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Abstract
Paramyxovirus spread generally involves assembly of individual viral particles which then

infect target cells. We show that infection of human bronchial airway cells with human

metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant

respiratory disease, results in formation of intercellular extensions and extensive networks

of branched cell-associated filaments. Formation of these structures is dependent on actin,

but not microtubule, polymerization. Interestingly, using a co-culture assay we show that

conditions which block regular infection by HMPV particles, including addition of neutraliz-

ing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from

infected to new target cells. In contrast, inhibition of actin polymerization or alterations to

Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore,

viral proteins and viral RNA were detected in intercellular extensions, suggesting direct

transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix

and fusion proteins in membrane deformation have been previously demonstrated, we

show that the HMPV phosphoprotein extensively co-localized with actin and induced forma-

tion of cellular extensions when transiently expressed, supporting a new model in which a

paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal

a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemina-

tion of respiratory viruses.

Author Summary

Human metapneumovirus (HMPV) is an important human respiratory pathogen that
affects all age groups worldwide. There are currently no vaccines or treatments available
for HMPV, and key aspects of its life cycle remain unknown.We examined the late events
of the HMPV infection cycle in human bronchial epithelial cells. Our data demonstrate
that HMPV infection leads to formation of unique structures, including intercellular
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extensions connecting cells, and large networks of branched cell-associated filaments.
Viral modulation of the cellular cytoskeleton and cellular signaling pathways are impor-
tant for formation of these structures. Our results are consistent with the intercellular
extensions playing a role in direct spread of virus from cell-to-cell, potentially by transfer
of virus genetic material without particle formation. We also show that the HMPV phos-
phoprotein localizes with actin and can promote membrane deformations, suggesting a
novel role in viral assembly or spread for paramyxovirus phosphoproteins.

Introduction

Human metapneumovirus (HMPV) is a major cause of acute upper and lower respiratory tract
infections worldwide [1–6]. It was originally identified in 2001 in patients with symptoms simi-
lar to human respiratory syncytial virus (HRSV) infection [7], but studies have shown that
HMPV has been circulating in human populations for more than 50 years [8,9]. Between
5–20% of hospitalizations due to respiratory infections in young children are caused by HMPV
[10,11]. It is also a significant cause of morbidity and mortality in immunocompromised and
elderly populations [12,13], and a recent report indicated that hospitalization rates of older
adults infectedwith HMPV are similar to those of influenza infections [14]. Clinical presenta-
tion of infection can range from cough, fever, rhinitis and wheezing to more severe symptoms
including bronchiolitis, croup, asthma exacerbation, and pneumonia. Currently, there are no
specific antiviral treatments or vaccines for HMPV infections, and the major form of treatment
is supportive therapy [15,16].
HMPV is a member of the family Paramyxoviridae, genus Pneumovirinae, which includes

enveloped viruses with a negative sense, single stranded RNA genome. HMPV particles, similar
to other paramyxoviruses, are highly pleomorphic in shape with both spherical and filamen-
tous morphologies reported [5,7,13]. The HMPV genome is approximately 13,000 nucleotides
in length and encodes for three surface glycoproteins: the fusion protein (F), the attachment
protein (G), and the small hydrophobic protein (SH), all of which are densely packed on the
viral envelope. The genome also encodes a matrix protein (M), and five proteins that are associ-
ated with the RNA genome: nucleocapsid protein (N), phosphoprotein (P), large polymerase
protein (L), and the M2-1 and M2-2 proteins. Studies over the past decade have resulted in a
better understanding of the mechanisms of entry and fusion of HMPV [17–19]. However, the
late stages in the replication cycle during which viral components assemble and exit the cell are
not well understood. The HMPVM protein, similar to other paramyxovirus M proteins, plays
an essential role in production of virus particles, and budding of HMPV has been shown to
occur in an endosomal sorting complex required for transport (ESCRT) independentmanner
[20]. Formation of HMPV virus like particles (VLPs) occurs following co-expression of the F
and M proteins, with the G protein enhancing this process, thus indicating an important role
for these proteins in the HMPV assembly process [18,21]. In addition, morphogenesis of
HMPV occurs at lipid-raft microdomains that are rich in actin, suggesting a role for lipid rafts
and the actin cytoskeleton in virus assembly [22].
A substantial body of evidence indicates that spread of some enveloped viruses, including

hepatitis C virus, rabies virus and several members of the herpesvirus, retrovirus, and poxvirus
families, can occur directly from cell-to-cell without diffusion through the extracellular envi-
ronment [23–33]. The mechanisms by which these viruses subvert cellular processes for cell-
to-cell spread can vary substantially; however, manipulation of the cell cytoskeleton is often
involved [34–38]. For paramyxoviruses, cell-to-cell spread independent of particle release
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occurs for measles virus across neuronal synapses and fusion pores in respiratory epithelial
cells and for HRSV through syncytia formation in cultured cells [39–43]. Recently, it was
reported that influenza A virus and the paramyxovirus parainfluenza virus 5 (PIV5) can also
spread directly between cells in a neutralizing antibody independentmanner [44].
In this study, we sought to characterize the late steps of HMPV infection in human bron-

chial epithelial cells and to identify host factors critical to this stage of the replication cycle.We
demonstrate that HMPV infection results in remodeling of the cell cytoskeleton leading to the
formation of extensive branched networks of cell-associated virus filaments and stimulation of
intercellular extensions where the major viral structural proteins and viral RNA localize. Our
results indicate that actin dynamics are critical for the formation of these structures since treat-
ment of cells with actin depolymerizing or stabilizing drugs or targeted inhibition of the major
regulators of actin dynamics, the Rho GTPases Rac1, Cdc42 and RhoA, decreased the forma-
tion of branched viral filamentous networks and intercellular extensions. Interestingly, tran-
sient expression of the HMPV P protein resulted in formation of membrane extensions similar
to those seen in late stages of HMPV infection, suggesting a novel role for this protein in
HMPV egress. A proximity ligation assay revealed, for the first time, co-localization between a
paramyxovirus P protein and actin. Studies of HMPV spread in a co-culture assay indicated a
novel mode of direct cell-to-cell spread for HMPV which, in contrast to cell-free infection, can
occur in the presence of neutralizing antibodies and does not require the attachment factor
heparan sulfate. Analysis of the involvement of the cell cytoskeleton in direct cell-to-cell spread
in the co-culture assay showed a major role for the actin cytoskeleton, Cdc42, and Rac1 in
HMPV spread, thus supporting the association of intercellular extensions with enhanced inter-
cellular spread, and providing new insights into the pathogenesis of this important human
respiratory pathogen.

Materials and Methods

Cell lines

BEAS-2B cells, obtained from ATCC, were grown in Bronchial Epithelial Cell Growth Medium
(BEGM) containing all the recommended supplements (Lonza). 16HBE cells [45], kindly pro-
vided by Dieter C. Gruenert,University of California, San Francisco, were grown in Minimum
Essential Medium with Earle’s salt (Invitrogen) plus 10% fetal bovine serum (FBS) and 2mM
L-glutamine (Invitrogen). A549 cells (provided by Hsin-Hsiung Tai, University of Kentucky)
were maintained in Roswell Park Memorial Institute medium (RPMI; Lonza) supplemented
with 10% FBS. COS-7 cells and LLC-MK2 cells, both obtained from American Type Culture
Collection (ATCC), and Vero cells, kindly provided by Robert Lamb, HHMI/Northwestern
University, were grown in Dulbecco'smodifiedEagle's medium (DMEM; Gibco) supplemented
with 10% FBS. CHO-K1 and pgsA745 cells [46], obtained from ATCC, and pgsD677 [47], pro-
vided by Jeff Esko, University of California, San Diego, CA, were grown in HyClone Ham's F-
12, Kaighn's modificationmedium (Thermo Scientific,Waltham, MA) supplemented with
10% FBS.

