely the opposite effect, where the increasing value 
of input factors leads to decrease the output. That is, the Nb and Nt have negative impact on the heat transfer rate for Maxwell fluid. A 
positive sensitivity, on the other hand, denotes that increasing the input factors causes develop the response. Therefore, the radiation 
parameter (Ra) has a favorable effect on the Numax. 

Fig. 24. Line view of Fig. 23.  

Table 1 
Input factors and codded levels for CCD.  

Variables Name Level 

− 1 (lowest) 0 (medium) 1 (highest) 

Nb 0.1 0.4 0.7 
Nt 0.1 0.4 0.7 
Ra 1 2 3  

Table 2 
Values of factors and response.  

Run Order Codded values Actual Values Response function 

Nb Nt Ra Nb Nt Ra Numax Nuca 

1 0 0 0 0.4 0.4 2 1.15505 1.23589 
2 − 1 0 0 0.1 0.4 2 1.16986 1.24009 
3 0 − 1 0 0.4 0.1 2 1.17871 1.25571 
4 0 0 0 0.4 0.4 2 1.15505 1.23589 
5 0 1 0 0.4 0.7 2 1.13063 1.21539 
6 0 0 0 0.4 0.4 2 1.15505 1.23589 
7 1 1 − 1 0.7 0.7 1 1.32839 1.40699 
8 0 0 1 0.4 0.4 3 1.01718 1.1116 
9 − 1 − 1 − 1 0.1 0.1 1 1.41293 1.45836 
10 − 1 1 1 0.1 0.7 3 1.00945 1.51096 
11 − 1 − 1 1 0.1 0.1 3 1.05146 1.52984 
12 0 0 0 0.4 0.4 2 1.15505 1.23589 
13 1 − 1 1 0.7 0.1 3 1.02482 1.12592 
14 0 0 − 1 0.4 0.4 1 1.37173 1.43319 
15 − 1 1 − 1 0.1 0.7 1 1.36136 1.41631 
16 0 0 0 0.4 0.4 2 1.15505 1.23589 
17 1 − 1 − 1 0.7 0.1 1 1.38189 1.44954 
18 1 0 0 0.7 0.4 2 1.14003 1.23167 
19 0 0 0 0.4 0.4 2 1.15505 1.23589 
20 1 1 1 0.7 0.7 3 0.98146 1.08901  
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Thus, the Numax is negatively sensitive by the Nb and Nt that is described in Table 7. Therefore, the rate of heat transmission for this 
Maxwell fluid must decrease as Nb and Nt increase. Conversely, the Ra has a positive sensitivity on Numax. So, with the improvement of 
Ra, the response function changed positively. Additionally, the vertical bar in Fig. 31 symbolizes positive sensitivity, while the 
downward bar reflects negative sensitivity about Numax. The entire length of the bar diagram indicates the sensitivity level. From this it 
is concluded that the rate of sensitivity of Ra on this Maxwell fluid is the highest rather than others two parameter (Nb and Nt). 

In similar manner, by taking partial derivatives of the response function Nuca with respect to input parameters (Nb, Nt, and Ra) from 
equation (37) we get as follows: 

∂Nuca

∂Nb
= − 0.0718 − 0.0035Ra (42)  

∂Nuca

∂Nt
= − 0.3984 + 0.8112Nt (43) 

Table 3 
Analysis of variance for Numax.  

Source DOF SS F-Value p-Value Comment 

Model 9 0.3296 2.3 × 106 <0.0001 Significant 
Nb 1 0.0022 1.3 × 105 <0.0001  
Nt 1 0.0057 3.5 × 105 <0.0001  
Ra 1 0.3140 1.9 × 107 <0.0001  
Nb. Nb 1 3.03 × 10− 8 1.91 0.1971  
Nt. Nt 1 3.97 × 10− 7 25.01 0.0005  
Ra. Ra 1 0.0043 2.6 × 106 <0.0001  
Nb. Nt 1 1.34 × 10− 6 84.7 <0.0001  
Nb. Ra 1 0.0001 692.66 <0.0001  
Nt. Ra 1 0.0001 3033.25 <0.0001  
Lack-of-Fit 5 1.5 × 10− 7 - - Insignificant 
Pure Error 5 0.000 - -  

**Here, R2
¼ 99.99 %, Adjusted R2 

¼ 99.9 %. 

Table 4 
Analysis of variance for Nuca.  

