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Abstract: The rapid development of Internet of Things (IoT) systems has led to the problem of
managing and analyzing the large volumes of data that they generate. Traditional approaches that
involve collection of data from IoT devices into one centralized repository for further analysis are not
always applicable due to the large amount of collected data, the use of communication channels with
limited bandwidth, security and privacy requirements, etc. Federated learning (FL) is an emerging
approach that allows one to analyze data directly on data sources and to federate the results of each
analysis to yield a result as traditional centralized data processing. FL is being actively developed,
and currently, there are several open-source frameworks that implement it. This article presents
a comparative review and analysis of the existing open-source FL frameworks, including their
applicability in IoT systems. The authors evaluated the following features of the frameworks: ease of
use and deployment, development, analysis capabilities, accuracy, and performance. Three different
data sets were used in the experiments—two signal data sets of different volumes and one image
data set. To model low-power IoT devices, computing nodes with small resources were defined in
the testbed. The research results revealed FL frameworks that could be applied in the IoT systems
now, but with certain restrictions on their use.

Keywords: federated learning; Internet of Things; smart sensors; distributed learning; machine
learning; deep learning; privacy

1. Introduction

The Internet of Things (IoT) [1] combines a large number of smart devices (sensors,
controllers, smartphones, etc.) that produce large volumes of data. The IoT technology
serves as the basis for designing systems that control and manage large and complex sys-
tems, such as buildings, city infrastructures, critical infrastructure objects, manufacturing
systems, and others.

The typical architecture of IoT [2,3] systems consists of different IoT devices connected
with a large number of middle nodes. Often, the low-level devices are limited in their
computational resources; therefore, data generated by them are collected and analyzed in a
centralized resource using a powerful computational cluster. Usually, the data repository
and the computational cluster are located in the Cloud [4].

The important drawback of collecting data in the centralized data warehouses is that
this leads to an increase in total processing time, network traffic, and risk of unauthorized
access to the data.

Another aspect of application of Al-based technologies relates to the security and
privacy of the personal data being collected. This issue has become extremely important
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after adoption of several legislative regulations protecting personal data and privacy of
citizens, such as the GDPR in European Union [5], CCPA [6] in the USA, and PDPA in
Singapore [7]. They require transparent processing of personal data with an explicitly
stated purpose and the consent of the data subject.

To solve these problems, Google proposed the paradigm of federated learning (FL) [8].
Its main idea is to build machine learning models based on data sets that exist across
multiple data sources without exchanging data among the sources.

Currently, there is a number of surveys and reviews devoted to different aspects of
implementing FL. For example, in [9,10], the authors present a detailed analysis of FL
concepts and the architecture of FL systems, as well as privacy-aware issues, such as
approaches to preserving data subject privacy and protecting against different types of
attacks. Shokri et al. [11] investigated basic membership inference attacks that assume
detection for a data record and black-box access to a model if this record was in the model’s
training data set. In [12], the authors focused on poisoning attacks on federated multi-task
learning and evaluated different attack scenarios, including alteration of raw data on
target devices (direct attacks) and indirect modification of data on target devices using
communication protocols.

In this survey, the authors investigated existing open-source FL frameworks:

TensorFlow Federated (TFF) from Google Inc [13];

Federated Al Technology Enabler (FATE) from Webank’s Al department [14];

Paddle Federated Learning (PFL) from Baidu [15];

PySyft from the open community OpenMined [16];

Federated Learning and Differential Privacy (FL&DP) framework from Sherpa.AI [17].

Their capabilities, such as analysis accuracy and computational efficiency, were tested
on three different data sets: the first two data sets contain signal time-series data, but they
differ in their volumes, and the third one contains images.

In addition to the listed FL frameworks, there are also proprietary frameworks from
leading IT companies. For example, NVIDIA added FL support to its NVIDIA Clara
Train SDK starting with version 2.0. IBM is developing its own framework—IBM Feder-
ated Learning. These frameworks are briefly discussed in Section 4, but since they are
proprietary, they were not evaluated by the authors.

To the best of the authors” knowledge, there are not many surveys devoted to the
analysis of the existing frameworks supporting FL. The most closely related survey is
a comparative analysis of the FL frameworks in terms of privacy and communication
architecture aspects [10]. Thus, the main contributions of this paper are as follows:

Verification of the current capabilities of the analyzed open-source FL frameworks;
Comparison of the built model’s accuracy;

Comparison of the training process performance;

Assessment of the ease of studying and deploying the FL frameworks;

Analysis of the FL frameworks’ development and support states.

The paper is structured as follows. The key concepts of FL are given in Section 2.
Section 3 outlines existing challenges and solutions in the considered area. Section 4
presents a brief description of existing open-source FL frameworks, describes the experi-
mental setup, and provides the results of the evaluation of the selected frameworks. The
paper ends with conclusions.

2. Federated Learning Concepts
The typical architecture of an IoT system [2,3] used in many application domains
consists of three layers of hierarchy (Figure 1):
e  The device layer, which includes hardware devices that produce and collect data;
e  The middle layer, which is responsible for transferring data from the device layer to
the application layer for further processing;
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The application layer, which provides services or applications that integrate or analyze
the data received from the middle layer.

The IoT system shown in Figure 1a receives data from different devices and collects
them in the Cloud [4].
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Figure 1. Internet of Things (IoT) system with: (a) distributed learning; (b) federated learning.