Plasmids, antibodies and reagents

The coding region for CAN 97–83 HMPV F was subcloned into the pCAGGS mammalian
expression plasmid (kindly provided by Jun-ichi Miyazaki, Osaka University Medical School)
as previously described [48]. A codon optimizedHMPVN gene was cloned into pCAGGS. The
coding sequence for HMPVMwas synthesized in a pUC57 vector (Genetech, Arcade, NY) and
subcloned into pCAGGS. Full length cDNA for HMPV P was amplified by RT-PCR using
RNA isolated fromHMPV CAN97-83 and cloned into pCAGGS. Antibodies for HMPVN
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protein (ab94801), P protein (ab94803) and F protein (ab94800) were obtained from Abcam. A
polyclonal antibody against the avian metapneumovirus CM protein, kindly provided by
Sagar M. Goyal (University of Minnesota,Minneapolis, MN), which has been shown to cross-
react with HMPVM, was used to detect HMPVM protein [20]. Filamentous actin was
detected using phalloidin, and the antibody for tubulin was purchased from the Proteintech
Group (66031). Secondary antibodies conjugated with fluorescein isothiocyanate (FITC),
tetramethylrhodamine (TRITC), Atto488 or Alexa flour 647 were obtained from Jackson
ImmunoResearch. AlexaFluor 647 conjugated wheat germ agglutinin (Invitrogen) was used for
plasma membrane staining. Drugs for disruption of the actin cytoskeleton or microtubules
were purchased as indicated: cytochalasinD (C8273; Sigma), latrunculinA (428021; Calbio-
chem), jasplakinolide (sc-202191; Santa Cruz), paclitaxel (580556; Calbiochem), nocodazole
(487928; Calbiochem), rhosin (555460; Calbiochem),NSC 23766 (sc-204823; Santa Cruz),ML
141 (4266; Tocris).

Virus propagation and titer determination

HMPV and recombinant, green fluorescent protein (GFP)-expressing HMPV (rgHMPV)
strain CAN97-83 (genotype group A2), were propagated in Vero cells or LLC-MK2 as previ-
ously described [17]. Titers of rgHMPVwere determined by performing serial dilutions of the
virus samples on a 96-well plate, incubating for 24 hours followed by counting the number of
GFP positive cells. For determination of titers of non-GFP expressing HMPV, virus samples
were subjected to serial dilution, 100 μl of virus was added to LLC-MK2 cells and incubated at
37°C for 1 hour, followed by overlay with Opti-MEM containing 0.75%methylcellulose. After
4–5 days, cells were fixed in 10% formalin, incubated with anti-HMPV F antibody followed by
a peroxidase-conjugated secondary antibody (Kirkegaard and Perry Labs, KPL). TrueBlue per-
oxidase substrate (KPL) was added and incubated for 10 minutes at room temperature, and
plaques were then counted. To determine cell-associated virus titers, infected cells were washed
three times with PBS, then scraped in Opti-MEM containing 1x sucrose phosphoglutamate fol-
lowed by three freeze-thaw cycles. For determination of titers of released virus, cell culture
media was collected, centrifuged at 2,500 × rpm for 15 min at 4°C on a Sorvall RT7 tabletop
centrifuge followed by centrifugation on a 20% sucrose cushion at 135,000 x g and 4°C for 150
minutes using a SW41 swinging bucket rotor on a Beckman ultracentrifuge. Recombinant
GFP-expressing PIV5 (rgPIV5) [49], provided by Robert Lamb (Howard Hughes Medical
Institute, Northwestern University) was propagated in MDBK cells and titered as previously
described [50].

HMPV purification by sucrose density gradient centrifugation for mass

spectrometry analysis

BEAS-2B cells were mock infected or infected with HMPV, and virus propagation was per-
formed as described above. Cell culture media was collected and centrifuged at 2500 x rpm for
15 minutes on a Sorvall RT7 tabletop centrifuge. The supernatant was then subjected to centri-
fugation on a 20% sucrose cushion for 150 minutes at 135,000 x g at 4°C using a SW28 swing-
ing bucket rotor on a BeckmanOptima L90-K ultracentrifuge.Virus pellets were then
resuspended in 1x Tris-sodium-EDTA (TNE) buffer, layered onto a 30%-45%-60% (weight/
volume) discontinuous sucrose gradient and centrifuged at 150,000 x g for 90 minutes at 4°C.
The band containing the virus at the 30%-45% interface was collected and centrifuged on a
30% to 60% continuous sucrose gradient for 18 hours at 135,000 x g and 4°C. The virus-con-
taining band was then pelleted on a 20% sucrose cushion. The pellet was resuspended in 1x
TNE buffer and centrifuged at 400 x g for 10 minutes using an Amicon Ultra Filter Unit to get
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rid of low molecular weight contaminants. The purified virus was then subjected to mass spec-
trometric analysis.

Mass spectrometry for detection of HMPV-associated cellular proteins

The virus solution was denatured with 8M urea and subjected to dithiothreitol reduction and
iodoacetamide alkylation. The sample was then diluted to a 2M final concentration of urea and
digested in-solution with trypsin. The tryptic peptides were subjected to shot-gun proteomics
analysis as previously described [51]. Briefly, LC-MS/MS analysis was performed using an
LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific,Waltham, MA) coupled with an
Eksigent Nanoflex cHiPLC system (Eksigent, Dublin, CA) through a nano-electrospray ioniza-
tion source. The peptide samples were separated with a reversed phase cHiPLC column (75 μm
x 150 mm) at a flow rate of 300 nL/min. For identifying host proteins in purifiedHMPV parti-
cles, the LC-MS/MS data were submitted to a local mascot server for MS/MS protein identifica-
tion via Proteome Discoverer (version 1.3, Thermo Fisher Scientific,Waltham, MA) against
theHomo sapiens (human) taxonomy subset of Swissprot database. Typical parameters used in
the MASCOTMS/MS ion search were: trypsin digest with maximum of two miscleavages, cys-
teine carbamidomethylation,methionine oxidation, a maximum of 10 ppmMS error tolerance,
and a maximum of 0.8 DaMS/MS error tolerance. A decoy database was built and searched.
Filter settings that determine false discovery rates (FDR) were used to distribute the confidence
indicators for the peptidematches. Peptide matches that pass the filter associated with the strict
FDR (with target setting of 0.01) were assigned as high confidence.

Immunofluorescence and confocal microscopy

Cells grown on 10 mm coverslips were infected with HMPV or PIV5, and at various times post
infection, cells were washed in phosphate buffered saline (PBS) and fixed in 4% paraformalde-
hyde (PFA) for 15 minutes at room temperature. Cells were then permeabilized in 1% Triton
X-100 for 15 minutes at 4°C followed by blocking in 1% normal goat serum (NGS) and incu-
bated with the corresponding primary antibody overnight at 4°C. The following day, cells were
washed with 0.05% tween-PBS, secondary antibodies were added, and cells were incubated at
4°C for one hour. Coverslips were then mounted on glass slides using Vectashield mounting
media containing 4',6-diamidino-2-phenylindole (DAPI) for staining the nucleus (Vectorlabs,
Burlingame, CA). Pictures were taken using a Nikon 1A confocal microscope and analyzed
with the NIS-Elements software. All images were processed in Adobe Photoshop, with equiva-
lent adjustments made to all panels.

Immunostaining for Stochastic Optical Reconstruction Microscopy

(STORM)

BEAS-2B cells grown in glass bottom 35mm dishes were fixed in 3% PFA for 15 minutes fol-
lowed by reduction in 0.1% sodium borohydride (NaBH4) for 7 minutes at room temperature.
Cells were then washed three times with PBS, five minutes per wash while shaking, and per-
meabilized in 0.2% Triton X-100 for 15 minutes prior to blocking in 10% NGS/0.05% Triton
for 90 minutes at room temperature. Primary antibodies diluted in 5% NGS/0.05% Triton were
then added and incubated for 60 minutes followed by washing five times in 1%NGS/0.05% Tri-
ton and incubating with the secondary antibody for 30 minutes. Washes using 1%NGS/0.05%
Triton were then performed five times followed by post fixation in 3% PFA for 10 minutes,
three washes with PBS and two washes with distilledwater. Cells were stored at 4°C until imag-
ing using a Nikon Super ResolutionMicroscopeN-STORM, and image processing was per-
formed using NIS-elements software.
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Virus spread in a methyl cellulose overlay

BEAS-2B cells were inoculatedwith rgHMPV or rgPIV5 at an M.O.I. of 2. Six hours post infec-
tion, infectionmedia was removed, cells were washed two times with PBS, and Opti-MEM con-
taining 0.75%methylcellulose was then added. Images were taken every 24 hours using a 5x
objective of a Zeiss Axiovert 100 microscope.

