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Selection of a highly invasive neuroblastoma cell population
through long-term human cytomegalovirus infection
M Michaelis1,8, S Barth2, R Breitling3,4, J Bruch5, D Steinberger5, F Rothweiler1, K Hackmann6, E Schröck6, HW Doerr1, DK Griffin7,
J Cinatl1 and J Cinatl Jr1

The human cytomegalovirus (HCMV) is suspected to increase tumour malignancy by infection of cancer and/or stroma cells
(oncomodulation). So far, oncomodulatory mechanisms have been attributed to the presence of HCMV and direct action of its gene
products on cancer cells. Here, we investigated whether the prolonged presence of HCMV can result in the irreversible selection of
a cancer cell population with increased malignancy. The neuroblastoma cell line UKF-NB-4 was long-term (200 passages) infected
with the HCMV strain Hi91 (UKF-NB-4Hi) before virus eradication using ganciclovir (UKF-NB-4HiGCV). Global gene expression profiling
of UKF-NB-4, UKF-NB-4Hi and UKF-NB-4HiGCV cells and subsequent bioinformatic signal transduction pathway analysis revealed clear
differences between UKF-NB-4 and UKF-NB-4Hi, as well as between UKF-NB-4 and UKF-NB-4HiGCV cells, but only minor differences
between UKF-NB-4Hi and UKF-NB-4HiGCV cells. Investigation of the expression of a subset of five genes in different chronically
HCMV-infected cell lines before and after virus eradication suggested that long-term HCMV infection reproducibly causes specific
changes. Array comparative genomic hybridisation showed virtually the same genomic differences for the comparisons UKF-NB-4Hi/
UKF-NB-4 and UKF-NB-4HiGCV/UKF-NB-4. UKF-NB-4Hi cells are characterised by an increased invasive potential compared with UKF-
NB-4 cells. This phenotype was completely retained in UKF-NB-4HiGCV cells. Moreover, there was a substantial overlap in the signal
transduction pathways that differed significantly between UKF-NB-4Hi/UKF-NB-4HiGCV and UKF-NB-4 cells and those differentially
regulated between tumour tissues from neuroblastoma patients with favourable or poor outcome. In conclusion, we present the
first experimental evidence that long-term HCMV infection can result in the selection of tumour cell populations with enhanced
malignancy.
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INTRODUCTION
Human cytomegalovirus (HCMV), a ubiquitous herpes virus,
infection leads (in immunocompetent individuals usually symp-
tomless) to a life-long persistence after primary infection. About
50 to 100% of the general adult population is infected. HCMV
routinely reactivates, but this is usually controlled by the host
immune response in healthy people. In immuno-compromised
individuals such as recipients of organ transplants or AIDS
patients, HCMV is a major pathogen.1,2

HCMV has been suspected to have a role in cancer diseases for
decades, based on seroepidemiological evidence and on the
detection of viral DNA, messenger RNA (mRNA) and/or antigens in
tumour tissues.2,3 However, in contrast to viruses from different RNA
virus (retrovirus, flavivirus) and DNA virus (hepadna virus, herpes
virus, papova virus) families that are known to be oncogenic in
humans,4 HCMV is not considered a tumour virus because of a lack
of proven transformation potential in human cells.2 With our studies
about the influence of HCMV on cancer cells,5–7 we introduced the
concept of oncomodulation, meaning that HCMV may infect cancer
cells and/or stromal cells in established tumours and increase

tumour malignancy also in the absence of transformation
potential.1–3,6,8,9 In the meantime, oncomodulatory effects
exerted by HCMV or single cytomegalovirus proteins have been
reported in vitro and in vivo by numerous groups.2,3,8–11 Moreover,
application of sensitive (although not yet indisputably accepted)
pathological methods applied by numerous independent research
groups indicated the presence of HCMV and/or virus constituents in
cancers from different cancer entities.1–3,12–17 In glioblastomas, the
presence of HCMV was correlated with higher disease stage and
worse outcome.1–3,12,18,19 In addition, expression of HCMV proteins
appeared to promote oncogenic signalling events.2,3,12,20,21