Currently, almost all large cloud service providers support machine learning envi-
ronments for [oT systems. For example, Microsoft has proposed Azure Machine Learn-
ing [18], Google—the Cloud Machine Learning platform [19], Amazon—Amazon Machine
Learning [20], and IBM—Watson Analytics [21]. These systems utilize the MapReduce
programming model [22] for high-performance distributed computation. In this case, the
middle layer of the IoT system connects IoT devices, such as sensors or cameras, to a Cloud.
However, this usage scenario often results in an increase of the network traffic, the time
of data processing, and the risk of an unauthorized access to the data, thus negatively
affecting the overall performance of the data analysis process. FL can eliminate these
disadvantages.

In 2016, McMahan et al. introduced FL as a distributed machine learning paradigm
that supports data analysis, such neural network (NN) training, directly on the data storage;
only the results of such processing, e.g., adjusted weights of the NN, are transmitted into
the network to produce an aggregated analysis model [8]. Thus, unlike in traditional
distributed systems, FL systems do not collect data in one data warehouse (Figure 1b).

There are three major components in an FL system (Figure 1b):

Server (e.g., manager);
o  Communication-computation framework;
Clients (e.g., parties, data sources).

Formally, FL can be described with N clients, cy, ..., cn, which wish to train a machine
learning model by consolidating their data sets, dy, ..., dn, respectively. A traditional
distributed learning approach (Figure 1a) assumes collecting all d; data sets together and
usage of d data set to train a model mp;, where the d data set is defined as follows:

d=d;U...Udy. )

In the FL paradigm, data from clients are processed collaboratively to train a model
mpy, in such a manner that any client ¢; does not expose its data d; to others. In addition,
the accuracy of mpy , denoted as A(mpy ), should be very close to the accuracy of a deep
learning network mp;y, denoted as A(mpy ). Formally, let § be a non-negative real number;
then, the FL algorithm has J-accuracy loss if:

|A(mpL) — A(mpr)| < 0. ()
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Distributed learning and FL have some more differences (Table 1). First of all, the
goal of distributed learning is to scale the parallel processing of a large amount of data,
while the purpose of FL is to process data, i.e., train a model, directly on the data sources.
Distributed learning works with identically and independently distributed (IID) data,
which are collected in a single repository, from which they are extracted for further training.
FL can treat IID data as non-IID data because training can be performed on sources
connected with each other, i.e., sources that store different types of data about the same
artifacts or events, or independent data sources. Another difference is the usage of network
nodes. Distributed learning uses network nodes as computing resources for scaling, while
FL uses nodes as data sources and performs calculations as close to the data as possible.

Table 1. Distributed learning vs. federated learning.

Distributed Learning Federated Learning
Adms Scalable parallelized big data Processing distributed data on
processing heterogeneous data sources

IID (identically and independently
Datasets distributed) and have roughly the
same size

Heterogeneous data sets; their sizes
may span several orders of magnitude

Often low-power devices, such as
smartphones and IoT devices, with
limited computing resources connected
by less reliable networks, which results
in their failures or dropping out of
computation

Data centers with powerful
Nodes computing resources connected by
high-performance networks

The FL process typically includes the following steps [9]:

Identifying a problem to be solved;
Modifying the client’s application (optional);
Simulating prototyping (optional);

Training the federated model;

Evaluating the federated model;

Deploying FL at the server and clients.

Thus, FL allows decreasing of:

The risk of unauthorized data access, since data are not transmitted over the network;

e  Network traffic because the training results are usually much smaller in volume than
the data themselves;
Time and cost of information transfer by reducing the amount of data transmitted;
Requirements to the central computational cluster and the central storage, as there is
no need to store all data in one place.
At the same time, to implement FL, the following challenges must be solved:
Processing IID data as non-IID data, which can have different data partitions;
Working with clients with different computing and storage capacity, as well as scale
and stability;

e Implementation of different communication schemes: centralized and decentralized;
Protection of transmitted analysis results from various types of attacks;

o  Aggregation of the results obtained from data sources to calculate inequality (2).

3. Federated Learning Challenges
3.1. Data Partitioning

There are two different cases of how data are distributed in the IoT system [23]:

e  Vertical partitioning, in which each storage node collects and stores data about different
features of all objects;
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e  Horizontal partition, in which each storage node collects and stores data about all
features of different objects.

Data set d from (1) is presented by a data matrix, where z refers to a number of samples
and p defines a number of features:

X117 ... X1k e le
d= le xjk x]'p
Xz1 oo Xzko oo Xzp

Then, Figure 2 shows the vertical and horizontal data partitions for this data set.

Client N

Client 1

Server Client N

Figure 2. Data partitioning: (a) horizontal; (b) vertical.

Based on how data are distributed, FL systems can typically be categorized as hori-
zontal or vertical FL systems [9,10,24].

3.2. Clients’ Settings
There are two different types of FL systems depending on the scale of federation [9,10]

(Figure 3):

e  Cross-silo systems have low scalable federation. They include organizations or data
centers. Their numbers are small and rarely change;

o Cross-device systems have a scalable number of clients. They can be added and
disabled at any moment of time. These are usually mobile devices and IoT devices.

Table 2 shows the differences between these two types of FL systems.

Table 2. Properties of FL systems.

Properties of Clients Cross-Silo Cross-Device
Computation and storage capacity High-performance Low
Scale Relative small Large
Stability High Low

Data distribution Usually non-1ID Usually IID
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Figure 3. Types of federated learning (FL) systems: (a) cross-device; (b) cross-silo.

3.3. Communication Schemes

FL systems can implement two communication schemes between their components—
centralized and decentralized [9,10].