Co-culture assay for direct cell-to-cell-spread of HMPV

BEAS-2B cells were infectedwith rgHMPV at an M.O.I. of 2 for 48 hours and then incubated
with 7μM cell tracker orange CMRA (Life Technologies, # C34551) for 30 minutes at 37°C.
Cells were then washed 5 times with PBS to remove any bound virus particles, lifted with tryp-
sin and added to uninfected BEAS-2B target cells at a ratio of 1:1. Neutralizing antibodies, DS7
(10 μg/ml) and 54G10 (0.4 μg/ml), were then added and cells incubated for an additional 24
hours. Afterwards, cells were collected, fixed in 1% formaldehyde and analyzed by flow cytom-
etry. Direct cell-to-cell spread was defined as the percentage of GFP-only positive cells normal-
ized to percentage of double positive (GFP/cell tracker CMRA orange) donor cells. To test the
role of heparan sulfate in direct cell-to-cell spread of HMPV, BEAS-2B donor cells were
infected and stained with cell tracker orange CMRA as mentioned above and incubated with
CHO, pgsD677 or pgsA745 cells at a ratio of 1:1 and co-cultured for 24 hours.

Flow cytometryanalysis. For determination of percentage of target cells infected in the
coculture assay, cells were fixed in 1% formaldehyde diluted in PBS with 50mM EDTA, and
analyzed with a BD FACSCalibur (BD, Franklin Lakes, NJ). Expression of GFP and cell tracker
CMRA orange of at least 50,000 cells was determined, and data analysis was performed using
BDFACS software (BD Biosciences). The percentage of GFP-expressing cells was normalized
to percentage of double positive donor cells in each condition followed by normalization to
control samples.

Stellaris Fluorescent in situ hybridization (FISH) for viral RNA detection

Forty-eight DNA probes targeting the HMPV vRNA genome between nt 1–5467 were obtained
from BioSearch Technologies (Novato, CA) and designed using the software provided by the
company. Each probe is 20 nt long and linked at the 3’end to Quasar 570 fluorophore. BEAS-
2B cells grown in 8-well chamber slides were infected with rgHMPV at an MOI of 1. Twenty-
four, 48 and 72 h.p.i., cells were fixed for 10 min with 4% PFA and then permeabilizedover-
night with 70% ethanol at 4°C. The next day cells were washed once with 2x SSC-10% formam-
ide buffer, and then incubated overnight at 25°C in hybridization buffer (4x SSC, 1x
Denhardt’s solution, 150 μg/mL ssDNA, 2mM EDTA, 10% Dextran Sulphate in DEPC treated
water) containing the probes at a concentration of 2.5 mM. After 24 hrs, cells were washed two
times for 20 min with 2x SSC-10% formamide buffer, and slides were then mounted using Vec-
tashield mounting media.

Proximity ligation assay (PLA)

BEAS-2B cells grown on 10mm coverslips were mock infected or infected with HMPV at an
M.O.I. of 2, and 24 h.p.i., cells were fixed with 4% PFA and permeabilizedwith 1% Triton X-
100-PBS. Cells were then incubated in blocking solution at 37°C for 2 hours. A mouse primary
antibody for HMPV P and a rabbit β-actin antibody or rabbit α tubulin antibody were added
and incubated overnight at 4°C. A proximity ligation assay was then performed using Duolink
In Situ red mouse/rabbit kit (Sigma, DUO92101). PLA probes diluted 1:5 were added, and cells
were incubated for 1 hour at 37°C in a humidified chamber and processed for ligation for an
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additional 30 minutes at 37°C. Cells were then washed twice, polymerase was added and DNA
was amplified with a florescent substrate for 100 min at 37°C. Coverslips were then mounted
on glass slides using Vectashield, and images were taken on a Nikon A1 confocal laser micro-
scope. Images were processed and analyzed for total fluorescent intensity using BlobFinder
software.

Sholl analysis

Cells were prepared for immunofluorescence as described above and images were acquired
using a Nikon A1 confocal microscope. A total of 10 cells per condition from three separate
experiments were manually traced and the total length of intercellular extensions was deter-
mined using NeuronJ plug-in for NIH ImageJ analysis tool. To quantitate the degree of branch-
ing, Sholl analysis was performed using the Sholl analysis plug-in for ImageJ. Briefly, a series of
concentric circles of 10 μm radii intervals were drawn around the center of the cell body, and
the number of intersections at each circle was determined.

Statistical analysis

Statistical analysis was performed using Prism6 for Windows software (Graphpad). A p
value� 0.05 was considered statistically significant. For all graphs, mean values ± standard
deviation (SD) are shown.

Results

HMPV buds primarily as cell-associated filamentous networks

Production of paramyxovirus particles is generally a multistep process that occurs in the cyto-
plasm of an infected cell and culminates in the assembly of virus components at the plasma
membrane followed by budding and release of infectious virus particles [52,53]. HMPV lacking
the envelope proteins G and SH has been shown to be infectious in vitro and in vivo [54,55],
indicating that assembly of infectiousHMPV particles does not require G and SH proteins. To
investigate the late stages of the HMPV replication cycle, we determined the cellular localiza-
tion of the main viral structural proteins, the N and P proteins, which are bound to the viral
genome and are part of the ribonucleoprotein (RNP) complex, the internal protein M, and the
envelope F protein, in infected human bronchial epithelial cells, BEAS-2B. By 18 h.p.i., viral
proteins were located primarily at the plasma membrane and in filaments protruding from the
plasma membrane (white arrowheads, Fig 1A). In addition, the P protein (Fig 1A, 18 h.p.i.,
inset) and N protein were seen in discrete cytoplasmic structures or inclusion bodies. Inclusion
body formation has been associated with infection for a number of negative sense RNA viruses.
The precise role of inclusion bodies in paramyxovirus infection is not well understood; how-
ever, some studies indicate the presence of RNA genomes in these bodies suggesting that these
are sites of active RNA replication [56–58]. Several respiratory viruses, including influenza
virus, RSV and PIV3 form filaments at the plasma membrane [59–61], and it was recently
shown that HMPV buds as filamentous structures in LLC-MK2 cells [21]. Interestingly how-
ever, by 24 h.p.i., viral proteins were seen primarily in cell-associated branched filaments (Fig
1A, red arrowhead) that formed extensive filamentous networks as infection progressed to 48
h.p.i. (Fig 1B). Viral proteins also localized in thicker and longer structures that ran between
infected cells, which we termed intercellular extensions (Fig 1A, white arrows), though the
open or closed nature of these extensions could not be determined from this analysis. These
extensions were seen extending from opposite sides of a single cell, indicating that they are not
retraction fibers (Fig 1A, lower panel right). In the majority of cases, extensions connected two
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Fig 1. HMPV infection in BEAS-2B cells results in the formation of branched filamentous networks and intercellular extensions. (A) HMPV

infected BEAS-2B cells at 18 or 24 h.p.i., were fixed and processed for immunofluorescence staining. White arrows indicate intercellular extensions, red

arrowheads indicate branched viral filaments and white arrowheads indicate viral filaments. Scale bars = 10 μm. (B) HMPV infected BEAS-2B cells at 48

h.p.i. were fixed, processed for immunofluorescence and stained with antibodies for HMPV N or P. Scale bar = 50 μm. (C) BEAS-2B cells were

inoculated with PIV5 and at 48 h.p.i. cells were fixed, processed for immunofluorescence and stained with antibody against the F protein of PIV5. Arrow