Neuroblastoma, a paediatric cancer entity, has been associated
with increased HCMV antibody titres and HCMV immediate-early
antigen (IEA) expression in a fraction of tumours.2,3,22,23 After
primary HCMV infection of different neuroblastoma cell lines, a
balance is established between virus production and cell
division.6,7,24,25 Chronically HCMV-infected neuroblastoma cells
show a more malignant phenotype indicated by properties such
as increased invasive potential, metastasis formation in nude mice
and resistance to chemotherapy.2,6,7,24
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So far, HCMV-induced oncomodulatory effects were attributed to
the presence of HCMV and direct action of its gene products, 2,3,10,24

and therefore suspected to be reversible after virus eradication.
Here, we investigated the effects of long-term HCMV strain Hi91
infection on UKF-NB-4 neuroblastoma cells. Long-term HCMV-
infected (UKF-NB-4Hi) cells showed a very close relationship with
ganciclovir-cured UKF-NB-4Hi (UKF-NB-4HiGCV) cells at the level of
gene expression and genomic copy number changes, whereas
substantial differences were detected between UKF-NB-4Hi/UKF-
NB-4HiGCV cells and parental UKF-NB-4 cells. Moreover, UKF-NB-
4HiGCV showed the same increased invasive potential as UKF-NB-
4Hi cells compared with UKF-NB-4. Bioinformatics signal
transduction pathway analysis suggested a substantial overlap in
pathways differentially regulated between UKF-NB-4Hi/UKF-NB-
4HiGCV cells and UKF-NB-4 cells, as well as between tumour tissues
from neuroblastoma patients with poor or favourable outcome.
These data indicate that the long-term presence of HCMV can
result in the irreversible selection of a cancer cell population with
increased malignancy. Investigation of the expression of a subset
of five genes in additional long-term HCMV-infected
neuroblastoma cells and their cidofovir- or ganciclovir-cured
sub-lines suggested that long-term HCMV infection of different
neuroblastoma cells reproducibly results in characteristic changes.

RESULTS
Establishment of chronically HCMV-infected neuroblastoma cells
and virus eradication
UKF-NB-4 cells, derived from bone marrow metastases of a patient
harbouring a MYCN-amplified stage IV neuroblastoma,26 were
infected once with the HCMV strain Hi9127 at MOI 10 and then
subcultured without further addition of virus (UKF-NB-4Hi). Non-
infected UKF-NB-4 cells were passaged in parallel as control. After
primary infection, about 80% of UKF-NB-4 cells were HCMV
infected (Figure 1). Five days after infection, the amount of viable
cells was about 20%, as indicated by trypan blue staining
(Supplementary Figure 1). After 200 passages, HCMV IEA and late

antigen expression remained detectable in UKF-NB-4Hi cells,
resulting in about 30–60% infected cells (Figure 1). Trypan blue
staining indicated 70–80% viable cells (5 days after passaging of
cells) (Supplementary Figure 1). Virus titres were 8.0� 102 TCID50

(tissue culture infectious dose)/ml at passage 1 (determined 5 days
after primary infection), 4.5� 102 TCID50/ml at passage 100 and
1.4� 103 TCID50/ml at passage 200 (both detected 5 days after
passaging). HCMV DNA copy numbers were 6.3� 105/106 cells at
passage 1 (determined 5 days after primary infection), 9.8� 104/
106 cells at passage 100 and 9.1� 105/106 cells at passage 200
(both detected 5 days after passaging).

Thereafter, UKF-NB-4Hi cells were treated with 20 mM ganciclovir
(a concentration that did not affect the viability of UKF-NB-4 or
UKF-NB-4Hi cells) for six passages until no HCMV gene expression
was detected anymore (UKF-NB-4HiGCV; Figure 1). Further cultiva-
tion of UKF-NB-4HiGCV cells for 10 passages did not result in
recurrence of HCMV gene expression (Figure 1). The absence of
HCMV from UKF-NB-4HiGCV cells was confirmed by virus yield assay
and quantitative PCR detecting HCMV genome (Supplementary
Figure 2).

Comparison of global gene expression in UKF-NB-4, UKF-NB-4Hi

and UKF-NB-4HiGCV cells
Triplicates of UKF-NB-4, UKF-NB-4Hi and UKF-NB-4HiGCV cells were
analysed for global cellular gene expression at the mRNA level
using gene microarray (Affymetrix HGU133plus2, Santa Clara, CA,
USA). Correlation analysis revealed a very high similarity between
gene expression profiles in UKF-NB-4Hi and UKF-NB-4HiGCV cells
but clear difference between these two cell lines and UKF-NB-4
(Figure 2a). More than 8000 genes were significantly differentially
expressed (false discovery rate (FDR)o0.05, corrected for multiple
testing) between UKF-NB-4Hi and UKF-NB-4 cells or UKF-NB-4HiGCV

and UKF-NB-4 cells, whereas only about 300 genes were
differentially expressed between UKF-NB-4Hi and UKF-NB-4HiGCV

