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Abstract

Background

Having the ability to scan the entire country for potential “hotspots” with increased risk of de-

veloping chronic diseases due to various environmental, demographic, and genetic suscep-

tibility factors may inform risk management decisions and enable better environmental

public health policies.

Objectives

Develop an approach for community-level risk screening focused on identifying potential

genetic susceptibility hotpots.

Methods

Our approach combines analyses of phenotype-genotype data, genetic prevalence of sin-

gle nucleotide polymorphisms, and census/geographic information to estimate census

tract-level population attributable risks among various ethnicities and total population for the

state of California.

Results

We estimate that the rs13266634 single nucleotide polymorphism, a type 2 diabetes sus-

ceptibility genotype, has a genetic prevalence of 56.3%, 47.4% and 37.0% in Mexican Mes-

tizo, Caucasian, and Asian populations. Looking at the top quintile for total population

attributable risk, 16 California counties have greater than 25% of their population living in

hotspots of genetic susceptibility for developing type 2 diabetes due to this single genotypic

susceptibility factor.

Conclusions

This study identified counties in California where large portions of the population may bear

additional type 2 diabetes risk due to increased genetic prevalence of a susceptibility
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genotype. This type of screening can easily be extended to include information on environ-

mental contaminants of interest and other related diseases, and potentially enables the

rapid identification of potential environmental justice communities. Other potential uses of

this approach include problem formulation in support of risk assessments, land use plan-

ning, and prioritization of site cleanup and remediation actions.

Introduction
Communities and public health agencies, such as the US Environmental Protection Agency
(EPA), would benefit from being able to quickly screen local communities, and potentially the
entire country, for possible geographic “hotspots” for increased risk of developing chronic dis-
eases due to varied socioeconomic, demographic, genetic, and environmental factors. Leverag-
ing data science approaches (i.e., extracting knowledge from multiple, disparate sources of
data) should allow for the identification of these geographic areas whose populations are at in-
creased risk due to multiple risk factors.

Emerging evidence suggests that race, socioeconomic factors, and where one lives may
adversely impact one’s risk of developing type 2 diabetes mellitus (T2DM) [1,2]. Recent epide-
miologic evidence regarding the association of T2DM and environmental contaminants addi-
tionally suggests a relationship between some heavy metals (arsenic) and persistent organic
pollutants (PCBs, p,p’-DDE) [3]. However, the current evidence fails to support associations
with other contaminants such as mercury and cadmium [3]. Identified gaps in current epide-
miologic database include how co-exposures, comorbidities, and genetic variants modify the
association between T2DM and individual environmental pollutants. As genomic determi-
nants of T2DM have been shown to demonstrate heterogeneity across populations [4], it is
possible that these differential genetic susceptibilities may interact with environmental factors
to tip the scale in favor of developing T2DM. Therefore, information regarding the prevalence
of genetic polymorphisms conferring increased risks of developing T2DM within various
human populations would allow for the identification of potentially susceptible populations.
Finally, the locations where these susceptible populations live can be identified through the use
of census data, and geographic information systems (GIS) can be used to generate maps to dis-
play those hotspots of genetic risk. As a pilot study, this analysis focused on the state of Califor-
nia and the characterization of the risk of developing T2DM in three separate ethnic groups
due to a single nucleotide polymorphism (SNP).

Materials and Methods

Genetic Data Mining
We performed literature and database searches to identify several genotypes that have been
shown to be associated with T2DM [5]. As a pilot study, we decided to focus on the C/T
rs13266634 polymorphism in the solute carrier family 30 member 8 (SLC30A8) zinc transport-
er for our study based on its role in insulin packaging. Zinc has been associated with insulin
biosynthesis [6], and chronic decreased zinc intake has been associated with an increased risk
of diabetes [7]. Specifically, the SCL30A8 Zn transporter is expressed in the pancreatic beta-cell
secretory vesicles, and is primarily responsible for transporting Zn from the cytoplasm into the
secretory vesicles for insulin maturation, storage, and secretion [8]. The SNP rs13266634 has
been shown to be associated with T2DM in multiple populations [9–17]. The risk allele in
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rs13266634 is C, while the minor allele is T [10,18]. As SCL30A8 requires Zn for its catalytic
function, it is particularly susceptible to competition from other divalent cations. Therefore,
characterizing the differential risk this polymorphism confers on individual populations may
help refine the determination of any association between T2DM and exposure to divalent
heavy metals in the environment. We used the Database of Single Nucleotide Polymorphisms
(dbSNP) [19] and subsequent literature searching to identify the prevalence of this SNP in vari-
ous human populations.