indicates an intercellular extension in a PIV5-infected cell and inset shows filaments. Scale bar = 10 μm. (D) BEAS-2B cells were inoculated with HMPV
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cells, though some extensions were observed that emerged from one cell without connecting to
a second cell. Filaments containing viral proteins were also seen projecting from these intercel-
lular extensions. PIV5 has been previously reported to form intercellular extensions [44], but
the number and extent of extensions was much greater in HMPV-infected BEAS-2B cells com-
pared to PIV5-infected BEAS-2B cells, and extensive branching filament structures were not
observed from PIV5 infection, though individual budding filaments were evident (Fig 1C).
Staining with the plasma membrane marker WGA showed that both intercellular extensions
(arrow) and filaments (inset) from HMPV infected cells are extensions of the plasma mem-
brane (Fig 1D). To clearly differentiate between filaments and intercellular extensions, we mea-
sured the diameter of these structures using the ImageJ analysis tool. Intercellular extensions
were thicker, ranging from 850 nm to 1840 nm, with an average diameter of 1100 nm com-
pared to 470 nm for the filaments with a range of 252 nm to 660 nm (Fig 1E).
To further examine the structure of the filaments and intercellular extensions, super-resolu-

tion microscopy was performed using a STORM imaging system. Cellular extensions (Fig 1F,
arrow) were seen protruding from the cell body (left side of image) with M and N localized
throughout the length of the extensions. M and N also localized in branched filaments protrud-
ing from the cell body and the cellular extensions. An organized localization of M and N was
seen within the filaments, with the N protein observed in the core of the filament surrounded by
the M protein (Fig 1F, inset). The organized localization of M and N in the branched filaments
revealed by STORM, and the similar morphology to tomographic images of HRSV [62], suggest
that these structures are associated with filamentous budding of HMPV. Determination of
HMPV titers at different hours post-infection showed that titers of cell-associated virus were
0.5–1 log higher than those of released virus particles throughout the infection period in BEAS-
2B cells, indicating that HMPV is primarily cell associated (Fig 1G). Previous studies of HMPV
infection in LLC-MK2 cells indicated that the virus was mainly cell-associated and that budding
particles were filamentous [22,63]. However, the extensive branched networks and intercellular
extensions visualized during HMPV infection in a more physiologically relevant model of
human bronchial epithelial cells have not been previously reported for paramyxoviruses.

Cell-associated branched HMPV filaments are actin based

Plasma membrane dynamics and shape are regulated by the cell cortex, composed primarily of F-
actin, with microtubules involved through regulation of the structure of cortical F-actin [64]. To
determine the contribution of the cell cytoskeleton to the formation of both the cell-associated
branched filaments and intercellular extensions, infected BEAS-2B cells were co-stained for viral
proteins and F-actin or tubulin. Both tubulin and F-actin co-localizedwith HMPVN in budding
viral filamentous networks (Fig 2A, inset). Tubulin and F-actin were also present in intercellular
extensions (Fig 2A, arrows). The staining for N and F-actin was more intense in the intercellular
extensions and branched filaments than in the cell body, while that of tubulin was faint in these
structures. In addition, high resolutionmicroscopy showed localization of actin (green) in the
branched filaments (Fig 2B arrow) and in the inner core of a filament (Fig 2B arrowhead)

at M.O.I. of 3, and at 24 h.p.i; cells were fixed and stained with the plasma membrane marker WGA and immunostained for HMPV N. Scale bar = 10 μm.

(E) Table showing range and average diameter of filaments and intercellular extensions. Images were taken for a total of 100 HMPV-infected cells and

imageJ analysis tool was used to determine the diameter of branched filaments and intercellular extensions. (F) Cells were inoculated with HMPV, and

24h later, cells were processed for Stochastic Optical Reconstruction Microscopy (STORM) and stained with an anti-N antibody (green) and an anti-M

antibody (red). Inset shows filaments with a central core of N protein surrounded by matrix protein. Scale bar = 1 μm. (G) BEAS-2B cells were inoculated

with rgHMPV at an M.O.I. of 2, and at different times post infection, cells or culture media were collected and virus titers determined. Graph shows

mean ± SD for three independent experiments.

doi:10.1371/journal.ppat.1005922.g001
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budding from the cell body along with viral proteins M and P (red) respectively indicating the
close association of F-actin with the budding structures in HMPV-infected cells. This is in con-
trast to what has been reported for RSV since F-actin was excluded from the viral filaments in
RSV infected cells [65], but actin has been reported in purifiedmeasles virus preparations [66].

Fig 2. Actin and tubulin are present in intercellular extensions and branched filamentous networks.

(A) BEAS-2B cells were inoculated with HMPV, and 24 h.p.i. cells were fixed and stained for HMPV N,

tubulin or F-actin. Inset shows colocalization of actin and tubulin with N in branched filaments and arrows

indicate intercellular extensions. Scale bar = 50μm. (B) Cells were infected with HMPV for 24h, processed for

Stochastic Optical Reconstruction Microscopy (STORM) and stained with an anti-P or anti-M antibody (red)

and phalloidin (green). Arrows show a branched filament and arrowheads show a filament. Scale bar = 1 μM.

doi:10.1371/journal.ppat.1005922.g002
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To further investigate if the formation of HMPV filamentous networks was dependent on
actin and/or microtubules, cells were infected for two hours and then treated with either
DMSO or with inhibitors of actin or microtubule dynamics until fixation at 24 h.p.i. Disruption
of actin polymerization using cytochalasinD (2 μM) or latrunculinA (500nM) or treatment of
cells with jasplakinolide (150 nM) to stabilize actin filaments resulted in loss of the extensive
filamentous HMPV networks seen in DMSO control treated cells (Fig 3A, arrow), indicating
an important role of active actin dynamics in the budding of the complex filamentous networks
(Fig 3A). However, intracellular filaments containing HMPVN were seen in cells treated with
cytochalasinD, latrunculinA and jasplakinolide (Fig 3A, arrowheads), and actin was seen in
close proximity to the filaments (Fig 3A, cytochalasinD, inset), suggesting that budding and
elongation, but not initial filament formation by viral proteins, requires actin dynamics. In
contrast, disruption or stabilization of microtubule polymerization using nocodazole (17 μM)
or paclitaxel (12.5 μM), respectively, did not prevent the formation of branching HMPV fila-
mentous networks indicating that microtubule dynamics are not required for budding of cell-
associated filamentous HMPV (Fig 3B, arrows). To obtain a quantitative measurement of the
effect of the different inhibitors on the formation of branched filaments, we performed Sholl
analysis on infected cells. This method of image quantitation is commonly used to measure the
complexity of dendritic branching in neurons by creating concentric circles around the cell
body and determining the number of intersections at a defined distance from the center of the
cell body [67]. Consistent with the microscopic images, disruption of microtubules did not
affect the extent of branched filaments, whereas inhibition of actin dynamics prevented forma-
tion of the branched filamentous networks (Fig 3C). STORM imaging showed intracellular fila-
ments containing N and M in cells treated with cytochalasinD, and the localization of N and
M in these filaments resembled that of control DMSO treated cells (Fig 1E) with the N protein
on the inside and M on the outside (Fig 3D). WGA staining showed deformation of the plasma
membrane coinciding with viral protein-containing filaments, suggesting that these filaments
can partially deform the plasma membrane (Fig 3E). These observations indicate that assembly
of HMPV proteins into initial filamentous structures present within the infected cell is driven
primarily by viral proteins and possibly other host factors but does not require actin polymeri-
zation. However, actin polymerization is required for efficient budding of HMPV filamentous
networks from the plasma membrane. To further test the role of the actin cytoskeleton in
HMPV particle production, we determined the effect of actin disruption by cytochalasinDon
titers of HMPV particles. Cells were infected with HMPV and 2 hours later, DMSO control or
cytochalasinD were added and 48 h.p.i., cells and culture media were collected to determine
titers. Inhibition of actin polymerization resulted in a statistically significant decrease of greater
than two-fold in titers of cell associatedHMPV (Fig 3F), indicating a role for an intact actin
cytoskeleton in production of infectious cell-associated particles. A reductionwas also observed
for released particles, though it did not rise to the level of statistical significance.
A role of actin in the HMPV infection cycle was further supported by the detection of a

large amount of actin in purifiedHMPV particles by mass spectrometry analysis (S1 Table). To
confirm that the cellular proteins detected in the purifiedHMPV particles were specific and
were not contaminants from released exosomes, we performed the same purification steps and
mass spectrometry analysis on media collected from uninfected cells. As seen in S2 Table, kera-
tin was the most abundantly detected cellular protein in supernatants collected frommock
infected cells, whereas actin was identifiedwith only 2 peptides. In contrast, actin was detected
in high amounts in purifiedHMPV virions with more than 20 peptides (S1 Table). In addition,
several other actin associated proteins, including actinin and myosin were present in purified
HMPV further supporting the involvement of the actin cytoskeleton in the formation of
HMPV particles. Tubulin, vimentin and other cytoskeleton associated proteins were also
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Fig 3. Actin and microtubules have different roles in formation of branched filamentous networks and intercellular extensions. (A)

and (B) BEAS-2B cells, were inoculated with HMPV and 2 h.p.i. DMSO vehicle or the indicated drug was added, and cells were incubated for

an additional 22 hours. Cells were then fixed and processed for immunofluorescence staining. Arrows indicate branched filamentous networks

and arrowheads indicate viral filaments. Scale bars = 10 μm. (C) Cells treated as in A and B were processed for immunofluorescence and

images acquired. The NeuronJ plugin of the ImageJ analysis tool was used to manually trace 10 cells for each condition from three
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detected suggesting their involvement in HMPV replication (S1 Table). Exosomal proteins
were not found in high abundance in these fractions, suggesting that the purified fraction did
not contain high levels of exosomes.