cells (Figure 2b, Supplementary Table 1). Further analysis showed
that nearly 90% of the genes significantly differentially expressed
between UKF-NB-4Hi and UKF-NB-4 cells and between UKF-
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Figure 1. Establishment of UKF-NB-4Hi and UKF-NB-4HiGCV cells. UKF-NB-4 cells were infected once with HCMV strain Hi at MOI 10 and then
subcultured without further addition of virus (UKF-NB-4Hi). After 200 passages, UKF-NB-4Hi cells were treated for six passages with 20 mM
ganciclovir (GCV) until no HCMV IEA or late antigen (LA) expression were detectable anymore. (a) Representative pictures showing
immunostaining of UKF-NB-4, UKF-NB-4Hi or UKF-NB-4HiGCV cells for IEA or LA. (b) Fraction of HCMV antigen-expressing cells in UKF-NB-4Hi

cells at different passages after initial infection. (c) HCMV antigen expression in GCV-treated UKF-NB-4Hi cells at different passages in
comparison with non-treated UKF-NB-4Hi cells. Values represent mean±s.d. from three independent experiments. *Po0.05 relative to non-
treated UKF-NB-4Hi cells. (d) HCMV antigen expression in GCV-cured UKF-NB-4Hi (UKF-NB-4HiGCV) cells after cultivation for 10 passages in the
absence of GCV in comparison with non-treated UKF-NB-4Hi cells. n.d., not detectable.
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NB-4HiGCV and UKF-NB-4 cells were changed consistently in both
UKF-NB-4Hi and UKF-NB-4HiGCV cells (that is, were both over-
expressed or both were underexpressed compared with UKF-NB-4;
Supplementary Table 2). These data indicate that both UKF-NB-4Hi

and UKF-NB-4HiGCV strongly differ from UKF-NB-4 cells by means of
gene expression, whereas gene expression signatures of UKF-NB-
4Hi and UKF-NB-4HiGCV were very similar.

Correlation analysis of UKF-NB-4 cells stored at the beginning of
the experiments in parallel with primary infection (UKF-NB-40) and
UKF-NB-4 cells that had been cultivated in parallel with the UKF-
NB-4Hi cells for 200 passages (UKF-NB-4200) indicated a close
relationship between these two passages of the UKF-NB-4 cell line
but a substantial difference to UKF-NB-4Hi cells (Supplementary
Figure 3).

Bioinformatic signal transduction pathway analysis of global gene
expression data
Bioinformatic signal transduction pathway analysis, performed
using the PANTHER database (www.pantherdb.org), showed that
the top five differentially regulated pathways for the comparisons
UKF-NB-4Hi vs UKF-NB-4 and UKF-NB-4HiGCV vs UKF-NB-4 were the
same, although the order differed (Table 1). In total, 13 pathways
were significantly differentially regulated in both comparisons (P-
valueo0.05, corrected for multiple testing; Table 1), whereas only
three pathways were significantly differentially regulated between
UKF-NB-4Hi and UKF-NB-4 cells but not between UKF-NB-4HiGCV

and UKF-NB-4 cells (Supplementary Table 3). Four pathways were
significantly differentially regulated between UKF-NB-4HiGCV and
UKF-NB-4 cells but not between UKF-NB-4Hi and UKF-NB-4 cells
(Supplementary Table 4). No significant differentially regulated
pathways were detected between UKF-NB-4Hi and UKF-NB-4HiGCV,

confirming the high similarity of these cells at the level of gene
expression.

Gross genomic differences of UKF-NB-4Hi and UKF-NB-4HiGCV cells
compared with UKF-NB-4 cells by array comparative genomic
hybridization (CGH)
Array CGH is a technology developed to detect genomic copy
number variations. UKF-NB-4 cells were compared with UKF-NB-
4Hi cells or UKF-NB-4HiGCV cells by array CGH in order to investigate
whether genomic differences underlie the observed changes in
gene expression. Results revealed virtually identical array CGH
profiles in DNA copy number for both the comparisons UKF-NB-4Hi

vs UKF-NB-4 and UKF-NB-4HiGCV vs UKF-NB-4 (Figure 3). There is
evidence of aneuploidy, chromosome segment gain and loss and
individual loci loss/gain. Specifically, we detected aneuploidy
(gain) of chromosomes 6, 13 and 20, with loss of 14, 15 and 18.
Structural gains were observed at terminal 2p, the whole of 9q
(with a small portion of 9p), 12q, terminal 17p and 20q. Losses are
detected of chromosome 1q (and about a third of proximal 1p),
parts of chromosome 3, terminal 5q, a central portion of 8q, most
of terminal 9p, terminal 15q (in addition to the aforementioned
aneuploidy) and 20p. Reciprocal gains and losses of p and q arms
on chromosomes 9 and 20 (and possibly chromosome 12) may
indicate the presence of isochromosomes. Single locus gains
(gene amplifications) were apparent on chromosomes 4q and 15q,
with losses on 7p, 7q, 9p, 10 (near the centromere), 15q and 16q.