The centralized scheme includes a central server. It is used to orchestrate different
steps of the FL process and coordinate all clients therein. This scheme is typical for cross-
device systems (Figure 3a). Since all selected nodes must send updates to a single entity,
the server may become a bottleneck of the system.

In the decentralized scheme, all clients can coordinate themselves to obtain the global
model. This scheme is often used in cross-silo systems where clients have high-performance
resources (Figure 3b). Nevertheless, the specific network topology may affect the perfor-
mance of the learning process.

3.4. Data Privacy and Security Mechanisms

Data privacy and security are essential properties of FL. There is a need to secure the
models and the analysis process to provide meaningful privacy guarantees. The attacks
can be performed at all stages of the FL process and can target all FL elements [9,10,24]:

Training data set;
Trained model;
Client, and
Server.

It is possible to outline two main types of FL-specific attacks—poisoning and inference
attacks [9]. The first type of attack aims to modify either the input data set or the parameters
of the trained model in order to bias it in a way that is preferable to the adversary. The goal
of inference attacks is to get access to personal or confidential data. Depending on the attack
implementation mechanisms, it is possible to derive information about the properties of
training data or the labels of training samples, or to determine if the sample was used in
the training process.

To protect FL against these attacks, the following security mechanisms are suggested:

e  Secure multi-party computation (MPC) is a family of cryptographic protocols that
allow a set of users to perform computations that use some private inputs without
revealing them to other participants of the protocol [25]. The most widely used
implementations of MPC are the ABY3 [26] and SecureML [27] protocols. These
protocols implement a server-aided computational model in which data owners send
their data in encrypted format to a number of servers, usually two or three, which
perform model training or apply a pre-trained model to analyze input data.
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e  The Secure Aggregation (SecAgg) protocol proposed by K. A. Bonawitz et al. is an-
other class of MPC-based technique used to secure the privacy of neural network
training. However, in contrast to the ABY3 and SecureML protocols, the data owners
participate in the training process by performing the training process locally and send-
ing encrypted model weights to the aggregator, which implements the aggregation of
the network gradients [28].

e Homomorphic encryption (HE) is a form of encryption that allows application of
some mathematical operations directly on ciphertexts without decrypting them; the
produced output is also encrypted, and after decryption, it corresponds to the result
of the mathematical operations performed on the corresponding plain texts [29].
Currently, there are only a few implementations of fully homomorphic encryption,
and all of them require significant research to increase speed performance. That is
why, in major cases, partially homomorphic encryption protocols based on the RSA or
Paillier encryption schemes are used as a compound part of security mechanisms [30].

o Differential privacy (DP) mechanisms preserve the privacy of data by adding noise to
input data in order to mask the impact of the particular sample on the output. The
privacy loss parameter defines how much noise is added and how much information
about a sample could be revealed from the output, and the application of these
mechanisms requires finding a balance between privacy loss and accuracy of the
federated analysis model [31]. Different versions of differentially private algorithms
for data classification [31-33] and clustering [34,35] are suggested.

o  The trusted execution environment (TEE), e.g. Intel SGZ processors, guarantees the
protection of the code and data loaded inside. This computational environment can be
used inside the central server to increase its credibility [36].

3.5. Aggregation Algorithms

One of the key issues of FL is aggregating model changes made by clients into a single
model, as the aggregation function should not impair the accuracy of the model (2).

The aggregation function depends on the model built in the FL process. For example,
for centroid clusters constructed by the K-means algorithm, a prefix frequency filtering
(PFF) method for data aggregation is suggested [37]. To support energy and computa-
tionally efficient data aggregation of similar data sets, the authors applied the K-means
clustering algorithm on the data and then aggregated the generated clusters using PFF.

The ordered weighted averaging (OWA) [38] algorithm was one of the first proposed
for aggregating the weight coefficients of NNs. The aggregation of the parameters is
based on the amount of data in every node. When calculating a regular average, each
data point has an equal “weight”, i.e., it contributes equally to the final value. Weighted
averages, on the other hand, weight each data point differently. Yager and Filev suggested
a generalization of the OWA operator called the induced ordered weighted averaging
(IOWA) operator [39]. This operator firstly induces the ordering of arguments before their
aggregation.

Currently, the popular aggregation function is the federated averaging algorithm
(FedAvg) described in [8]. It averages the parameters of local models element-wise with
weights proportional to the sizes of client data sets. There are variations of this algorithm.
For example, the federated proximal algorithm (FedProx) [40] adds a proximal term for
client local cost functions, which limits the impact of local updates by restricting them to
be close to the global model. Agnostic federated learning (AFL) [41] is another variant
of FedAvg; it optimizes a centralized distribution that is formed by a mixture of the
client distributions.

One shortcoming of the Fed Avg algorithm is that coordinate-wise averaging of weights
may have a drastic detrimental effect on the performance, and hence hinders the com-
munication efficiency. This issue arises due to the permutation-invariant nature of the
NN parameters, i.e., for any given NN, there are many variations of it that only differ in
the ordering of parameters and constitute local optimums, which are practically equiv-
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alent. Probabilistic federated neural matching (PFNM) [42] addresses this problem by
finding permutations of the parameters of the NNs before averaging them. PFNM fur-
ther utilizes Bayesian nonparametric machinery to adapt the global model size to the
heterogeneity of the data. As a result, PFNM has better performance and communication
efficiency; however, it was only developed for fully connected NNs and was tested on
simple architectures.

In [43], federated matched averaging (FedMA) is proposed. It is a new layer-wise FL
algorithm for modern convolutional neural networks (CNNs) and long short-term mem-
ory networks (LSTMs) utilizing the matching and model size adaptation underpinnings
of PENM.