HMPV-induced formation of intercellular extensions requires active

actin dynamics

Intercellular extensions have been identified as a means of intercellular communication in dif-
ferent cell types, and research over the past decade has provided important information on
their nature and function [68,69]. Primary human bronchial epithelial cells can form actin and
microtubule-containing bridges between individual cells which vary greatly in length (range
50 μm–1 mm) and diameter (1 μm–20 μm) [70]. To determine whether the intercellular exten-
sions observed in HMPV-infected BEAS-2B cells were induced or altered by HMPV infection,
mock infected cells were stained for F-actin. Intercellular extensions were seen in uninfected
cells (Fig 4A); however, the percentage of cells with intercellular extensions significantly
increased upon HMPV infection, indicating that while these cellular structures can exist in
uninfected cells, HMPV infection strongly induces their formation (Fig 4B). In addition, quan-
tification of the length of intercellular extensions in uninfected- and HMPV-infected cells
showed that the majority of extensions in infected cells were longer, with the average length in
HMPV-infected cells (80 μm) being double that in uninfected cells (40 μm) (Fig 4C and 4D).
To investigate the role of actin and microtubules in the formation of these intercellular exten-
sions, inhibitors of cytoskeleton dynamics were added 2 hours after HMPV infection and left
on cells until fixation at 24 h.p.i. The formation of intercellular extensions was slightly
decreased but not blocked by the addition of nocodazole or paclitaxel, indicating that microtu-
bule dynamics are not required for the formation of these structures (Fig 4E, arrows). In con-
trast, inhibition of actin polymerization by cytochalasinD and stabilization of actin by
jasplakinolide significantly reduced formation of intercellular extensions in infected cells (Fig
4E and 4F). Thus, though both tubulin and F-actin are present in intercellular extensions, only
actin polymerization is essential for intercellular extension formation. Collectively, these results
indicate that HMPV infection leads to actin reorganization to induce formation and elongation
of intercellular extensions.

Rho GTPases involved in actin remodeling are important for the

formation of actin-based structures induced by HMPV infection

The actin cytoskeleton is highly dynamic and under the control of complex signaling pathways
involving three main Rho family GTPases, Cdc42, Rac1 and RhoA. Activation of these proteins
results in formation of protrusive filopodia, lamellipodia and stress fibers, respectively [71,72].
To address the potential role of these signaling pathways in the co-opting of the actin cytoskele-
ton during HMPV infection, we utilized cell permeable, targeted inhibitors for these GTPases
and assessed the effects on the budding of branched filamentous networks and on formation of
intercellular extensions. DMSO or inhibitors were added to cells 2 h.p.i., and 22 hours later
cells were fixed and stained for F-actin to visualize changes in the actin cytoskeleton and the

independent experiments. Sholl analysis was then performed to evaluate level of branching. (D) Cells were inoculated with HMPV for 2 hours

and treated with cytochalasin D. Twenty-four h.p.i. cells were processed for STORM and stained with an anti-N antibody (green) and an anti-M

antibody (red). (E) BEAS-2B cells were infected with HMPV, drugs were added at 2 h.p.i. and at 24 h.p.i, cells were fixed and stained with

WGA and antibody for N. Scale bars = 10μm. (F) Cells were inoculated with rgHMPV at an M.O.I. of 1 and treated with inhibitors at 2 h.p.i. At

48 h.p.i., cells or culture media were collected and virus titers determined. Graph shows mean ± SD for three independent experiments.

Statistical analysis was performed using two-way analysis of variance (ANOVA), (*** = p< 0.0001; n.s. = non-significant).

doi:10.1371/journal.ppat.1005922.g003
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Fig 4. Formation of intercellular extensions requires active actin dynamics. (A) BEAS-2B cells were mock infected or inoculated with

HMPV, and 24 h.p.i. cells were fixed and stained for HMPV N (green) or F-actin (red). Arrows indicate intercellular extensions. (B–D) BEAS-2B

cells were either mock infected or infected with HMPV and 24 h.p.i. cells were fixed and processed for immunofluorescence staining. Images

were taken, and 80–100 cells from three independent experiments were used to score the presence of extensions (B) or analyzed using the

ImageJ analysis tool to determine extension length (C and D). (E) Cells were inoculated with HMPV for 2 hours and incubated with DMSO or the
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HMPVN protein. Addition of ML141, which primarily targets CDC42, resulted in a dramatic
loss of filamentous structures at the cell periphery compared to control cells, and N was mostly
cytosolic with faint staining in cellular extensions (Fig 5A, ML-141, arrowhead). In cells that
were treated with NSC-23766, a targeted Rac1 inhibitor, N was localized in long intercellular
extensions, but only short filaments were seen protruding from the main extension (Fig 5A,
NSC-23766, arrow). Addition of Rhosin, an inhibitor of RhoA, led to a punctate localization
pattern of N in intercellular extensions (Fig 5A, rhosin, arrowhead) and in some cells, short
branched filaments were seen (Fig 5A, rhosin asterisk). These observations indicate that addi-
tion of any one of the Rho GTPase inhibitors does not result in dramatic loss of intercellular
extension formation as was seen with disruption of actin dynamics (Fig 3); however each inhib-
itor resulted in a significant decrease in the percentage of infected cells with extensions com-
pared to DMSO treated cells, with inhibitors targeting Cdc42 and Rac1 having a greater effect
than the inhibitor which targets RhoA (Fig 5B). This suggests that induction of these exten-
sions in HMPV-infected cells involves activation of the Rho family GTPase signaling pathways
that control actin dynamics in the cell. Moreover, addition of the inhibitors targeting RhoA
and Rac1 resulted in decreased but apparent filament formation and branching whereas addi-
tion of the Cdc42 inhibitor drastically decreased formation of branched filaments (Fig 5A), and
these observationswere confirmed by Sholl analysis (Fig 5C). Proteomic analysis of HMPV
particles indicated the presence of Cdc42 and RhoA (S1 Table) further suggesting their impor-
tance for the HMPV replication cycle.While it is possible that the inhibitors also have effects
beyond their target GTPase, our results suggest that coordination of activation of the three Rho
GTPases, Rac1, Cdc42 and RhoA is involved in actin cytoskeleton rearrangement induced by
HMPV to promote formation of intercellular extensions and budding of filamentous networks.