Calculation of Population Attributable Risk
Individual studies reporting increased odds of T2DM in Asian or European carriers of the
rs13266634 polymorphism were identified from a previously published 2011 meta-analysis [8].
For this analysis, homozygous carriers of the risk allele (i.e., CC) were considered to be at great-
est risk of developing T2DM compared to dominant carriers (i.e., CT and TT). Using informa-
tion provided [8], studies were identified for inclusion if they provided enough information to
calculate the total frequency of the CC genotype in the study population (i.e., either the actual
genotype numbers for cases and controls or the risk allele frequency). If a study did not explic-
itly report genotype numbers for cases and controls, that study was still included in the analysis
if the risk allele frequency was reported in the control and case populations. Assuming Hardy-
Weinburg equilibrium in these populations, the expected number of carriers of the CC geno-
type can be calculated as follows:

Expected CC ¼ p2n ð1Þ

where p is the reported risk allele frequency, and n is the case and control study populations.
Study specific frequencies of the CC genotype were calculated by summing the number of case
and control carriers of the CC genotype and dividing by the total study population. Weighted
CC genotype frequencies for Asian or European populations were then calculated using indi-
vidual study sizes for the weights. In order to characterize the genetic risk the rs13266634 poly-
morphism confers to homozygous carriers, the population attributable risk (PAR) for each
ethnicity was calculated as follows [20,21]:

PAR ¼ 100� ðE�ðOR � 1ÞÞ
ð1þðE�ðOR � 1ÞÞ ð2Þ

where E is the frequency of the CC genotype (calculated as described above) and OR is the re-
ported odds ratio for developing T2DM in the study populations. The PAR is the proportion of
T2DM cases in the various populations expected to occur solely due to the presence of the CC
risk genotype. Pooled odds ratios and 95% confidence limits were calculated from individual
studies as described previously [8]. Assuming a dominant model (i.e., CC vs. [CT + TT]), a
fixed-effect model was used to calculate a pooled OR across all included Asian and European
study populations. The pooled OR was considered statistically significant with Z-test p
value< 0.05. To determine whether using a fixed-effect model was appropriate, the heteroge-
neity of the individual studies was assessed using the Χ2-based Q test. Evidence of statistical
heterogeneity was assumed if the p-value for the Q test was< 0.10, or the I2 value was> 50%.
If evidence of heterogeneity was evident, a random-effects model was then used. The CC fre-
quency and PAR for a single Mexican Mestizo population was calculated using information
published in the available literature [22]. All statistical analyses were conducted using the R sta-
tistical package (version 3.0.1, the R Foundation for Statistical Computing).
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Generating Hotspot Maps for California
The following demographic data for California on the census tract level were extracted from
the 2007–2011 American Communities Survey: Caucasian population, Asian population, and
Mexican (of any race) population [23]. Total population was calculated as the sum of the Cau-
casian, Asian-American, and Mexican populations (i.e., the “total” population for this analysis
excludes population figures for any other ethnicities). For the purposes of identifying potential
hotspots of T2DM incidence due to the rs1326634 polymorphism, the PARs calculated for Eu-
ropean, Asian, and Mexican populations [8,22] were assumed to be representative of the Cau-
casian, Asian, and Mexican (of any race) populations reported in the census data. The census
tract level demographic data were joined to a census tract shapefile for California using ArcGIS
(version 10.1). A weighted average PAR for the total population in each census tract was then
calculated using the subgroup populations as the weights. By extension, subgroup-specific
PARs for each census tract can be calculated by multiplying the population of that subgroup by
the subgroup-specific PAR and then dividing by the total population; these values represent
the proportion of T2DM cases expected to occur in the total population solely due to the pres-
ence of the risk allele in that specific subgroup. Shaded maps were constructed displaying the
PAR (categorized by quintile) in each Californian census tract due to Caucasian, Asian-Ameri-
can, or Mexican-American populations individually, or in aggregate. Finally, “hotspots” of ge-
netic T2DM susceptibility were identified by determining which counties in California had
>25% of their population (Caucasian, Asian-American, or Mexican-American only) residing
in census tracts in the highest quintile for Total PAR. All maps were created using ArcGIS soft-
ware by ESRI. ArcGIS and ArcMap are the intellectual property of ESRI and are used herein
under license (Copyright ESRI, all rights reserved).

