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NK cells are contained in the ILC1 group; they are recognized for their antiviral and
antitumor cytotoxic capacity; NK cells also participate in other immune response
processes through cytokines secretion. However, the mechanisms that regulate these
functions are poorly understood since NK cells are not as abundant as other lymphocytes,
which has made them difficult to study. Using public databases, we identified that NK cells
express mRNA encoding class I myosins, among which Myosin 1g and Myosin 1f are
prominent. Therefore, this mini-review aims to generate a model of the probable
participation of Myosin 1g and 1f in NK cells, based on information reported about the
function of these myosins in other leukocytes.
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INTRODUCTION

Innate lymphoid cells (ILCs) neither express T and B lymphocyte receptors but are derived from
common lymphoid progenitors (CLPs) (1, 2). There is evidence about the capacity of ILC2 and ILC3
needed to recognize and present antigen to T lymphocytes and, in this way, maintain immune
homeostasis (3–6). ILCs have been considered the innate equivalent of T helper lymphocytes (Th),
Th1, Th2, and Th17 since ILC releases the same cytokine profile of Th cell (7–10). ILCs can mirror
even T regs functions due to their capacity to produce TGF-b and IL-10 (11–13). NK cells belong to
the ILC1 group (14). They are crucial in antiviral and antitumor response through their cytotoxic
activity (15, 16). NK cells require the optimal function of the actin cytoskeleton and cellular
membrane dynamics to perform their functions. In NK cells, the actin cytoskeleton reorganization
is achieved by activation signals through several activation receptors, such as; Killer-cell
Immunoglobulin-like Receptor (KIR), Natural Cytotoxicity Receptor (NCR), CD16, Signaling
Lymphocyte Activation Molecule (SLAM), and others (17, 18). In a reductionist model, CD16,
NKp46, NKp30 receptors associate with adapter proteins with Immunoreceptor Tyrosine-based
Activation (ITAM) domains such as CD3z, FceRIg; whereas NKp44 associate with DAP12. Src
kinase family members phosphorylate tyrosines in the ITAMs. Phosphorylated ITAMs form a
binding site for the Src homology 2 (SH2) domains of the ZAP70 and SYK tyrosine kinase, which
induce SLP-76 phosphorylation. Vav1 then recognizes phosphorylated SLP-76 via SH2 domain (19,
20). Next, SLAM family receptors transmit activation signals through the SLAM-Associated Protein
org December 2021 | Volume 12 | Article 7602901
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(SAP), which recruits tyrosine kinase (Fyn) (21). Then Fyn
induces Vav1 phosphorylation (22). ITAM independent
signaling through the NKG2D receptor also induces Vav1
recruitment via PI3K and Grb2 after DAP10 tyrosine
phosphorylation (23–26). In this way, Vav1 has an essential
role in NK cell function. Vav1-deficient NK cells show defects in
tumor cell killing (27). A synergistic effect is required to achieve
ubiquitin ligase c-Cbl inhibition, which controls the availability
by Vav1 (28). Consequently, Vav1 regulates actin cytoskeleton
polymerization by activating the GTPases Rac, Rho, and Cdc42
since Vav1 has GEF properties (29). In this dynamic process,
myosins participate at different levels, either during the
polarization or aggregation of integrins, maintaining
membrane tension, or interacting directly with other proteins.

NK cells are not abundant as other lymphocytes; this scarcity
hinders the analysis of NK functions. Searching in databases and
the analysis of the mechanisms reported in other similar cells
could help understand NK lymphocytes that eventually will lead
to a broader perspective about the function of these cells.
OVERVIEW OF NK CELLS

Natural Killer cells are innate lymphocytes (ILC1s) known
primarily for their antiviral and antitumor cytotoxic capacity
(16, 30). However, they also have effector functions such as
releasing cytokines, such as IFN-g, TNF-a, IL-10, and others (8,
10, 31). Thus, NK lymphocytes are considered part of the
sentinels of the innate immune system. In humans, two
populations of NK cells have been described, CD56dimCD16+

and CD56bright CD16dim (32, 33). There are differences between
both populations; for example, CD56dimCD16+ has more
cytotoxic capacity than CD56bright CD16dim or CD16-.

In contrast, upon monocytes-derived-stimuli, the CD56bright

CD16dim/- NK lymphocytes release a high amount of cytokines
(7, 32, 33). Thus, CD56-CD16+ subpopulation is usually found in
HIV-infected individuals presenting the high expression of NK
inhibitory receptors, associated with poor cytotoxic activity (34).
Regarding their anatomical distribution, the presence of NK cells
has been observed in both lymphoid and non-lymphoid tissues
(7). The cytotoxic activity of NK lymphocytes depends on their
ability to release preformed cytotoxic granules contained in
vesicles (35). The exocytosis of lytic granules begins with the
contact between NK lymphocyte and target cells, which gives rise
to the cytotoxic synapse (36–38).

Furthermore, NK cells express on their surface receptors of
the TNF family, such as FasL and TRAIL, which can induce
apoptosis by binding to their Fas or TRAIL ligand, respectively
(37). Thus, the regulation of NK cell functions depends on the
balance between activation and inhibition signals given by
receptors present on their membrane (35). Within the group of
inhibitory receptors, one can find the KIRs in humans and Ly49
Isoforms (A, B, C, E, G, Q) in mice. These receptors inhibit,
inside-out and outside-in, LFA-1 signaling at different levels,
preventing polarization and degranulation (39, 40). Therefore, a
decrease in MHC-I expression reduces the inhibitory signal and
Frontiers in Immunology | www.frontiersin.org 2
promotes the activation of the NK cell. Additionally, in both
humans and mice, the CD94/NKG2A heterodimer recognizes
non-classical MHC-I molecules in the context of HLA-E
(human) or H2-Qa1 (mouse). The ligands of the activating
receptor NKG2D are represented by MICA/B and by ULBP in
humans, and Mult1 and Rae1 in mouse (7, 10, 41).