UKF-NB-4, UKF-NB-4Hi or UKF-NB-4HiGCV adhesion to and
transmigration through endothelial monolayers
UKF-NB-4, UKF-NB-4Hi and UKF-NB-4HiGCV were investigated for
cancer cell adhesion to and migration through human umbilical
vein endothelial cell (HUVEC) monolayers. These events are
considered to be important during metastasis formation. HCMV-
infected neuroblastoma cells had been shown earlier to exhibit a
stronger invasive potential than non-infected cells.28 UKF-NB-4Hi

and UKF-NB-4HiGCV cells both showed a strongly increased adhesion
to endothelial cells (Figure 4a), as well as enhanced numbers of
transmigrating cells (Figure 4b) when compared with UKF-NB-4.
Moreover, UKF-NB-4Hi and UKF-NB-4HiGCV cells (but not UKF-NB-4
cells) disrupted endothelial cell monolayer integrity, resulting in
focal plaques (that is, round openings that are not associated with
endothelial cell HCMV infection or death as described28) (Figure 4c).
Previous results had shown that interaction of UKF-NB-4 cells with
endothelial cells depended on a5b1 integrin binding.28 Here,
adhesion of UKF-NB-4, UKF-NB-4Hi and UKF-NB-4HiGCV cells to and
transmigration through endothelial cell monolayers could be
inhibited by an antibody blocking a5b1 integrin (Figures 4a and
b). Moreover, antibody-mediated inhibition of a5b1 integrin
binding also interfered with endothelial cell monolayer disruption
by UKF-NB-4Hi or UKF-NB-4HiGCV cells.

These findings suggest that the enhanced malignant properties
of UKF-NB-4Hi cells are at least partly retained in UKF-NB-4HiGCV

cells after and despite virus eradication.
Signal transduction pathways differentially regulated between

UKF-NB-4 and UKF-NB-4Hi/UKF-NB-4HiGCV cells and between
tumours from neuroblastoma patients with favourable or non-
favourable outcome.

Next, signal transduction pathways differentially regulated
between UKF-NB-4 and UKF-NB-4Hi/UKF-NB-4HiGCV cells were
analysed in the context of two gene expression data sets derived
from neuroblastoma patients. The first data set (Oberthuer et al.)
was derived from a study comparing gene expression signatures
between N-myc-amplified neuroblastoma tissues from patients
with favourable outcome (event-free survival) or poor outcome
(death or relapse of disease) (www.ebi.ac.uk/arrayexpress; acces-
sion E-TABM-38; Oberfhuer et al.29). The second data set
(Asgharzadeh et al.) investigated gene expression in non-N-myc-
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Figure 2. Comparison of global gene expression in UKF-NB-4, UKF-
NB-4Hi and UKF-NB-4HiGCV cells by gene microarray. (a) Hierarchical
cluster analysis based on the Pearson correlation coefficient.
(b) Numbers of genes significantly differentially expressed
(FDRo0.05) between the investigated cell lines.
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amplified neuroblastoma tissues from patients with favourable
outcome (no relapse) or poor outcome (relapse of disease)
(www.ncbi.nlm.nih.gov/geo/; accession number GSE344630). In
the Oberthuer et al. data set, 21 out of the 153 PANTHER
pathways were significantly differentially regulated (Po0.05,
corrected for multiple testing) between favourable outcome and
poor outcome patients. Nine of the 13 pathways that had been
found to be differentially regulated between UKF-NB-4 and UKF-
NB-4Hi/UKF-NB-4HiGCV were also significantly differentially
regulated between favourable and poor outcome samples in

this data set (Table 2). In the Asgharzadeh et al. data set, 32 out
of the 153 pathways were significantly differentially regulated,
and 12 of the 13 pathways differentially regulated between UKF-
NB-4 and UKF-NB-4Hi/UKF-NB-4HiGCV were also significantly
differentially regulated between favourable and poor outcome
patients (Table 2).