4. Open-Source Federated Learning Frameworks

In this paper, the authors review five open-source FL frameworks that are currently
under active development. They are TFF [13], FATE [14], PFL [15], PySyft [16], and
FL&DP [17]. The following framework features were evaluated:

e Installation in simulation mode (on one computer) and in federated mode (on sev-
eral nodes);

e  Training of all machine learning models documented in the framework on all data sets
using all available deep learning frameworks;

e  Training time and system performance;

Accuracy of trained models on test data using the methods available in the frame-

works;

Ease of use and study;

Quality and availability of documentation;

Development intensity;

The framework support and development community.

In subsections below, these FL frameworks are briefly described. The authors also
consider other frameworks briefly, but they are not included in the evaluation process,
since they are not open-source projects.

4.1. TensorFlow Federated Framework

TFF is an open-source framework for deep learning on decentralized data [13]. The
last version (0.17.0) of TFF uses the TensorFlow (TF) of version 2.3 for learning, estimation,
and use of NNs. However, it does not support the use of GPUs. It is distributed under the
Apache 2.0 license.

TFF implements base classes for the Fed Avg and federated stochastic gradient descent
(FedSGD) algorithms, a simple implementation of federated evaluation, and federated
personalization evaluation. They can use several functions for aggregating the client model
updates on the server:

“Sum”, which sums values located at clients and outputs the sum located at the server;
e “Mean” computes a weighted mean of values located at clients and outputs the mean
located at the server;
o  “Differentially private” aggregates values located at clients in a privacy-preserving
manner based on the differential privacy (DP) algorithm and outputs the result located
at the server.

To create novel federated algorithms, TFF supports a core API. It is composed of
classes, which define templates for stateful processes: aggregation of values, computation
of estimates, and production of metrics. An analyst may develop their own analytical
processes using them.

The architecture of TFF is shown in Figure 4. The current version of TFF implements
only simulation mode. It is possible to use TFF via Google Colaboratory in a manner
similar to TF. To use TFF locally,, it is necessary to install the TFF package using Python’s
pip package manager.
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In addition, TFF includes classes for implementing a federated mode in the future.
There are two possible deployment options in this mode:

e Native backend, which implements its own interaction between executors and clients
based on gRPC technology and proto-object exchange;

e Non-native backend, which uses third-party distributed computing tools, such as the
Hadoop cluster and MapReduce programming model.

( FedAyg ) ( FedSGD )
( Sum X Mean IDPQueries)

Secury

NN/RNN/CNN j

g (L
= | Keras|1F TensorFlow

gRPC/proto

Figure 4. Architecture of TensorFlow Federated (TFF).

Run-time

The current version of TFF 0.17.0 is not complete and still lacks some important
features required for practical application of the framework:

The federated mode of operation is not implemented;

Vertical and hybrid data splitting is not supported;

The decentralized architecture of building the system is not supported;
Only a differential privacy mechanism is used.

All these limitations prevent the use of TFF in commercial software development.
However, it allows simulation of FL and selection of the optimal NN structure suitable for
a user’s tasks. The TFF developers promise to release a fully functional framework in the
near future. However, this can lead to significant changes in the TFF core and simulation
mode implementations, which will require re-definition of the NN structure. It is also
necessary to note the rapid development of TFF: five versions (versions 0.14.0, 0.15.0, 0.16.0,
0.16.1, and 0.17.0) were realized from July to November 2020; however, there is still no
stable release version (1.x.x). The framework is supported by a quite big community with
more than 60 contributors as of the end of October 2020.

4.2. Federated Al Technology Enabler Framework

FATE is an open-source project initiated by Webank’s Al Department to provide a
secure computational framework supporting a federated Al ecosystem [14]. It is also
distributed under the Apache 2.0 license.

FATE uses TF version 1.4 for deep learning models; however, currently, it is possible to
use only the Dense layers of the NN. Interestingly, the official FATE documentation states
that PyTorch can be used for deep learning; however, the authors could not find any code
in the documentation. In addition to the NN, it also implements regression models (linear,
logistic, and Poisson) and a decision tree (gradient-boosting decision tree).

FATE provides various implementations of the FL strategies (algorithms in terms of
FATE) for each machine learning (ML) model and data partition. FATE supports analysis
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of horizontal (homogeneous) and vertical (heterogeneous) data partitions. The NN and
logistic regression (Logs) with a horizontal data partition can be constructed either by the
FedAvg [9] or secure aggregation (SecAgg) algorithms [28]. The latter algorithm is also
used to build a gradient-boosting decision tree (GBDT) for horizontal data partitioning.

With vertical data partitioning, FATE trains the NN model in two steps: It uses
encryption for all ML models: NN, Poisson regression (PR), logistic regression (LogR), and
linear regression (LR). The SecureBoost algorithm is used to build the GDBT. Additionally,
it implements a K-means clustering algorithm for vertical data partitioning. All strategies
and models are implemented in the federatedml package.

To ensure security, FATE supports various implementations of secure MPC protocols
and encryption methods: SecretShare MPC Protocol (SPDZ), RSA, Paillier, homomorphic
encryption, and others. The Diffie-Hellman key is used in secure aggregation.

FATE implements only a centralized scheme, which includes:

e A server (arbiter) providing model aggregation and training management;
A scheduler responsible for scheduling the FL process;
e  Anexecuter that implements the FL algorithm.