Source DOF SS F-Value p-Value Comment 

Model 9 0.3019 8.97 0.0010 Significant 
Nb 1 0.0727 19.44 0.0013  
Nt 1 0.0033 17.35 0.0372  
Ra 1 0.0635 16.99 0.0021  
Nb. Nb 1 0.0037 0.9981 0.3413  
Nt. Nt 1 0.0816 0.9802 0.0345  
Ra. Ra 1 0.0037 3.96 0.0347  
Nb. Nt 1 0.0001 0.0115 0.9168  
Nb. Ra 1 0.0816 21.82 0.0009  
Nt. Ra 1 0.0001 0.0278 0.8710  
Lack-of-Fit 5 0.0374 - - Insignificant 
Pure Error 5 0.000 - -  

**Here, R2 ¼ 88.98 %, Adjusted R2 ¼ 79.06 %. 

Table 5 
Regression coefficients for Numax that are predicted based on RSM.  

Coefficients c0 c1 c2 c3 c11 c22 c33 c12 c13 c23 

Values 1.726 − 0.0545 − 0.0907 − 0.138 − 0.0011 − 0.0042 0.0394 − 0.0045 0.0039 0.0082 
p-values – <0.0001 <0.0001 <0.0001 0.1971 0.0005 <0.0001 <0.0001 <0.0001 <0.0001  

Table 6 
Regression coefficients for Nuca that are predicted based on RSM.  

Coefficients c0 c1 c2 c3 c11 c22 c33 c12 c13 c23 

Values 1.678 0.0718 − 0.3984 − 0.2432 0.4092 0.4056 0.0733 − 0.0257 − 0.3365 0.0120 
p-values – 0.0013 0.0372 0.0021 0.3413 0.0345 0.0347 0.9168 0.0009 0.8710  
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∂Nuca

∂Ra
= 0.2432 + 0.1466Ra − 0.3365Nb (44) 

Again, the sensitivity results of Nuca for Nb, Nt, and Ra may be calculated using equations (41)–(43). With Nb at levels of − 1, 0 and 1 
(0.1, 0.4, 0.7), Nt at levels of − 1 (0.1), and Ra at levels 0 and 1 (2 and 3), these values are derived using the model. The Nb and Nt have 
negative impact on the heat transfer rate for the Casson fluid. Here, Nuca is negatively sensitive by the Nb and Nt that is described in 
Table 8. Conversely, also the Ra has a positive sensitivity on Nuca. So, with the improvement of Ra, the response function changed 
positively. Similarly, the vertical bar in Fig. 32 symbolizes positive sensitivity, while the downward bar reflects negative sensitivity 
about Nuca. From this table and figure, it is concluded that the rate of sensitivity of Ra on this Casson fluid is the highest rather than 
others two parameter (Nb and Nt). 

7. Conclusions 

In this portion, an exploration ensues into the dynamic characteristics of periodic magneto-hydrodynamic Casson and Maxwell 
fluids, specifically addressing the interplay of heat and mass transfer mechanisms amid the influences of nonlinear radiation and 
Arrhenius activation energy. The examination is directed towards the scenario of a stretching sheet. Employing an explicit finite 
difference methodology, a numerical solution is constructed to encapsulate the intricate behavior. The response surface approach, 

Fig. 25. Effect of Numax for Nb and Nt: (a) 2D and (b) 3D eyesight.  

Fig. 26. Effect of Numax for Nb and Ra: (a) 2D and (b) 3D eyesight.  
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response surface analysis, and sensitivity analysis are only a few of the methods used for in-depth investigation. These investigations 
explore the complex interactions between numerous physical factors and their impact on flow fields. The ensuing can be employed to 
encapsulate the principal revelations garnered from this inquiry.  

❖ Elevating the magnetic parameter M induces a lessening of fluid velocity across both Casson and Maxwell fluid instances, regardless 
of whether linear or nonlinear radiation is considered.  

❖ Temperature profiles upsurge with growing values of Brownian motion, thermophoresis, and radiation parameters for both Casson 
and Maxwell fluids, in both linear and nonlinear radiation scenarios.  

❖ Concentration profiles diminish as the chemical reaction parameter increases for both Casson and Maxwell fluids, across scenarios 
with and without activation energy. Conversely, concentration profiles heighten as activation energy values rise, encompassing 
both fluids and spanning both linear and nonlinear radiation cases.  

❖ The influence of the magnetic field on the velocity distribution of the Maxwell fluid is more pronounced than its influence on the 
Casson fluid, particularly in scenarios involving nonlinear radiation.  

❖ Within both fluid contexts, nonlinear thermal radiation has a more significant impact on enhancing the temperature profile and 
concentration distribution compared to linear thermal radiation. 

Fig. 27. Effect of Numax for Nb and Ra: (a) 2D and (b) 3D eyesight.  

Fig. 28. Effect of Nuca for Nb and Nt: (a) 2D and (b) 3D eyesight.  
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❖ The presence of activation energy exerts a more pronounced influence on enhancing the fluid’s concentration profile in both Casson 
and Maxwell fluid cases.  