Moreover, 7 of the 13 pathways (Angiogenesis, platelet-derived
growth factor signalling pathway, Ras pathway, p53 pathway, p53
pathway feedback loops 2, Parkinson disease, Integrin signalling
pathway) belonged to the 10 most strongly differentially

Table 1. Signal transduction pathways that are significantly differentially regulated (Po0.05, corrected for multiple testing) in UKF-NB-4Hi vs UKF-NB-
4 and UKF-NB-4HiGCV vs UKF-NB-4 cells as identified by PANTHER pathway analysis

Pathway (number of genes annotated
in the pathway)

UKF-NB-4Hi vs UKF-NB-4
(ranka,/P-value/genes affected b)

UKF-NB-4HiGCV vs UKF-NB-4
(ranka,/P-value/genes affected b)

Wnt signalling (348) 1/1.76� 10� 10/191 1/3.32� 10� 10/190
Ras pathway (91) 2/1.57� 10� 6/64 3/8.14� 10� 6/62
Ubiquitin proteasome pathway (89) 3/3.69� 10� 6/62 4/8.48� 10� 6/61
Cadherin signalling pathway (168) 4/1.12� 10� 5/96 2/6.21� 10� 6/97
Parkinson disease (106) 5/7.04� 10� 5/66 5/1.72� 10� 5/68
Angiogenesis (229) 6/3.38� 10� 4/115 12/8.50� 10� 3/108
Integrin signalling pathway (227) 7/6.04� 10� 4/113 9/2.51� 10� 3/110
EGF receptor signalling pathway (150) 8/8.68� 10� 4/81 6/8.91� 10� 4/81
PDGF signalling pathway (187) 9/8.69� 10� 4/97 11/6.33� 10� 3/93
p53 pathway (136) 11/2.94� 10� 3/73 7/9.63� 10� 4/75
Huntington disease (172) 12/1.57� 10� 3/87 8/4.23� 10� 3/89
p53 pathways feedback loops 2 (66) 13/1.02� 10� 2/41 13/1.00� 10� 2/41
Cytoskeletal regulation by Rho GTPase (111) 16/3.93� 1� 2/58 16/3.86� 10� 2/58

Abbreviations: EGF, epidermal growth factor; PDGF, platelet-derived growth factor. aPathways were ranked by their P-values with the lowest P-value being rank 1.
bPathway genes differentially expressed between the data sets (FDRo0.05). In total, 25 431 genes were annotated in the PANTHER reference list. 8832 genes were
differentially expressed between UKF-NB-4Hi and UKF-NB-4, 8873 between UKF-NB-4HiGCV and UKF-NB-4.
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regulated pathways of the Oberthuer et al. data set. Six of the 13
pathways (Wnt signalling pathway, Angiogenesis, Huntington
disease, platelet-derived growth factor signalling pathway,

epidermal growth factor receptor signalling pathway, p53 path-
way) belonged to the 10 most strongly differentially regulated
pathways of the Asgharzadeh et al. data set.

DISCUSSION
Oncomodulation is a concept postulating that HCMV may infect
cancer cells and/or stromal cells in established tumours and
increase tumour malignancy also in the absence or indepen-
dently of transformation potential.2,3,6 To study long-term
effects of HCMV on cancer cells, chronically HCMV-infected
neuroblastoma cell cultures were established.6,7,24,25 Here, we
show that long-term HCMV infection of UKF-NB-4 neuroblastoma
cells results in the establishment of a cell population that is
clearly distinct from the parental UKF-NB-4 cell line regarding
global gene expression and genomic imbalances. Eradication of
HCMV from chronically HCMV strain Hi91-infected UKF-NB-4
(UKF-NB-4Hi) cells causes only minor effects on gene expression
in the resulting UKF-NB-4HiGCV cell line as indicated by
comparison of differentially expressed genes, as well as by
bioinformatics signal transduction pathway analyses. Genomic
imbalances are virtually the same between UKF-NB-4Hi and UKF-
NB-4 cells and between UKF-NB-4HiGCV and UKF-NB-4 cells as
indicated by array CGH.

UKF-NB-4Hi cells show an increased invasive phenotype
indicating enhanced tumour cell malignancy compared with
UKF-NB-4 cells. This more invasive phenotype is completely
sustained in ganciclovir-cured UKF-NB-4HiGCV cells. Thirteen signal
transduction pathways are significantly differentially regulated
between UKF-NB-4 cells and both UKF-NB-4Hi and UKF-NB-4HiGCV

cells. The majority of these pathways are also significantly
differentially regulated between tissues from neuroblastoma
patients with favourable outcome and those from patients with
unfavourable disease course (9 out of 13 in the Oberthuer et al.
data set,29 and 12 out of 13 in the Asgharzadeh et al. data set30).
This demonstrates that long-term HCMV infection of
neuroblastoma cells can result in the establishment of a novel
cell population with different malignant properties compared with
the parental cell line. Moreover, malignant features, at least in part,
no longer depend on the presence of HCMV or its gene products
after long-term HCMV infection.