All of these components are included in the fate_flow package. For interaction, FATE
uses gRPC technology with a data format in the form of proto-objects.
The overview of FATE’s main components is shown in Figure 5.

federatedml
Heterogeneus E Homogeneous
> ‘
D | [ FedAvg ]
‘§ [SecureBoost] [ Secure MPC ] '
o i Secure Aggregation ]
= ‘
g (L re ] ((rsa ] [spoz ] §|Pai||er| Diffie-Hellman
) c LR | LogR | PR i LogR GBDT
g[GBDT(K'mea”S DNN/CNN/RNN | | DNN/CNN/RNN
\ “IF TensorFlow !gagi! Ew :
) fate_flow
£
‘E Server(arbiter) Scheduler Executer
=}
o gRPC/Proto

Figure 5. Architecture of Federated Al Technology Enabler (FATE).

FATE can be deployed in both simulation mode (standalone deployment) and fed-
erated mode (cluster deployment). The installation can be done manually by porting
packages to the operating system, but it is recommended to use Docker containers to
simplify the process. To deploy the framework, 6 GB of RAM and 100 GB of disk space are
required on the server and client. Such requirements do not allow consideration of FATE
as a cross-device framework for deploying FL in an IoT environment.

It should be also noted that FATE version 1.4.2 does not have built-in image readers
for processing images.

Unlike TFF, FATE has a release version and has all the necessary features to be used in
production. FATE does not currently support the decentralized architecture. However, it
has good support from the developers’ community (60 contributors) and is being actively
developed. Four versions of FATE were released in the last four months.
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According to the authors’ opinion, one of serious shortcomings of FATE is the lack of
a core API; this means that developers must modify the source code of FATE to implement
their own FL algorithms.

4.3. Paddle Federated Learning Framework

PFL is an open-source FL framework with an Apache 2.0 license. It uses PaddlePaddle,
which is a deep learning (DL) platform [15]. PFL can process horizontally and vertically
partitioned data. Algorithms for each type of data partitioning are implemented in separate
packages. The paddle_fl package should be used for horizontal data partition processing,
and the mpc package for vertical data partition processing.

The paddle_fl package includes the NN and LR models. PFL implements Fed Avg [9],
SecAgg [44], and differentially private stochastic gradient descent (DPSGD) strategies
to build them. DPSGD is a differentially private mechanism for securing data privacy.
Horizontal data partition processing is performed in a centralized scheme. It includes the
following elements:

e A server for model aggregation;
e A scheduler for planning the training process;
e A worker (trainer) for data processing and model building.

The ZeroMQ asynchronous messaging protocol is used to communicate between the
server and workers.

The mpc package in PFL version 1.1.0 implements only the ABY3 protocol [26], which
allows data processing on three computing party (CP) nodes. These nodes are peer-to-peer
ones, and in this sense, PFL implements a decentralized scheme. The data owners or input
parties (IP) transmit data to the CP in encrypted form using a secret sharing scheme. In
general, the number of IPs can be more than three, but for the FL implementation, the
number of IPs and CPs must be the same. The mpc package includes two models: NN
and LR. After their training, they are transferred to the result party (RP). To detect data
set intersection in vertically partitioned data, the private set intersection (PSI) technique is
used [45].

PFL supports both simulation and federated modes, and it is recommended to use
Docker containers for both deployment modes. To operate normally, PFL requires at least
6 GB RAM and at least 100 GB of HDD space. These requirements limit the usage of PFL in
IoT systems.

The main components of the PFL are shown in Figure 6.

PFL supports two types of FL schemes—centralized and decentralized ones. PFL has
a release version; thus, it has all features required to apply it in production. It is possible to
conclude that this framework possesses the highest level of readiness for use in practice;
however, it is fairly difficult to use it because it uses a little-known DL platform, has poor
documentation, and has a small community—only 12 contributors.
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Figure 6. Architecture of Paddle Federated Learning (PFL).

4.4. PySyft Framework

In fact, PySyft is a open-source Python project for secure and private deep learning
with an MIT License. It is a part of OpenMined ecosystem, which also includes the
following projects:

o  PyGrid is a peer-to-peer network of data owners and data scientists who can collec-
tively train analysis models using PySyft;
KotlinSyft is a project to train and inference PySyft models on Android;
SwiftSyft is a project to train and inference PySyft models on iOS;
Syft.js provides a web interface for the components listed above.

PySyft simply decouples the private data from model training using the principles
of FL secured with different privacy enhancing mechanisms. The PySyft architecture is
shown in Figure 7.

<5
5L | PySyft
og
=0 Vertical partition 1 Horizontal partition
> 1
= PyVertical ! )
3] ! MPC HE DP .
3 | PSI ] ' )13
1 -
2
© Virtual . . . .
g [ worker ][ FLCI|ent] SwiftSyft ’ KotlinSyft | syft.js
<
e .
1F TensorFlow ESEEYlelgey

Figure 7. Architecture of PySyft.

The official PySyft documentation states that it supports the PyTorch and TF libraries;
however, according to the developers’ forum and issues, the support of these libraries has
only been planned, and has not yet been implemented.
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The developers recommend using PySyft in a virtual environment with the Anaconda
package manager. To simplify the installation and set-up process, it is possible to use a
Docker container.

As a standalone library, PySyft functions only in simulation mode; to support fed-
erated mode, it has to be integrated with other projects of the OpenMined ecosystem,
including PyGrid. However, currently, these projects like PySyft are under active devel-
opment and do not have a release version. Thus, deploying PySyft in federated mode is
impossible.

To process vertically partitioned data, the PyVertical project is included in the ecosys-
tem; it is also under development.