❖ The sensitivity analysis demonstrations that the Ra parameter is positively sensitive on both Numax and Nuca, whereas Nt and Nb has 
negatively sensitive. 

Fig. 29. Effect of Nuca for Nb and Ra: (a) 2D and (b) 3D eyesight.  

Fig. 30. Effect of Nuca for Nb and Ra: (a) 2D and (b) 3D eyesight.  

Table 7 
Sensitivity analysis for Numax.  

Nb Nt Ra ∂Numax

∂Nb  
∂Numax

∂Nt  
∂Numax

∂Ra  

− 1 − 1 0 − 0.05 − 0.0778 0.3275 
− 1 1 − 0.0461 − 0.0696 0.4063 

0 − 1 0 − 0.05 − 0.0823 0.3314 
− 1 1 − 0.0461 − 0.0741 0.4102 

1 − 1 0 − 0.05 − 0.0868 0.3353 
− 1 1 − 0.0461 − 0.0786 0.4141  
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❖ Under the influence of nonlinear thermal radiation, the Casson fluid has influenced greatly than Maxwell fluid for the average heat 
transfer rate. 

In the upcoming days, this examination could be extended to encompass various non-Newtonian fluids, such as fluids of higher 
grades like 3rd or 4th grade. This expansion would involve considering additional factors like exothermic/endothermic processes, 
microorganisms, exponential heat sources, and more. Additionally, enhanced numerical precision can be achieved by incorporating 
advanced techniques such as the Runge-Kutta based shooting method and implicit numerical schemes. 

Limitations 

In this study, the precision of the solution obtained through explicit FDM heavily relies on the spatial discretization, or the reso-
lution of the grid. Consequently, striking a suitable equilibrium between accuracy and computational speed can present a formidable 
challenge. Moreover, the solution approach yields findings that are not any more accurate than those of some other methods (such as 
the Runge-Kutta and shooting methods). Furthermore, stability analysis and a convergence test are necessary to ensure the correctness 
of the answers produced by this approach, as it is not by default stable. 

Fig. 31. Sensitivity of Numax at Nb = − 1 and Ra = 0.  

Table 8 
Sensitivity analysis for Nuca.  

Nb Nt Ra ∂Nuca

∂Nb  
∂Nuca

∂Nt  
∂Nuca

∂Ra  

− 1 − 1 0 − 0.0718 − 1.209 0.5797 
− 1 1 − 0.4083 − 1.209 0.7263 

0 − 1 0 − 0.0718 − 1.209 0.2432 
− 1 1 − 0.4083 − 1.209 0.3898 

1 − 1 0 − 0.0718 − 1.209 0.0933 
− 1 1 − 0.4083 − 1.209 0.0533  

Fig. 32. Sensitivity of Nuca at Nb = − 1, and Ra = 1.  
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Nomenclature 

B○ magnetic field [Wb.m− 2] 
C liquid concentration [mol.m− 3] 
Cf skin friction coefficient [− ] 
cp specific heat at constant pressure [J.kg− 1.K− 1] 
Cw fluid concentration at wall [mol.m− 3] 
C∞ fluid concentration outside the periphery [mol.m− 3] 
Ey yield stress [N.m− 2] 
Ec Eckert number [− ] 
EA activation energy factor [− ] 
Gm mass Grashof number [− ] 
Gr Thermal Grashof number [− ] 
Kc chemical reaction factor [− ] 
Le Lewis number [− ] 
Kp Porous term [− ] 
M magnetic parameter [− ] 
Nb Brownian motion factor [− ] 
Nt thermophoresis factor [− ] 
Nu Nusselt number [− ] 
Numax Nusselt number for Maxwell fluid [− ] 
Nuca Nusselt number for Casson fluid [− ] 
Nb Brownian motion factor [− ] 
Nv Maxwell parameter [− ] 
Pr Prandtl number [− ] 
Ra radiation parameter [− ] 
Sh Sherwood number [− ] 
T temperature [K] 
Tw temperature at surface [K] 
T∞ temperature outside the periphery [K]  

Greek symbols 
βT Coefficient of thermal expansion [K− 1] 
βC concentration expansion exponent [K− 1] 
β Casson fluid parameter [− ] 
γ temperature relative factor [− ] 
τ Dimensionless time [− ] 
σs Stefan-Boltzmann constant [W.m− 2.K− 4] 
θw temperature ratio [− ] 
θ dimensionless temperature [− ] 
κ thermal conductivity [W.m− 1.K− 1] 
ε Casson component [− ] 
ρ Density of fluid [kg.m− 3] 
ν kinematic viscosity [m2.s− 1] 
φ dimensionless concentration [− ]  
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Abbreviation 
2D two dimensional 
3D three dimensional 
EFD explicit finite difference 
RSM response surface methodology 
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