To enhance the confidence that the observed effects are
associated with the presence of HCMV and to receive some more
information about the specificity of the HCMV-induced selection
process, five genes were selected that had been shown earlier to
be significantly differentially expressed in various chronically
HCMV-infected neuroblastoma cell lines relative to the corre-
sponding non-infected cell lines: DHFR (encoding for dihydrofo-
late reductase), ENPP2 (encoding for autotaxin), KIAA0101
(encoding for a protein that is also known as PCNA-associated
factor/p15(PAF)), NDRG1 (encoding for N-myc downstream
regulated 1) and TMPRSS15 (also known as PRSS7, encoding for
a protein known as enterokinase or transmembrane protease,
serine 15).25 These genes were also significantly differentially
regulated between UKF-NB-4 and both UKF-NB-4Hi and UKF-NB-
4HiGCV cells (as indicated by gene expression microarray data and
confirmed by real-time PCR, Supplementary Table 5,
Supplementary Figure 4), and between MHH-NB-11 cells chroni-
cally infected with HCMV strain AD169 (MHH-NB-11AD169,25) and
its sub-lines in which the virus was eradicated by the addition of
ganciclovir (MHH-NB-11AD169GCV) or cidofovir (MHH-NB-11AD169CDF)
compared with parental MHH-NB-11 cells (Supplementary
Figure 5).

Acute infection of UKF-NB-4 cells with HCMV strain Hi91 did not
affect the expression of DHFR, ENPP2, KIAA0101, NDRG1 or
TMPRSS15. Moreover, chronic infection of UKF-NB-4 cells with
varicella zoster virus strains did not influence the expression of
these genes (data not shown), indicating that the expression of
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Figure 4. Adhesion of UKF-NB-4, UKF-NB-4Hi and UKF-NB-4HiGCV cells
to endothelial cell monolayers, transmigration and endothelial cell
monolayer distruction. (a) Fractions of cells that adhered to HUVEC
monolayers (in the presence or absence of an a5b1-blocking
antibody (a, b)) were expressed as the percentage of the total
number of input cells. (b) Fractions of cells that transmigrated
through HUVEC monolayers (in the presence or absence of an a5b1-
blocking antibody (a, b)) were expressed as the percentage of the
total number of adherent cells. (c) Focal endothelial cell monolayer
disruption (in the presence or absence of an a5b1-blocking antibody
(a, b)) was expressed as the percentage of the cell-free area. Values
represent mean±s.d. from three independent experiments.
*Po0.05 relative to UKF-NB-4; #Po0.05 relative to the corresponding
cell line in the absence of a5b1-blocking antibody; n.d., not
detectable; AB, antibody.
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these genes is not commonly influenced by the long-term
presence of different members of the herpes virus family (or a
consequence of genetic drift). Together, these findings support
the idea that the specific adaptation and selection processes
during chronic HCMV infection reproducibly result in novel cell
populations with characteristics clearly distinct from the parental
cell lines.

Various processes might be involved in the observed establish-
ment of a novel, more malignant neuroblastoma cell population
due to long-term HCMV infection. In fully permissive normal cells
such as human fibroblasts, HCMV results in cell cycle arrest and
subsequent cell lysis.2,31 However, (at least a fraction of)
chronically HCMV-infected cell cultures must escape from HCMV-
induced cell cycle block and death. In this context, cell cycle
deregulation is regarded as ‘hallmark’ of cancer, 32 and HCMV may
not be able to induce an effective cell cycle block in certain cancer
cells.2 HCMV antigen-positive glioblastoma cells were shown to
divide, resulting in two HCMV antigen-expressing progeny cells.33

In sarcoma or glioblastoma cells, virus variants arose that
replicated more slowly and produced lower virus yields than the
original strain used for primary infection.2,34,35 Therefore, changes
of virus properties may contribute to the selection of a more
malignant cell fraction in our model, although HCMV strain Hi91
reisolated from UKF-NB-4Hi cells showed virtually the same growth
kinetics after acute infection in UKF-NB-4 cells and human foreskin
fibroblasts as the original virus used for primary infection.