Considering the fact that PySyft could be used only for testing and setting up the NN
structure in simulation mode, it is possible to conclude that PySyft is not ready to be used
in industrial products.

However, it should be noted that this framework has the largest community of
contributors—over 250 developers—so it could be expected to have rapid development.

4.5. Federated Learning and Differential Privacy Framework

The FL&DP framework is a very simple open-source framework for FL, which is
distributed under the Apache 2.0 license. The framework is developed by Sherpa.Al in
collaboration with the Andalusian Research Institute in Data Science and Computational In-
telligence research group from the University of Granada. It integrates TensorFlow version
2.2 for deep learning and the SciKit-Learn library for training linear models and clustering.
This framework implements several aggregation algorithms for different models:

e A FedAvg aggregator for NN and LR;
A weighted Fed Average aggregator and IOWA Fed Average aggregator for LR;
o A cluster FedAverage aggregator for centroid cluster models.

The framework implements the following privacy mechanisms to protect personal data:

A simple mechanism adding random noise to binary data [46];
e Anadaptive differential privacy mechanism based on Privacy Filters [47].

The Federated Government module manages the learning process and implements a
pipeline for each model. Figure 8 shows the main components of the FL&DP framework.
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Figure 8. Architecture of the Federated Learning and Differential Privacy (FL&DP) framework.

To install FL&DP, it is only required to import a set of packages without any compli-
cated settings.

This framework does not have a release version, and it processes horizontally par-
titioned data in simulation mode only. Unlike TFF, it provides more privacy-preserving
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mechanisms, machine learning algorithms, and aggregation functions, but it also could
not be applied to solve industrial tasks. Unfortunately, FL&DP has a low number of
contributors—only six—and there is no detailed documentation on its interfaces or frame-
work architecture.

Table 3 shows the summary of the open-source FL frameworks’ features.

Table 3. Comparison of the open-source federated learning systems’ (FLSs’) features.

Features TFF 0.17.0 FATE 1.4.4/1.5 PySyft 0.2.8 PFL 1.1.0 FL&DP 0.1.0
Mac
Mac Mac mex Mac Linux
0S Linux Linux Win Linux Win
iOS Win
Android
Cross-silo Cross-silo
Settings Cross-silo Cross-silo . Cross-devices Cross-silo
Cross-devices .
(in future)
Data . Horizontal Horizontal Horlzgntal .
. Horizontal . . Vertical Horizontal
Partitioning Vertical Vertical
Transfer
Time series . . Time series Time series
Data type Time series Images
Images Images Images
. . Simulation Simulation Simulation . .
Mode Simulation Federated Federated Federated Simulation
Yes
Clustering model No No No No (Kmeans
SciKitLearn)
Yes Yes
ML Model No (very slow) No Yes (SciKitLearn)
Decision Tree Yes
Model No (very slow) No No No
Protocol gRPC/proto gRPC/proto Doesn’t use ZeroMQ Doesn’t use

(in future)

4.6. Proprietary Federated Learning Frameworks

FL technologies are not only implemented in the form of open-source frameworks.
Some leading companies have developed their own libraries, which are not open source
and are distributed with a limited license.

A prime example of such a library is the NVIDIA Clara Train software development kit
(SDK) [48], which has included FL since version 2.0. The current version of the framework
that works in federated mode is 3.1. The NVIDIA Clara Train SDK does not open all source
code of the framework and distributes it under its own license, which restricts its usage.
The NVIDIA Clara Train SDK executes FL on a GPU only and it requires the support of
CUDA 6.0 or higher. It uses TensorFlow and supports AutoML, which make development
of models easy and familiar to developers. It implements a centralized workflow with the
clients and server for managing the model training progress and transferring the original
model to all clients. The solution is aimed primarily at the analysis of medical images. It
has some built-in solutions for medical problems with the pre-trained models, which are
provided as Model Applications and packaged as the Medical Model ARchive (MMARS)
and the prepared environment. It also provides many built-in privacy mechanisms, such
as the DPSGD, sparse vector technique, and percentile protocol. NVIDIA provides the
Python-based Clara Train API for developers to improve their solutions. Despite the fact
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that NVIDIA Clara is not open source, it provides the possibility to improve the framework
with the help of a bring-your-own-components (BYOC) method.

Another example is the IBM framework written in Python—IBM Federated Learning
(IBM FL) [49]. IBM does not open the source code of the framework and distributes it
under its own license, which restricts its use. The current version of the framework is
1.0.3, which works in both simulation and federated modes. A distinctive feature of the
framework is the large number of implemented ML algorithms. In addition to NN, linear
classification, and decision trees (ID3 algorithm), it includes support for the K-means, naive
Bayes, and reinforcement learning (RL) algorithms. To do this, IBM FL integrates with
libraries such as Keras, Pytorch, Tensorflow, Scikit-learn, and RLIlib. The framework also
includes various FL strategies. The FedAvg and iterative average are implemented for NN
and RL. In addition to them, PFNM, gradient average, and others can be used for NN.
Another difference from other frameworks is the support for several connection protocols,
including the Flask web framework, gRPC, and WebSockets.

Both FL libraries are not proprietary and are not distributed under an open license, so
they are not discussed in detail in this article.