Results
Of the studies previously identified [8], 22 studies (28 individual study populations, herein re-
ferred to as “cohorts”) were included in the current analysis [10,11,13,16,24–41]. After careful
consideration, the following cohorts were excluded from the analysis: 3 cohorts investigated
non-European or Asian populations (Ashkenazi Jews and Pima Indians) [24,42,43], 2 cohorts
utilized a non-case-control study design [44,45], and 4 cohorts provided inadequate informa-
tion to calculate genotype frequencies (see Methods) [9,12,17,46]. Cohorts of African popula-
tions [16,24,47] were excluded from this analysis as the pooled OR for those cohorts was not
statistically significantly increased (1.20 [0.90–1.40]) [8].

Initial prevalence information was obtained from the dbSNP database, which contains the
HapMap data. The rs13266634 SNP has an estimated risk allele frequency in the Mexican pop-
ulation of 81% (CC/CT). In the Caucasian and Asian populations, the risk allele has an estimat-
ed prevalence of 73.6% and 55.6%, respectively. For the studies used in the pooled cohort OR
and PAR calculations, average risk allele frequencies in T2DM cases for Caucasians (70.4%)
and Asians (61.7%) were similar to those reported in the dbSNP database; the risk allele fre-
quency in the Mexican Mestizo population included in this analysis [22] also was similar the
reported value in the database. When a weighted CC genotype frequency was calculated for
these three ethnicities, Mexican Mestizos had the highest CC frequency (56.3%), followed by
Caucasians (47.4%) and Asians (37.0%) (Table 1).

When calculating pooled ORs for the Asian and Caucasian cohorts included in subsequent
PAR calculations, homozygous carriers of the CC genotype were observed to have a statistically
significant increase in the odds of having T2DM compared to those with the CT or TT geno-
type: OR = 1.19, 95% CI: 1.06–1.33, p< 0.01; OR = 1.21, 95% CI: 1.13–1.30, p< 0.001, respec-
tively. Results for the Asian cohorts were similar when all cohorts were used (above results) or
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when only the studies that reported explicit CC genotype numbers were used (OR = 1.20, 95%
CI: 1.04–1.37, p< 0.01); therefore, results using all cohorts were used in the PAR calculation
for the Asian population. As all included Caucasian cohorts reported explicit CC genotype
numbers, no sub-analysis was necessary. No evidence of heterogeneity was observed in either
group of cohorts (Asians: I2 = 0, p = 0.46; Caucasians: I2 = 10.4, p = 0.35). Using a random-
effects model to calculate the pooled ORs resulted in similar results for both Asian and Cauca-
sian cohorts (results not shown). Using reported data [22], homozygous carriers of the CC

Table 1. CC genotype frequencies for T2DM cases and controls, with calculated population attributable risks.