Stress conditions activate cellular survival signalling pathways,
resulting in a condition thought to favour adaptation processes in
malignant cells.36 In this context, HCMV is known to exert pro-
inflammatory effects and to activate crucial events in survival
signalling, such as NFkB, PI3K-Akt, MAPKs and/or JNK, and inhibit
apoptosis by effects on p53 and p73, as well as by enhancing
expression of anti-apoptotic proteins such as bcl-2.1,2,37 Moreover,
HCMV is suspected to promote chromosomal instability in
infected cells.2,38 Stable expression of the HCMV UL76 protein
was sufficient to induce chromosomal aberrations in glioblastoma
cells.39 Indeed, the long-term presence of HCMV had resulted in
chromosomal imbalances in UKF-NB-4Hi cells in our experiments.
As HCMV is known to also modify epigenetic features such as
histone acetylation of infected cells,19,40–42 epigenetic
mechanisms are also likely to contribute.

Finally, cancer cells are characterised by chromosomal instabil-
ity, resulting in clonal evolution, that is, the permanent
appearance and disappearance of novel (sub-)clones

(characterised by various mutations and/or genomic aberrations)
that compete for space and resources.32,43 Therefore, HCMV may
also exert a selection pressure on clones initially present in a
cancer cell population or on clones that develop in the presence,
but without the involvement, of HCMV. Five metaphases from
UKF-NB-4, UKF-NB-4Hi or UKF-NB-4HiGCV cells were investigated by
spectral karyotyping. Apparently, six abnormalities are consistently
found in cells from all three cell lines, suggesting the cells to be of
a common origin (Supplementary Table 6). Nevertheless, the long-
term presence of HCMV may exert a selection pressure that
favours the growth of (a) specific cell clone(s).

In conclusion, we present evidence that long-term HCMV
infection of neuroblastoma cells can lead to the selection of a
novel cell population with increased malignant properties. It is
the first report demonstrating that HCMV infection can irrever-
sibly modulate the malignant properties of cancer cells in
such a way that the HCMV-induced enhanced cancer cell
malignancy is retained (at least in part) even when the virus is
eradicated from the cancer cells. This indicates that HCMV can
act as a selection agent in cancer cells. Therefore, our findings
represent a profound extension to the concept of oncomodula-
tion2,3,6 and a novel way by which viruses may influence cancer
diseases.

MATERIALS AND METHODS
Immunostaining for HCMV antigen expression
As described previously,44 cells producing HCMV-specific antigens were
detected by immunoperoxidase staining using monoclonal antibodies
directed against the UL123-coded 72-kDa IEA1 (DuPont, Bad Homburg,
Germany) or late antigen gB (kindly provided by K Radsak, Institut für
Virologie, Marburg, Germany).

Virus propagation
HCMV Strain Hi91 was isolated from the urine of an AIDS patient with
HCMV retinitis.27 Virus stocks were prepared in human foreskin fibroblasts
maintained in minimal essential medium with 4% foetal calf serum. The
titres were determined by plaque titration as described previously.44

Virus yield assay
The amount of infectious virus was determined by virus yield assay in a
single-cycle assay format using human foreskin fibroblasts as described
before.44 Virus titres were expressed as 50% of tissue culture infectious
dose (TCID50) 120 h post infection.

Table 2. Analysis of signalling pathways significantly differentially expressed (Po0.05, corrected for multiple testing) between UKF-NB-4Hi and UKF-
NB-4HiGCV cells and UKF-NB-4 in data sets of neuroblastoma patients27,28 PANTHER pathway analysis

Pathway Oberthuer et al.27,a Asgharzadeh et al.28,b

Death/relapse from disease vs
no relapse rankc (P-value)

Relapse vs no relapse rankc (P-value)

Wnt signalling 14 (2.33� 10� 3) 1 (4.13� 10� 14)
Ras pathway 4 (6.70� 10� 7) 14 (1.58� 10� 4)
Ubiquitin proteasome pathway 44 (4.82� 10� 1) 15 (1.84� 10� 4)
Cadherin signalling pathway 76 (1.00� 100) 23 (4.44� 10� 3)
Parkinson disease 9 (2.49� 10� 4) 27 (1.49� 10� 2)
Angiogenesis 1 (5.60� 10� 13) 2 (1.31� 10� 9)
Integrin signalling pathway 10 (2.67� 10� 4) 11 (1.63� 10� 5)
EGF receptor signalling pathway 11 (5.11� 10� 4) 6 (4.90� 10� 7)
PDGF signalling pathway 3 (4.53� 10� 8) 4 (2.74� 10� 8)
p53 pathway 5 (5.57� 10� 6) 8 (8.60� 10� 7)
Huntington disease 42 (4.34� 10� 1) 3 (2.15� 10� 8)
p53 pathways feedback loops 2 6 (6.63� 10� 6) 39 (1.18� 10� 1)
Cytoskeletal regulation by Rho GTPase 86 (1.00� 100) 18 (4.98� 10� 4)