P co-localizes with actin and induces formation of cellular extensions

The ability of enveloped viruses to bud infectious particles at cell membranes requires induc-
tion of membrane curvature and envelopment of viral components with a cell-derivedmem-
brane. For paramyxoviruses, membrane budding is driven principally by the M protein, at least
partly due to its ability to bind and deformmembranes, but efficiency can increase with addi-
tion of envelope proteins, N protein or accessory proteins [52,73]. To determinewhat viral pro-
teins contribute to membrane remodeling during HMPV infection, we performed single
transfections of N, P, M and F in BEAS-2B cells. Expression of the F or M proteins induced for-
mation of short membrane extensions (Fig 6A insets), whereas N protein was primarily cyto-
solic, and no alterations of the membrane were observedwith N expression. The HMPVM
protein has been shown to bind lipid membranes and self-assemble into long helical filaments,
and co-expression of bothM and F induces filamentous VLP formation at the surface of Vero
cells [18,21,74], consistent with our observation that F and M can induce membrane changes
(Fig 6A). Interestingly, expression of the HMPV P protein in BEAS-2B cells induced changes
to the plasma membrane and formation of membrane extensions, in contrast to what has been
reported for other paramyxovirus P proteins (Fig 6A arrow). In addition, branched filaments
were seen in some cells expressing P (Fig 6A arrowhead). Expression of P in A549 cells also
resulted in deformation of the plasma membrane and induction of membrane ruffling (Fig 6B,

indicated drug, and 24 h.p.i. cells were stained with an antibody recognizing HMPV N (green). Images were acquired on a confocal microscope,

and percentage of infected cells with extensions was manually determined for a total of 100 cells from three independent experiments. Scale

bars = 50 μm. (F) Images were acquired on a confocal microscope and percentage of infected cells with extensions was manually determined for

a total of 100 cells from three independent experiments. Data represent means ± SD. Statistical analysis was performed using one-way analysis

of variance (ANOVA), (*** = p< 0.0001; ** = p< 0.001; * = p<0.05).

doi:10.1371/journal.ppat.1005922.g004
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inset). Immunostaining showed co-localization of P with F actin in both BEAS-2B (Fig 6C,
arrow) and A549 cells (Fig 6C, inset). To further analyze the association between P and actin,
we performed a proximity ligation assay, in which a positive signal requires two proteins in
close proximity (<50nm). The percentage of cells with a positive proximity ligation signal for
P and actin was significantly higher in HMPV-infected cells compared to mock infected cells
(Fig 6D), indicating that HMPV P is in close proximity to actin, and thus likely either directly

Fig 5. Rho GTPases Cdc42, Rac1 and RhoA contribute to formation of branched filamentous networks and intercellular extensions. (A) BEAS-

2B cells were inoculated with HMPV, and the indicated drug was added 2 hours later. Twenty-four h.p.i. cells were fixed and stained for HMPV N or F-

actin. Arrows indicate an intercellular extension. Arrowheads show punctate localization of N, and asterisks indicate short branched filaments. (B)

Images acquired from three independent experiments were processed, and a total of 100 infected cells were manually assessed for the presence of

extensions. Data represents mean ± SD. Statistical analysis was performed using one-way ANOVA, (*** = p< 0.0001; ** = p< 0.001). (C) A total of 10

cells from three independent experiments were traced using the NeuronJ plugin of the ImageJ analysis tool and the degree of branching was evaluated

using Sholl analysis. (D) Table showing the targets of the inhibitors used and their specific concentration.

doi:10.1371/journal.ppat.1005922.g005
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Fig 6. HMPV P induces formation of membrane extensions and co-localizes with actin. (A) BEAS-2B cells expressing HMPV F, N, M or P

were processed for immunofluorescence and stained for the indicated viral protein (green) and DAPI (blue) to stain the nucleus. Insets show

membrane extensions in cells transfected with F and M, arrows indicate long membrane extensions and the arrowhead shows a branched filament.

(B) A549 cells were transfected with pCAGGS-HMPV P plasmid, and 24 hours post transfection, cells were fixed and processed for

immunofluorescence staining. Inset shows membrane ruffling. (C) BEAS-2B or A549 cells were transfected with pCAGGS-HMPV P, and 24 hours
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interacting with actin or with actin-associated proteins. As a control, proximity ligation for P
and tubulin was performed, but no significant increase after HMPV infectionwas observed
(Fig 6D). Paramyxovirus P proteins are major components of the viral replication complex and
can interact with both N and the polymerase L [75]. Our results reveal a novel role for the
HMPV P protein in induction of membrane extensions, suggesting the involvement of P in
budding and egress of HMPV. This is also the first report of potential paramyxovirus phospho-
protein-actin or actin binding protein interaction, suggesting novel roles of P in HMPV exit
from the cell.

Intercellular extensions play a role in direct cell-to-cell spread of HMPV

particles

To assess if intercellular extensions are generally associated with HMPV infection or are spe-
cific for BEAS-2B cells, other cell types including 16HBE, A549 and Vero cells were infected,
and cells were immunostained for the HMPVN protein. Intercellular extensions containing
HMPV viral proteins were present in each of these different cell types (Fig 7A), indicating that
formation of these structures during HMPV infection is not restricted to BEAS-2B cells. Exten-
sive networks of branching filaments were also seen in 16HBE cells (Fig 7A arrowhead), though
not in Vero or A549 cells, suggesting that formation of these structuresmay be common to
human bronchial epithelial cells. In addition, extensions were detected in live BEAS-2B cells
infected with rgHMPV as seen in Fig 7B (arrow) extending from an infected cell to an unin-
fected cell, thus confirming that they are not artifacts of immunofluorescence processing and
that they are associated with infection of HMPV in live cells. Extensions from infected cells
were not always directed to the closest neighboring cells (Fig 7B) but can extend over long dis-
tances to reach another cell, consistent with our results that they can reach over 300 μm in
length (Fig 4C). To initially examine the potential role of cell-cell spread in HMPV infection,
we tested virus spread, seen as GFP expressing BEAS-2B cells (Fig 7C), in the presence or
absence (control) of a viscousmethyl cellulose overlay media to prevent diffusion of cell-free
virus particles. The number of HMPV-infected cells increased by approximately two-fold from
24 to 48 hours in the presence or absence of methyl cellulose, with continuing increases at 72 h,
and similar results were observed in four separate experiments, suggesting that HMPV can
spread even when diffusion of released virus particles is compromised. In contrast, significant
reduction in PIV5 spread was observed in the presence of methyl cellulose.
To verify that HMPV can spread directly from cell-to-cell, we developed a co-culture assay

(Fig 7D). Cells were infected with rgHMPV (M.O.I. 2) for 48 hours and then stained with the
cell tracker orange CMRA dye. The infected donor cells were then added to unstained target
cells at a ratio of 1:1, and 24 hours post co-culture, cells were collected and analyzed by flow
cytometry. GFP-only positive cells represented the newly infected target cells. To test direct
cell-to-cell spread of HMPV, cells were co-cultured in the presence of two neutralizing anti-
bodies, DS7 and 54G10 targeted against the fusion protein. These antibodies have been shown
to inhibit infection by cell-freeHMPV particles [76,77]. Consistent with this, pre-incubation of
HMPV with DS7 or 54G10 prior to addition to cells significantly inhibited cell-free infection to
around 10% that of control cells (Fig 7E, right panel). Approximately 60% of HMPV spread

later, cells were fixed and stained for P (green) and F-actin (red). Inset shows intracellular colocalization of P and F-actin, and arrows indicate

colocalization of P and F-actin in a cellular extension. Scale bars = 10μm. (D) BEAS-2B cells were infected with HMPV, and 24 h.p.i, cells were

fixed and proximity ligation assay was performed using the indicated antibodies. Each red signal denotes a reaction due to proximity of P and actin.