Cohort Cases (N) Cases—CC
Genotype

Cases
RAF

Controls (N) Controls—CC
Genotype

Controls
RAF

Total N Total CC Frequency
CC Genotype

Weighted
Frequency CC

PARa

Asian Cohorts

Horikoshi 860 328 0.604b 859 293 0.57b 1719 621 0.361 0.370 0.065

Steinsthosdottir 1426 464 0.566 970 259 0.523 2396 723 0.302

Furukawa 405 151 0.616b 340 121 0.593b 745 272 0.365

Horikawa 1830 690 0.6 1574 522 0.56 3404 1212 0.356

Lee 908 324 0.61b 502 156 0.558b 1410 480 0.340

Omori 1614 651 0.633 1045 381 0.6 2659 1032 0.388

Sanghera 532 290 0.728b 349 188 0.732b 881 478 0.543

Hu 1849 695b 0.613 1785 558c 0.559 3634 1253 0.345

Tabara 493 162 0.591b 400 133 0.568b 893 295 0.330

Chauhan 2466 1578b 0.8 2539 1505c 0.77 5005 3084 0.616

Han 992 386 0.62 1005 327 0.57 1997 713 0.357

Huang 443 134 0.541 229 64 0.483 672 198 0.295

Lin 1529 532b 0.59 1439 420c 0.54 2968 952 0.321

Ng 1481 485b 0.572 1530 433c 0.532 3011 918 0.305

Ng 761 299b 0.627 632 216c 0.585 1393 515 0.370

Ng 799 278b 0.59 1516 514c 0.582 2315 792 0.342

Wu 424 144b 0.583 2786 899c 0.568 3210 1043 0.325

Xiang 521 175b 0.579 721 203c 0.53 1242 377 0.304

Tan 1541 433b 0.53 2196 617c 0.53 3737 1050 0.281

Tan 1076 375b 0.59 2257 733c 0.57 3333 1108 0.332

Tan 246 146b 0.77 364 199c 0.74 610 345 0.566

European Cohorts

Scott 2342 1011 0.649 2397 891 0.609 4739 1902 0.401 0.474 0.092

Sladek 2562 1440 0.746b 2878 1413 0.699b 5440 2853 0.524

Steinthorsdottir 3776 1871 0.7 12361 5575 0.666 16137 7446 0.461

Zeggini 1550 794 0.712b 2866 1393 0.694b 4416 2187 0.495

Cauchi 2715 1453 0.729b 4255 2114 0.705b 6970 3597 0.512

Cauchi 828 360 0.74b 952 367 0.699b 1780 727 0.408

Cauchi 437 240 0.653b 676 331 0.626b 1113 571 0.513

Mexican Cohorts

Gamboa-
Meléndez

1027 609 0.77 990 526 0.729 2017 1135 0.563 — 0.138

a PAR calculated using ORs of 1.19, 1.21, and 1.28 for Asian, Caucasian, and Mexican cohorts, respectively;
b risk allele frequency calculated from provided genotype incidences assuming Hardy-Weinberg equilibrium;
c calculated assuming Hardy-Weinberg equilibrium: numbers with CC Genotype = p2n, where p is the risk allele frequency and n is the number of cases

or controls

doi:10.1371/journal.pone.0121855.t001
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genotype in Mexican Mestizos were also observed to have a statistically significant increase in
the odds of having T2DM: OR = 1.28, 95% CI: 1.08–1.53.