5. Evaluation of Open-Source Federated Learning Frameworks
5.1. Experimental Settings

To test the capabilities of each framework, the authors performed a series of experi-
ments with them on the same data sets. Google Cloud virtual machines were used as a
runtime environment. The following virtual test beds were created:

o  The first one was used to test the simulation mode on one virtual machine; it had the
following characteristics: single-hardware hyper-thread in a 2.0-3.8 GHz core, 6.5 GB
RAM (RW speed: 24 Mb/s), swap: 180 GB, HDD: 200 GB (RW speed: 24 Mb/s);

e The second one was used to test the federated mode; it consisted of three instances:
one server and two clients. The server and the clients had the following characteristics:
single-hardware hyper-thread in a 2.0-3.8 GHz core, 6.5 GB RAM (RW speed: 24 Mb/s),
swap: 180 GB, HDD: 30 GB (RW speed: 24 Mb/s).

Asnone of the open-source FL frameworks described above support GPUs, the authors
only used CPUs.

The instances’ characteristics were similar in all experiments and for all frameworks.
To test the FL frameworks’ capabilities, the authors used three different data sets (Table 4):

e A small signal data set that contains data that describe a car’s parameters during
its movement. These parameters are collected using smartphones and include such
features as altitude change, vertical and horizontal accelerations, average speed and
its variance, engine load, cooling temperature, revolutions per minute (RPM), etc. The
data were collected from two vehicles—a Peugeot 207 1.4 HDi (70 CV) and Opel Corsa
1.3 HDi (95 CV). The goal of the data set is to determine the overall state of the system
consisting of the car, driver, and road, and therefore, the target labels are the road
surface, driving style, and traffic state [50].

e A signal data set that also describes the movement of two vehicles—dumpers of AH
and HL series. These dumpers operated at a ground remediation site in Sweden, and
the collected attributes include the timestamp, speed, gyroscope, and accelerometer
data [51]. The objective of the data set is to define the state of the commercial vehicle—
movement, idle, loading, and discharge. The data set is not balanced, as it contains a
log of more than five hours from the AH dumper and only a 75-minute log from the
HL dumper.

e Animage data set that contains X-ray images obtained from 5232 patients of pediatric
medical centers and labeled according to two categories: pneumonia and normal [52].
It includes 3883 images with signs of pneumonia and 1349 normal images.
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Table 4. Experiment data sets.

Data Set Columns Rows Volume
Small signal data set 13 30,000 3.5 MB
Signal data set 9 1.5 million 157 MB
Image data set 6000 (Number of images 150 x 150) 1.15GB

The authors compared the FL frameworks to each other as well as to other popular
deep learning libraries: TF and PyTorch. Considering that FATE uses only Dense layers in
all frameworks, the authors used NN with the following Dense layers to analyze signal
data sets:

e Aninput layer with the number of nodes corresponding to the number of data set
properties;
An intermediate fully connected layer with 256 nodes;
An intermediate fully connected layer with 64 nodes;
An output layer.

NN training was implemented with the following parameters:

Number of epochs = 20;

Batch size = 32;

Number of rounds = 20;

Stochastic gradient descent (SGD) optimizer;
Learning step = 0.01.

Obviously, these parameters are not optimal, but they were chosen based on the
ability to perform experiments on all frameworks in an acceptable time and with an
acceptable quality.

To analyze the image data set, the following structure of convolutional neural networks
(CNN) was used:

An input convolutional layer for a 150 x 150 image;
Two intermediate convolutional layers with 64 nodes;
An intermediate convolutional layer with 128 nodes;
An intermediate convolutional layer with 256 nodes;
An intermediate Dense layer with 256 nodes;

An output Dense layer with one node.

CNN training was implemented using the following parameters:

Number of epochs = 10;
Batch size = 32;
Number of rounds = 20;
SGD optimizer;
Learning step = 0.001.

In the experiments, the data augmentation was not applied in the image classification
task, though it is a common practice to increase the accuracy of the analysis model [53]. In
FL, it is also applied to solve the problems with statistical heterogeneity of data due to the
collection of data from different devices [54]. However, in major cases, data augmentation
is a resource-consuming task in terms of computation, time, and communication, even for
solutions that are specially tailored for IoT environments [55,56].

Moreover, the application of data augmentation is often impossible due to security
issues, such as the lack of permissions to write data. For these reasons, augmentation was
not used in any of the frameworks, including TF and PyTorch, though these frameworks
support this technique, and its implementation would improve the accuracy of the trained
model.

The results of the experiments are shown in Figures 9 and 10. Figure 9 shows the
accuracy of the selected FL frameworks and other ML frameworks on the selected data
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sets, and Figure 10 shows the time spent by each framework to train the selected model for
each data set.

4
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Figure 9. Accuracy of the FL frameworks.
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Figure 10. Training time of the FL frameworks.

5.2. Experimental Results and Discussion

The PFL framework showed the best training accuracy rate for each data set. Its
accuracy is comparable to the results obtained using TF and PyTorch. The training accuracy
for the small signal data set is almost the same for all frameworks except TFFE. For the signal
data set, the accuracy of the trained NN on the PFL and FL&DP frameworks is the highest
and is 15% higher than FATE’s one. The TFF training accuracy is the lowest one, while
PySyft was unable to train the NN, generating an “out of memory” error.

For the image data set, PFL showed the best accuracy of all FL frameworks; however,
it is 10% lower than TF’s accuracy and 10% higher than PyTorch’s accuracy. PySyft and
FL&DP showed approximately the same results, which are 10% lower than PyTorch’s result.
The TFF had the lowest accuracy rate for this data set.

The low accuracy of TFF on all data sets can be explained by the simplified imple-
mentation of the aggregation functions (sum and mean), which do not provide a sufficient
increase in accuracy when combining models built on a reduced amount of data on each of
the clients after splitting the data set.