Scale bars = 50μm. Quantification was done using BlobFinder software analysis tool. Graph shows mean ± SD. Statistical analysis was done using

one-way ANOVA (*** = p< 0.0001).

doi:10.1371/journal.ppat.1005922.g006

HMPV Induction of Ctoskeletal Reorganization for Cell-to-Cell Spread

PLOS Pathogens | DOI:10.1371/journal.ppat.1005922 September 28, 2016 18 / 30



Fig 7. HMPV can spread directly from cell-to-cell. (A) A549, Vero or 16HBE cells were inoculated with HMPV, and 24 h.p.i., cells were fixed

and stained for N protein. Arrows indicate intercellular extensions and arrowhead shows branched filaments. (B) BEAS-2B cells were

inoculated with rgHMPV, and 24 h.p.i., cells were prepared for live imaging. Arrow indicates an intercellular extension. (C) BEAS-2B cells were

infected with rgHMPV or rgPIV5 at an M.O.I. of 2. Six hours later, infection media was removed and replaced with regular media or media

containing 0.75% methylcellulose (MC). Images were taken every 24 hours for 3 days. (D) Schematic of the coculture assay. BEAS-2B cells

were inoculated with rgHMPV at an M.O.I. of 2. Forty-eight h.p.i., cells were stained with cell tracker CMRA orange dye for 30 minutes. Infected
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was inhibited by addition of neutralizing antibodies under co-culture conditions, indicating a
reliance on the HMPV F protein. However, approximately 40% of spread remained in the pres-
ence of the antibodies (Fig 7E, left panel), suggesting that HMPV can spread in the presence of
either DS7 or 54G10 and has a neutralizing antibody-independentmechanism of infection.
This finding is consistent with a portion of HMPV infection of new target cells occurring via
direct cell-to-cell spread through extensions.
Previous work in our laboratory demonstrated that binding and entry of HMPV require

expression of heparan sulfate on the surface of target cells [17]. To determine whether spread
of HMPV in the co-culture assay was dependent on heparan sulfate, we utilizedCHO cell
derivatives, psgD677 and pgsA745. pgsD677 cells are incapable of synthesizing heparan sulfate,
while pgsA745 cells lack all glycosaminoglycans (GAGs) [47,78]. Consistent with previous
studies, cell-freeHMPV infection requires heparan sulfate (Fig 7F, right panel). However,
HMPV-infected cells were able to efficiently spread infection to target cells that lack heparan
sulfate under co-culture conditions (Fig 7F, left panel). Intercellular extensions can transfer cel-
lular components between cells including cytoplasmicmaterial, organelles, membrane proteins
and signalingmolecules [68,69,79]. These data combined with the results from the neutralizing
antibodies strongly indicate that HMPV has two modes of infection: cell-free infection that is
blocked by neutralizing antibodies and requires binding to heparan sulfate moieties, and direct
cell-to-cell infection that is neutralizing antibody- and heparan sulfate independent.
We next determined the effect of the different cytoskeletal drugs, some of which interfered

with the elongation of the extensions, on spread of HMPV in the presence of neutralizing anti-
bodies. Infected donor cells were pretreated for one hour with the specific drug prior to incuba-
tion with naive target cells, and DS7 antibody was used for neutralization of released virus
particles.While manipulation of microtubule dynamics by paclitaxel gave only small decreases
in the number of cells with intercellular extensions (Fig 4E and 4F), paclitaxel treatment resulted
in a significant decrease in intercellular spread of HMPV, suggesting a potential role for micro-
tubules in spread separate from extension formation, though nocodazole treatment resulted in a
reduction that was not statistically significant (Fig 7G). Disruption of actin polymerizationwith
cytochalasinD, which dramatically decreased formation of intercellular extensions (Fig 4E and
4F), resulted in a significant decrease in HMPV spread, with the difference in level of inhibition
potentially due to the addition time of the inhibitor post-infection. Inhibition of both Rac1
(NSC-7366) and Cdc42 (ML-141) significantly reduced cell-to-cell spread of HMPV (Fig 7G),
consistent with the decrease in extensions observedwith these inhibitors (Fig 5B). In contrast,
inhibition of RhoAwith the inhibitor rhosin did not influence intercellular spread of HMPV
(Fig 7G), consistent with the minor effect of this inhibitor on extension formation (Fig 5B), and
in contrast to reports that RhoA is important for RSV filament formation [61]. Thus, our results
indicate that inhibition of actin polymerization, Cdc42 or Rac1, which results in significant
decrease in the formation of intercellular extensions, also decreases intercellular spread of
HMPV, supporting a role of the extensions in cell-to-cell spread of HMPV particles.
To further examine the role of intercellular extensions in HMPV spread, FISH for detection

of viral RNA was performed using 48 labeled probes targeted for vRNA (Fig 8A). BEAS-2B

donor cells were then collected and added to naive target cells at a ratio of 1:1. To study direct cell transmission by blocking re-infection by

released particles, the assay was done in the presence of neutralizing antibodies (E) or using target cells that lack a heparan sulfate binding

factor for HMPV infection (F). Control represents infection without the presence of neutralizing antibodies (E) or with wt CHO cells (F). Twenty-

four hours post coculture, cells were collected and analyzed by flow cytometry. (G) Cells were prepared for coculture assay as described in (D),

and the indicated inhibitor was added at the time of mixing donor and infected cells and left in the media for 24 hours. Control represents

addition of DMSO only. Data represent means ± SD for three independent experiments. One-way ANOVA was used for statistical analysis

(*** = p< 0.0001; ** = p< 0.001; * = p<0.05).

doi:10.1371/journal.ppat.1005922.g007
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cells infected with rgHMPVwere identified by GFP expression throughout the cytoplasm,
though a localization of GFP in discrete punctate bodies was routinely seen. Viral RNA was
detected in these discrete cytoplasmic structures (Fig 8A inset) that resemble the inclusion bod-
ies where HMPV P localized (Fig 1A). Inclusion bodies have been detected for several para-
myxoviruses and are thought to be sites of active RNA replication [56,80]. At 72 h.p.i., viral
RNA was detected in intercellular extensions in cells infected with rgHMPV (Fig 8B arrow and
inset). Interestingly, larger RNA containing structures were also seen in extensions, raising the
possibility that nucleocapsids or bodies containing multiple genomes can be transported across

Fig 8. Viral RNA is present in intercellular extensions. (A) Twenty-four hours post infection with rgHMPV, BEAS-2B

cells were fixed, permeabilized with 70% ethanol and incubated with the FISH probes targeting viral RNA overnight.

Cells were then washed with 2xSCC buffer and mounted with vectashield. Inset indicates viral RNA in a potential

inclusion body. (B) BEAS2B cells infected for 72 hours with rgHMPV were processed as in (A). Arrows indicate an

intercellular extension and inset shows larger RNA-containing structure in intercellular extension.

doi:10.1371/journal.ppat.1005922.g008
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intercellular extensions between cells (Fig 8B inset). The localization of the main HMPV struc-
tural proteins N, P, M and F (Fig 1A) and of viral RNA in intercellular extensions provides
additional evidence for the involvement of extensions in HMPV spread.

Discussion

As a recently discovered virus [7], several aspects of the HMPV replication cycle are poorly
understood. In this study we reveal two distinct features of late stages of HMPV infection that
contrast with what is known about paramyxovirus assembly and spread. Similar to other respi-
ratory viruses, we show that HMPV can form filamentous structures at the surface of infected
cells; however, the network of branched filamentous structures containing major HMPV pro-
teins are more complex than what has been previously reported for respiratory viruses. The for-
mation of these structures was dependent on actin polymerization and on actin associated
signaling involving Rho GTPases Cdc42, Rac1 and RhoA. In addition, we provide evidence for
a novel mode of HMPV transmission from cell-to-cell across actin-based intercellular exten-
sions that occurs independent of heparan sulfate and neutralizing antibodies.
Formation of filamentous virus particles has been reported for several respiratory viruses

including RSV and influenza virus [59,81–83]; however how these structures are assembled
and their significance for viral infectivity is not well understood. For influenza viruses, the fila-
mentous morphology of the virus depended on actin polymerization [59]. For RSV, actin and
tubulin were not required for assembly of viral filaments, but actin was involved in anchoring
the filaments to the cell surface and for virus replication [84]. HMPV has been shown to form
filaments in infected LLC-MK2 cells [21,22]. Here we show that HMPV assembles into a com-
plex network of branched filaments at the surface of BEAS-2B cells (Fig 1A), and these struc-
tures were also seen in 16HBE cells (Fig 7A) indicating that these are specific features of
HMPV infection in bronchial epithelial cells. The formation of cell-associated branched net-
works in HMPV infected cells raises questions about their importance for HMPV infection.
Electronmicroscopic images of purifiedHMPV show pleomorphic particles with both approx-
imately spherical morphology and also filamentous forms [85]. Thus, whether the filamentous
morphology is maintained after release of virus particles from BEAS-2B cells is not known.
Recent electron tomography images of the closely related RSV show that the position of M pro-
tein under the plasma membrane drives the filamentous morphology of the particles, but virus
release coincides with M no longer forming a layer under the plasma membrane and loss of the
filamentous form [62]. In addition, our findings that branched filaments were seen in human
bronchial epithelial cells and not in other cell types (Figs 1A and 7A) indicate an effect of cell
origin on virus assembly.
The extensive remodeling of the plasma membrane and the cortical actin underneath