The genetic prevalence data and pooled ORs were used to calculate PAR values for the indi-
vidual ethnic groups (Table 1). Mexican Mestizos had the highest PAR of the three ethnicities
(0.138), more than double the risk in Asian-American populations (PAR = 0.065); Caucasians
were observed to have a PAR of 0.092. PAR values for the three ethnicities were then combined
with the census (tract level) data to generate PARmaps (categorized by quintiles). These PAR
maps (S1–S4 Figs) present the geographic distribution across California of the proportion of
T2DM cases due solely to the rs13266634 SNP in the SLC30A8 gene for individual ethnicities
and the total population in aggregate. For example, when investigating the expected prevalence
of T2DM due to the Asian-American population in California, the PAR is very low (> 1%)
across the majority of the state (S1 Fig). This reflects that the small number of Asian-Americans
living in rural portions of California contributes very little to the expected prevalent cases of
T2DM in those areas. Conversely, the PAR due to solely to the Caucasian population in these
areas is much higher (~6–9% prevalent cases of T2DM, S2 Fig), reflecting the larger percentage
of the total population Caucasians represent in these areas, and thus the larger contribution that
population makes to T2DM prevalence. The greatest values for T2DM PAR are located in areas
where Mexican-Americans (of any race) make up a large portion of the population: the San Joa-
quin Valley, near and within Los Angeles (Inland Empire), and southern California (e.g., San
Diego and Imperial and Riverside counties) (S3 Fig). As should be expected, the PAR values for
the total population are highest in areas with a larger Mexican population and lowest in the re-
gions with the greatest Asian-American populations (S4 Fig). This pattern is more discernable
when only the lowest (<9.18) and highest (>11.08) quintiles of total PAR are mapped (Fig 1).
Total PAR values can be additionally be combined with information on T2DM prevalence to es-
timate the percentage of the total population (not just percentage of T2DM cases) that are at in-
creased risk of developing T2DM due to the rs13266634 SNP (Fig 2). The Centers for Disease
Control estimate the age-adjusted percentage of people over the age of 20 with diagnosed diabe-
tes (2010–2012) as 4.4% for Chinese, 13.0% for Asian Indians, 8.8% for other Asians, 7.6% for
non-hispanic whites, and 13.9% for Mexican-Americans, and 13.2% for African-Americans
[48]. Using the specific prevalence rates for individual Asian ethnic groups, a weighted average
of 7.2% for the Asian population as a whole (based on the individual Ns from the Asian cohorts
in this analysis) was calculated. Combining this prevalence data with census tract population fig-
ures for all ethnicities, an average of 0.98% of the population across census tracts is at increased
risk of developing T2DM due to the CC risk genotype. This corresponds to approximately
414,000 Californians at risk (95% CI: 179,000–640,000).

As decisions regarding remediation and/or intervention strategies may be more likely made
on larger geographic units than census tracts, counties that contained census tracts in the high-
est total PAR quintile (Q5 census tract) were identified (Table 2). In total, 1598 Q5 census
tracts were identified, with approximately 24% of the total state population residing in those
census tracts. A majority of California counties (32 counties) contained at least one Q5 census
tract. Only two counties (Imperial and Monterey counties) had a majority of their population
residing in Q5 census tracts (95% and 52%, respectively). However, half of the counties (16)
had more than 25% of their population residing in Q5 census tracts, and 66% of counties (21)
had more than 10% of the population in Q5 census tracts.

Discussion
The current analysis presents a predictive risk screening approach to identifying census tract
locations of communities potentially at risk of developing chronic diseases due to genetic
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susceptibility factors. Through the mining of genome-wide association study databases, we
were able to identify genes encoding proteins that rely upon metals for their catalytic activity,
and their relationship to T2DM. A similar approach has been used previously: an environ-
ment-wide association study (EWAS) using survey-weighted logistic regression was conducted
on the NHANES data from 1999–2006 to identify chemical exposures and nutrients that may

Fig 1. Geographic distribution of low and high PAR Census tracts across California.Census tracts in the green and red are those in the lowest and
highest quintiles for Total PAR, respectively.

doi:10.1371/journal.pone.0121855.g001
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be associated with T2DM [49]. They found statistically significant odds ratios for PCB170,
hepatachlor epoxide, and the nutrients cis-beta-carotene, trans-beta-carotene, and gamma-
tocopherol across more than one NHANES cohort.

We used prevalence information about the SLC30A8 gene polymorphism rs13266634 to per-
form a geographic and demographic-based predictive screening pilot focused on the State of

Fig 2. Percent of total population at increased risk of developing T2DM.Geographic distribution across the state of California for percent of population at
increased risk of developing T2DM due to the rs13266634 single nucleotide polymorphism.

doi:10.1371/journal.pone.0121855.g002
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California. In this pilot we identified census tracts with elevated PAR for developing T2DM
based on the prevalence of rs13266634 in various human populations. Census tracts with a
higher PAR will likely contain individuals who may respond more poorly to chemical exposures.

While this study highlights a method for incorporating information on markers of genetic
susceptibility with data on the spatial distribution of potentially susceptible populations,
there are important limitations that warrant discussion. This analysis used multiple studies
[10,11,13,16,24–41] to investigate associations between the rs1326664 C/T polymorphism in
the SLC30A8 gene and prevalence of T2DM in Asian and European populations, but only one
study to characterize risk in Mexican populations [22]. Confidence in the Mexican PAR value
may therefore be lower than PAR values calculated for the Caucasian and Asian populations as
those values were calculated using pooled ORs. Additionally, the pooled European and Asian

Table 2. Counties with at least one Census Tract in the highest quintile of Total PAR.