The accuracy rates of the constructed NNs in the simulation and federated modes in
PFL and FATE do not differ. This fact confirms the possibility of using the simulation mode
to configure NNs with their further usage in the federated mode without any changes.

All FL frameworks showed longer training times for the small signal data set in com-
parison with TF and PyTorch. At the same time, for the signal data set, all FL frameworks
except PFL had training times less than those of TF and PyTorch. This fact is explained by
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the time spent on transferring the model between clients and the server and on aggregating
parallel-built models. When processing a small dataset, these time costs are significantly
higher than the training time and are not compensated by parallel processing of the split
data. When processing a large dataset, the training time is reduced by parallel training and
thus compensates the time cost of transferring the model between the client and the server.

The PFL constitutes an exception among the FL frameworks reviewed, as it showed
significant training times on all data sets, with the longest one being for the signal data set.
It should be noted that the training time for the same model on the same set with the same
parameters on PaddlePaddle also took more than two hours. Consequently, such a long
training time could be explained by the specific backend implemented in PFL. The training
time for PFL was the same on all data sets in the simulation and federated modes.

The longest training time on the small data set was shown by PySyft. Considering
that training on the signal data set for PySyft took much longer and was unsuccessful, the
authors believe that processing of this type of data in the framework is not fully debugged,
and this was confirmed on the developer forums.

TFF and FL&DP had relatively short training times. This can be explained by the
simple aggregation functions that are used in these frameworks. However, this results in
accuracy loss for TFF, while it does not impact FL&DP’s accuracy.

The authors also tried to build a linear regression model and decision tree model for
the signal data sets in FATE, PFL, and FL&DP. Unfortunately, it took a very long time for
FATE and failed at the end.

The linear model for the signal data set was successfully trained for PFL and FL&DP.
Thus, for PFL, the model was built in both the simulation and federated modes. In both
modes, the training was successful and gave comparable results. The accuracy expectedly
dropped by 30% compared to using an NN. At the same time, the training time was also
more than one hour, which is not typical for algorithms of this type.

In the FL&DP framework, we trained linear and logistics models for the signal data
set. The accuracy of these models was lower when using an NN, but the training time was
significantly shorter.

6. Conclusions

We compared all federated learning frameworks and evaluated their characteristics.
Currently, all of them are being actively developed, and soon, they are expected to have
new features and new properties. However, they already allow performance of federated
learning in the simulation mode, which makes it possible to start adopting this technology
in industrial systems. On all the frameworks considered, one can start building models
based on neural networks, which can be used in production in the next year.

The results of the evaluation of the federated learning frameworks’ features and
experiments shows that PFL is the most ready for industrial use. However, it has poor
documentation and a small developer community. The disadvantage of this framework is
also the use of its own DL PaddlePaddle platform, which is not well known. Moreover,
PFL has the longest training time.

The federated mode is also implemented in the FATE framework. It works well for
deep learning, but has limitations on the neural network layers used. It also contains
implementations of decision trees and linear models, but they do not function yet. The
authors believe that, in the near future, these shortcomings will be eliminated and FATE
can be fully used in production.

Of course, it is necessary to consider the TensorFlow Federated framework from
Google. Its main drawback is that it uses only deep learning techniques, which have
several disadvantages, including low explainability and long training time.

The Federated Learning and Differential Privacy framework is very easy to learn
and to use. It is integrated with TensorFlow and the SciKit-Learn library, which allows
implementation of not only deep learning algorithms, but also other machine learning
techniques. So far, it is the only system that provides a solution for clustering tasks.
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All of these frameworks are designed for use in cross-silo systems because their
installation is quite complicated, and the part allocated to clients requires large memory
resources. For this reason, the authors conclude that, currently, the application of these
frameworks in the IoT environment is almost impossible, with the exception of the PySyft
framework. PySyft is included in the OpenMined ecosystem, which has projects aiming
at supporting iOS and Android platforms. Thus, it could be used on mobile devices and,
possibly, IoT devices.
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Abbreviations

The following abbreviations are used in this manuscript:

AFL Agnostic federated learning
BTSB Boosting tree secure boost

BYOC Bring your own components
CCPA California Consumer Privacy Act
CNN Convolutional neural network
Cp Computing party

DL Deep learning

DNN Deep neural network

DP Differential privacy

DPSGD  Differentially private stochastic gradient descent
FATE Federated Al Technology Enabler

FedAvg  Federated averaging

FedMA  Federated matched averaging
FedProx Federated proximal

FedSGD  Federated stochastic gradient descent

FL Federated learning
FL&DP Federated Learning and Differential Privacy
FLS Federated learning system

GBDT Gradient-boosting decision tree
GDPR General Data Protection Regulation

HE Homomorphic encryption

IBMFL  IBM Federated Learning

1D Independent and identically distributed
P Input party

IoT Internet of Things

IOWA Induced ordered weighted averaging
LogR Logistic regression

LR Linear regression

LSTM Long short-term memory

ML Machine learning

MMARS Medical Model ARchive

MPC Multi-party computation

NN Neural network

OWA Ordered weighted averaging
PDPA Personal data protection
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PFF Prefix frequency filtering
PFL Paddle Federated Learning
PENM  Probabilistic federated neural matching
PR Poisson regression
PSI Private set intersection
RL Reinforcement learning
RNN Recurrent neural network
RP Result party
RPM Revolutions per minute
SecAgg  Secure aggregation
SGD Stochastic gradient descent
SPDZ SecretShare MPC Protocol
TEE Trusted execution environment
TF TensorFlow
TFF TensorFlow Federated
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