involves manipulation of several factors that act to control cell shape at the plasma membrane,
namely the actin cytoskeleton and Rho GTPase signaling controlling actin. Budding of the fila-
mentous networks was dependent on actin polymerization and not on microtubules (Fig 3);
however the initial assembly of filamentous structures that can deformmembranes does not
depend on actin dynamics. HMPVM has been shown to self-assemble into higher order struc-
tures, forming flexible helical filaments upon binding to lipids, and it is thought that the dimer
subunits of M can associate through different side-by-side interactions which influence the cur-
vature of the matrix arrays and thus virus morphogenesis [74]. In addition, HMPV P protein
can form tetramers [86]; thus it is possible that self-oligomerization and assembly of viral pro-
teins or association of viral proteins with cellular factors can drive the formation of the initial
filaments irrespective of actin polymerization, but polymerization of actin is needed to further
drive the assembly and budding of the extensive branched filaments. However, after treatment
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with cytocholasinD or latrunculinA, actin was still seen in close proximity with the filaments
containing viral proteins (Fig 3A), suggesting actinmay play an accessory role. Our results also
indicate that the Rho GTPases involved in controlling actin dynamics and structure in the cell,
Cdc42, Rac1 and RhoA, play an important role in the production of branched filaments (Fig
5A and 5C). Cdc42 is likely required for the assembly of filaments since addition of a Cdc42
inhibitor abolished formation of filaments in HMPV infected cells. Shorter filamentous struc-
tures (Fig 5A) and decreased filamentous branching (Fig 5C) were seen in cells treated with
inhibitors of Rac1 and RhoA, suggesting a role for these GTPases in promoting further budding
of the filaments but not necessarily in the initial assembly. One of the common downstream
effectors of Rac1 and Cdc42 is the Arp2/3 initiation complex which activates actin polymeriza-
tion as well as formation of branched actin filaments, so the role of Arp2/3 still needs to be
investigated. While filaments were seen at the cell surface at 18 h.p.i., the formation of the
extensive branched filamentous networks in infected cells occurred later during infection start-
ing at 24 h.p.i. and developed further at 48 h.p.i. This suggests that the actin remodeling associ-
ated with these cellular changes was mediated by an accumulation of viral products.
Viruses have the ability to manipulate the actin cytoskeleton by encoding viral proteins that

can directly bind actin or actin binding proteins or upstreammediators of actin signaling. Para-
myxovirus proteins that were shown to bind actin include the M proteins of Sendai virus and
NDV [87,88]. Here we provide the first example of a paramyxovirus P protein that induces
changes to the plasma membrane and co-localizeswith actin, most likely due to an association
with actin or actin-associated proteins (Fig 6A). Recently, it has been shown that paramyxovi-
rus P proteins can have roles beyond regulating viral RNA synthesis. The P protein of HPIV3
was found to bind SNAP29 protein and inhibit autophagosomal degradation to enhance
release of virus particles [89]. Paramyxovirus P proteins are characterized by intrinsically disor-
dered regions that allow interactions with multiple partners during the course of infection [90],
and recent structural analysis of HMPV P was consistent with the presence of intrinsically dis-
ordered regions at the N- and C-termini [91]. It is possible that binding of P to different cellular
partners during the course of infectionmay play a role in regulating its function during the
infection cycle from viral RNA synthesis at early stages of infection to inducing plasma mem-
brane deformation and possibly contributing to HMPV exit from the cell at the end of the rep-
lication cycle. Our proteomic analysis of purifiedHMPV particles (S1 Table) revealed the
presence of actin nucleating proteins, filamin A and alpha-actinin as well as ezrin, radixin and
moesin (ERM) proteins. HMPV P binding to any of these cellular proteins or activation of sig-
naling pathways upstream of actin polymerization state could lead to the observed changes. It
is also possible that as the global concentration of P in the cell increases at late times after infec-
tion, mimicking levels seen in transfected cells, the effect of P on membrane deformation
becomesmore prominent. It remains to be determined if other paramyxovirus P proteins have
similar roles in late stages of the infection cycle or if HMPV P is unique among the viral family.
An increasing number of reports show that some enveloped viruses can transmit from cell-

to-cell, and between hosts, in novel ways beyond release of individual virus particles into the
extracellularmatrix [29,35,43,44,92–96]. Viral induction or modification of cellular structures
to allow cell-to-cell spread is an intriguing theme of several recent studies, and our work sup-
ports a model in which HMPV infection induces intercellular extensions that are key elements
in direct cell-to-cell spread of this respiratory virus. For paramyxoviruses, cell-to-cell spread of
viruses independent of particle release occurs for measles virus across neuronal synapses and
fusion pores in epithelial cells and for RSV through syncytia formation in cell culture [39–43].
Recently, intercellular spread independent of neutralizing antibodies was reported for PIV5
[44]. These studies indicate that mechanisms of paramyxovirus spread can vary greatly and
shift the more generally acceptedmode of spread by single particle release to more complex
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models. Direct cell-to-cell transmission of virus particles overcomes the rate limiting step of
diffusion of particles across the extracellular space and also provides a means by which particles
can be transferred that evades the immune response. Our data from the co-culture assay indi-
cate that HMPV particles can spread in a neutralizing antibody independentmanner, and that
spread is reduced when formation of intercellular extensions is inhibited by disruption of actin
polymerization or by Cdc42 and Rac1 inhibition (Fig 7E and 7G). Formation of plasma mem-
brane extensions by actin polymerization is drivenmainly by activation of Rac1 and Cdc42
and their downstream effectors, and several viruses, including HIV-1 and pseudorabies virus,
induce actin-based cellular extensions by activating these signaling pathways [97,98]; however
this is the first report of a paramyxovirus that depends on Rho GTPase signaling to induce
actin-based cellular extensions for intercellular spread. In addition, microtubules played an
important role in HMPV spread (Fig 7G). For several RNA viruses,microtubules are involved
in transport of the RNP complex to assembly sites at the plasma membrane [99], but this
remains to be investigated for HMPV.
Severalmodels currently exist for direct cell-to-cell spread of virus particles across cellular

extensions [100] that could be applicable to our findings with HMPV. Open-ended or close-
ended intercellular extensions could act as tunnels through which completely or partially
assembled HMPV particles travel along actin filaments on the inside of the extension, allowing
entry into the target cell (Fig 9, model 1), though the source of the viral membranes in this
model remains unclear. Alternatively, budding of particles at the plasma membrane with sub-
sequent movement of the particles across intercellular extensions from an infected cell to a

Fig 9. Models for cell-to-cell spread of HMPV in BEAS-2B cells. Virus particles exit an infected cell and move inside an open-ended intercellular

extension to infect a target cell (model 1). In model 2, virus particles move from an infected cell to a target cell at the surface of an intercellular extension.

Replication bodies can be transmitted from an infected cell to a target cell along an intercellular extension (model 3).

doi:10.1371/journal.ppat.1005922.g009
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donor cell could occur (Fig 9, model 2). This process, known as virus surfing, has been docu-
mented for several viruses including HIV-1 and MLV [34,101]. However, binding of virus to a
cell surface receptor is required for entry and infection in this model, and our results demon-
strate that infection of HMPV by direct cell-to-cell spread occurs independently of heparan
sulfate which was shown to be an important binding factor for cell-freeHMPV infection.
Finally, it is possible that HMPV can spread infection directly from cell-to-cell by transfer of
the RNP complex from an infected cell to a donor cell (Fig 9, model 3). Detection of vRNA by
FISH analysis showed the presence of viral RNA and structures similar to replication bodies in
an extension approaching another cell (Fig 8B). Spread of genetic material without formation
or release of infectious virus particles has been suggested to occur for measles virus, both in
neurons and in epithelial tissues [40,43]. The last two models of spread would protect the virus
from neutralizing antibodies and bypass the need for receptor binding. Intercellular extensions
have been shown to selectively transport cellular cargo from one cell to another [79], but fur-
ther studies are needed to determine whether intercellular extensions utilized for HMPV
spread are open or close ended.
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