County # Q5 Census Tractsa Population of Q5 Census Tracts Total County Populationb % County Population in Q5 Census Tract

Imperial 27 243917 256229 95.19

Monterey 34 284769 547350 52.03

Tulare 33 309791 625850 49.50

Kern 57 461007 1009155 45.68

Merced 18 149471 328035 45.57

Madera 7 85188 204339 41.69

San Benito 4 30285 74766 40.51

Kings 9 78545 194112 40.46

Colusa 2 10752 26680 40.30

San Bernardino 133 900444 2317432 38.86

Fresno 65 429636 1110640 38.68

Los Angeles 758 3792716 10431176 36.36

Ventura 43 322307 964413 33.42

Riverside 126 796176 2503008 31.81

Santa Cruz 10 96146 313820 30.64

Santa Barbara 16 153888 522385 29.46

Orange 78 623963 3367394 18.53

Stanislaus 15 109064 638912 17.07

Glenn 1 5266 33053 15.93

San Diego 83 559336 3565553 15.69

San Joaquin 18 97050 777986 12.47

Sutter 1 8183 106353 7.69

San Mateo 7 49375 760551 6.49

Alameda 24 82034 1431291 5.73

Santa Clara 19 107898 1954032 5.52

Contra Costa 7 44313 1047349 4.23

Sonoma 3 20487 530552 3.86

Yuba 1 6515 223305 2.92

Marin 1 6825 245102 2.78

Sacramento 4 23590 1387263 1.70

San Luis Obispo 1 3873 291604 1.33

Tuolumne 1 496 56009 0.89

a Census tracts in the highest quintile of total PAR as identified in Fig 2.
b Total population in county calculated as the sum of all census tracts in that county

doi:10.1371/journal.pone.0121855.t002
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ORs and the single Mexican OR have not adjusted for possible confounders. By not including
confounders in the present meta-analysis, it is possible that the raw ORs may not adequately
account for the contributions of other environmental or behavioral components of T2DM risk.
However, the majority of studies from which the individual cohorts were drawn did account
for numerous confounders (e.g., age, sex, obesity), and the ORs (both allele- and genotype-
specific) calculated in those studies remained statistically significant after adjustment. There-
fore, it is likely that any pooled OR estimated via meta-analytical techniques from these studies
would also remain statistically significant. Regardless, if this methodology were to be used in
an actual risk screening effort, more rigorous meta-analytical techniques that do incorporate
information on confounders should be considered.

Although the current analysis independently calculated pooled ORs from the Asian and Eu-
ropean cohorts, African cohorts were not included as the reported association between the C/T
polymorphism and T2DM was not statistically significant in a pooled analysis (OR: 1.20, 95%
CI: 0.90–1.40) [8]. As a result, when calculating the ethnicity-specific and total PAR for Califor-
nia census tracts, the African-American populations in individual census tracts were excluded.
Although the primary goal of the current analysis is a “proof-of-concept” for integrating multi-
ple sources of genetic, spatial, and health effects data to characterize population-level risks,
omission of the African-American populations limits the interpretability of the PAR mapping
results. In census tracts with large African-American populations, the true total PAR may be
different from the current results depending on CC frequencies in African-Americans and
which OR was used in the PAR calculations.

In future analyses, the African-American population could be incorporated in one of three
ways. The first method would be to simply incorporate elevated ORs for African cohorts (i.e.,
>1.0) ignoring statistical significance. A second approach would be to acknowledge that the in-
crease in the pooled African OR is not statistically significant, and to include the African-
American population numbers in the denominator when calculating the population-weighted
total PAR (Eq 2). This would be equivalent to calculating a PAR for African-Americans using
an OR equal to 1 (thus, the PAR would be calculated to be zero). However, this approach
would give undue weight to the risks in other ethnicities as it considers the central estimate of
risk for those populations while ignoring the observed, albeit non-statistically significant, in-
crease in the central estimate of risk in the African cohorts. The third alternative would be to
calculate the PAR values based on the lower limit of the 95% confidence interval for each eth-
nicity, substituting 1.0 for the African cohorts. This approach would represent the most conser-
vative estimate of risk of T2DM due to the CC genotype, but would incorporate the risk in each
ethnicity equivalently.