Abbreviations: EGF, epidermal growth factor; PDGF, platelet-derived growth factor. a21 out of 153 pathways were significantly differentially regulated (Po0.05).
b32 out of 153 pathways were significantly differentially regulated (Po0.05). cPathways were ranked according to their P-values for the comparison of non-
favourable vs favourable outcome with the lowest P-value being rank 1.
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Cells
UKF-NB-4 cells derived from bone marrow metastases of a patient
harbouring a MYCN-amplified stage IV neuroblastoma were used.26 Cells
were grown at 37 1C in Iscove’s modified Dulbecco’s medium
supplemented with 10% heat-inactivated foetal calf serum and
containing 100 IU/ml of penicillin and 100mg/ml streptomycin. HUVECs
were cultivated as described before.44

Global gene expression analysis
Triplicates of UKF-NB-4, UKF-NB-4Hi and UKF-NB-4HiGCV cells were analysed
for global cellular gene expression at the mRNA level using GeneChip
HGU133 Plus 2.0 (Affymetrix) by the Fraunhofer Institut für Zelltherapie
und Immunologie (Leipzig, Germany). mRNA was isolated using the
RNeasy kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Expression data were processed using the R/bioconductor
packages ‘gcrma’ and ‘limma’ (www.r-project.org/; www.bioconductor.org/)
in order to detect fold changes and FDRs.45 FDRs were corrected for
multiple testing after Benjamini and Hochberg.46 Hierarchical clustering
analysis was performed and heatmaps were visualised using R (www.r-
project.org).

Signal transduction pathway bioinformatics
Statistical analysis to identify significant expression changes was focusing
on a pathway analysis using the PANTHER database, which identifies
global patterns in expression.47 For each expert-curated pathway in the
database, potential differential expression was determined by a binomial
test48 with subsequent Bonferroni correction for multiple testing, using the
PANTHER human gene reference list matching our microarrays and lists of
differentially expressed genes that passed a FDR threshold of 0.05.

Array CGH
DNA was isolated from UKF-NB-4, UKF-NB-4Hi and UKF-NB-4HiGCV cell lines
using the DNAeasy Blood & Tissue kit (Qiagen) following the manufac-
turer’s instructions. Using DNA from cell line UKF-NB-4 as reference cell
lines, UKF-NB-4Hi and UKF-NB-4HiGCV were profiled for DNA copy number
changes by applying the Nimblegen oligonucleotide microarray platform.
Hybridisations on Nimblegen HG18_WG_CGH_v2D_HX1 microarrays and
microarray data processing were carried out at Source BioScience
imaGenes (Berlin, Germany). The chips used contain 2.5 mio oligonucleo-
tides tiling the human genome at an average probe spacing of 1.2 kb.
Microarray images were processed in the NimbleScan 2 software (Roche
NimbleGen, Madison, WI, USA).

Adhesion and transmigration assay
Neuroblastoma cell adhesion to and transmigration through HUVEC
monolayers was determined as previously shown.28 HUVECs were
pretreated with 3-aminopropyl-triethoxy-silan (2%; Sigma-Aldrich Chemie
GmbH, Munich, Germany). Neuroblastoma cells were added. After 4 h, non-
adherent neuroblastoma cells were washed off. Further, cells were fixed
with 1% (w/v) glutaraldehyde (Merck KGaA, Darmstadt, Germany).
Adherent cells were counted in six different fields (5� 0.25 mm2) using
phase contrast microscopy. Transmigrating neuroblastoma cells were
detected using a reflection interference contrast microscope with a
Phloem apparatus (Nikon, Düsseldorf, Germany).

HUVEC monolayer disruption was detected and quantified, as described
earlier28, after 24 h of cocultivation of HUVEC monolayers with UKF-NB-4,
UKF-NB-4Hi or UKF-NB-4HiGCV cells.

For blocking experiments, the a5b1 antibody VLA-5 (clone SAM-1,
Hycultec GmbH, Beutelsbach, Germany) was used.

Quantitative real-time PCR
Total RNA was isolated from cell cultures using TRI reagent (Sigma-Aldrich).
Quantitative real-time reverse transcriptase PCR (qRT–PCR) for viral mRNA
was performed as described previously.44 Cellular mRNA was detected
using TaqMan Gene Expression Assays (Applied Biosystems, Darmstadt,
Germany).

DNA was purified using the DNeasy Blood & Tissue Kit (Qiagen). Viral
DNA quantification was carried out by real-time PCR as described before.44
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