Another limitation in the current analysis is how ethnicity-specific information has been in-
corporated. First, smaller ethnic groups have been aggregated into larger sets for the purpose of
calculating the PAR. For example, study populations that have been described as Asian in this
analysis are made up of Han Chinese, Korean, Japanese, and Asian Indian populations. Group-
ing different, distinct ethnic groups, each with their individual risks, allele frequencies, and spa-
tial distributions, most likely masks true patterns in genetic susceptibility. Disaggregated
information is available on these populations on the census tract level from the Census Bureau,
and could be incorporated in future analyses. However, consideration of the smaller ethnic
groupings may result in issues discussed above, namely findings of non-statistically significant
risks for some smaller ethnic groups. Another assumption of this analysis is that the PAR cal-
culated from the Asian, European, and Mexican Mestizos cohorts are representative of Asian,
Caucasian, and Mexican-American populations in the United States. This may be true for pop-
ulations of recent immigrants, but established ethnic populations could be sufficiently different
such that the PARs calculated are not representative of the true risk for multiple reasons,
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especially differing risk allele frequencies. In order to minimize the uncertainty in whether this
assumption is true, studies investigating the risk in these populations actually living in the
United States would need to be identified and incorporated into the analysis. Lastly, race and
Hispanic origin are considered separate concepts by the Census Bureau, and data regarding
these self-reported identities are collected independently [50]. In the current analysis, the
Mexican-American population category is listed as “Mexican—of any race”, meaning that
those self-identifying as Mexican can also self-identify as Caucasian, African-American, etc.
This is a source of uncertainty as it is likely that some unknown proportion of the population
in individual census tracts have been counted twice (as both Caucasian and Mexican) in
PAR calculations.

A natural extension of the current study is to investigate whether spatial patterns of T2DM
risk due to genetic susceptibility correlate with spatial patterns of environmental pollutants,
other determinants of disease, and T2DM prevalence. Future studies could locate spatially-
resolved data on contamination from sources such as EPA’s Toxic Release Inventory (http://
www2.epa.gov/toxics-release-inventory-tri-program) or National Priorities List (http://www.
epa.gov/superfund/sites/npl/), and compare the clustering of high levels of contamination with
the spatial patterns of total PAR distribution. Other sources of vulnerability to disease (poverty,
socioeconomic status) could be incorporated into future analysis using currently available tools
such as the CDC’s Social Vulnerability Index (www.svi.cdc.gov). Publically available informa-
tion on T2DM prevalence is most likely only available on the county level. This discrepancy in
spatial resolution between T2DM data and contaminant and PAR data would be a challenge in
determining if census tracts with increased genetic susceptibility and environmental contami-
nation also are observed to have increased T2DM rates.

Conclusions
This study describes a method for performing predictive risk screening to identify census tracts
which may contain populations with increased genetic susceptibility to developing T2DM. In
our pilot project, we have identified several census tracts within the State of California where
potentially susceptible individuals live, suggesting these are potential areas where there may be
environmental justice concerns. Concerns regarding environmental justice would be more
pressing if the areas with elevated genetic susceptibility were collocated with areas with in-
creased exposure to environmental pollutants also associated with T2DM risk.

This methodology potentially enables risk managers and policymakers to prioritize sites for
cleanup and regulatory action, as well as help inform local decisions about commercial and
industrial siting, zoning, and land use. In addition, this predictive screening approach may
facilitate the problem formulation step of future risk assessments by identifying possible associ-
ations between disease endpoints and chemical exposures, and estimating the size of potentially
susceptible populations across the United States. This will also facilitate environmental justice
screening by allowing risk assessors and risk managers to identify communities which may
bear a disproportionate risk due to their demographics and genetic susceptibility.
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