On the other hand, activation signals are given by activation
receptors, for example, Ly49 (D, H, L) and KIR isoforms,
NKG2D, and natural cytotoxic receptors such as NKp30 and
NKp44 in humans and NKp46 in humans and mice (7, 10).
Additionally, LFA-1, b1, and b2 integrins can also regulate NK
cell function (42), which we will address later. Signaling of
activation and inhibition receptors regulate several NK
cells functions, for example, degranulation, morphological
modifications to increase NK-target cell contacts, cell
migration, and cytokine release. Since Myo1g and Myo1f are
involved in morphological changes and vesicular traffic, studying
these proteins in the NK cell physiology becomes relevant (43).
Thus, the functions of NK lymphocytes are dynamic processes
that may be regulated by cytoskeletal proteins such as myosins.

Furthermore, there are functional differences among NK cell
subpopulations depending on their anatomical distribution (44).
For example, IL-12- and IL-18-induced IFN-g production varies
between mouse CD27high spleen-resident and CD27low lung-
resident NK cells (32). In humans, NK CD56bright under in
vitro stimulation of IL-12 and IL-18 induce the release of more
IFN-g and TNF-b than NK CD56dim cell (45). Therefore, a
detailed understanding of the intrinsic factors regulating NK
cell functions could provide tools to modulate any particular
function depending on the type of required response.
CLASS I MYOSINS

Myosins are a family of motor proteins, which are mainly known
for their function in cell contractility. However, some members
of this family proteins, for example, Myosin V, VI, and Ic
participate in moving different cargos along the actin filaments,
such as vesicles, mitochondria, and ribonuclear protein particles
(46–51). Currently, 35 classes of myosins have been reported in
eukaryotic organisms (52). This classification varies depending
on the species; for example, 12 classes of myosin’s are described
in humans (53–55). Class I myosins are non-filamentous
myosins, consisting of one heavy chain and a variable number
of light chains (56). The heavy chain contains three conserved
regions; the ATP-dependent globular or motor domain, which
binds to F-actin (57, 58). Adjacent to the motor domain is the
neck region, where light chains associate and regulate the
globular domain (57). In addition, the neck region has IQ
domains, sequences that interact with calmodulin and
calmodulin-like chains (57). Finally, the tail variable section
bestows different functions depending on the domains present
in that region (50, 51, 54, 56, 57). Class I myosins are subdivided
into short-tailed and long-tailed myosins; both have a Pleckstrin
homology domain inside the TH1 domain, as shown in
Figure 1A, which allows interaction with several phospholipids
December 2021 | Volume 12 | Article 760290
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present in the membrane and other compartments in a PH-
dependent manner (51, 59). Long-tailed myosins have two
additional domains; a proline-rich domain (TH2) and a
domain homologous to SRC kinase (SH3) (50, 51, 56, 60).
Humans and mice have a total of 8 genes coding for six short-
tailed myosins (Myo1a, b, c, d, g, and h) and two long-tailed
myosins (Myo1e, f) (58). Remarkably, only Myo1c, d, e, f, and g
have been described in leukocytes (51, 60). Myo1g has a length of
1018 amino acids in humans and 1024 amino acids in mice
(https://www.uniprot.org/) and belongs to the group of short-
tailed myosins. It has a PH-type domain in the tail region, which
allows its binding to lipids in the plasma membrane and
microdomains rich in phospholipids and cholesterol, known as
lipid rafts (59, 61, 62). The expression of Myo1g has been
observed mainly in T and B lymphocytes and mast cells (63–
65). Myo1g has been proposed as a bridge that allows the
adequate interaction between the membrane and the
cytoskeleton in processes such as cytokine secretion, cell
migration, mobilization, recycling of membrane molecules, and
regulating modifications in the cytoskeleton that favor cell
adhesion (63, 65, 66).

On the other hand, Myo1f has a length of 1098 amino acids in
humans and 1099 amino acids in mice (https://www.uniprot.org/).
Its expression has been confirmed in neutrophils, macrophages,
mast cells, and T lymphocytes (67–71). Similar toMyo1g,Myo1f is
Frontiers in Immunology | www.frontiersin.org 3
located adjacent to the plasma membrane, co-localizing with
cortical actin and interacting with membrane phosphoinositides
(67). As mentioned above, Myo1f has two additional domains, a
TH2 and an SH3 that allows the interaction with several proteins.
In addition, it has been observed that Myo1f interacts with 3BP2
(69), activating Cdc42 (72) suggesting a Vav1 pathway that
potentially activates Rac and RhoA (73), thus regulating the
cytoskeletal machinery to favor morphological changes and the
generation of membrane protrusions.

As shown in Figure 1B, some class I myosins’ mRNAs are
expressed by NK cells (74). However, it will be necessary to prove
this expression at a protein level. The presence of Myosin 1g
(Myo1g) and Myosin 1f (Myo1f) mRNA occur from the early
stages of NK cell development (https://gexc.riken.jp). Likewise,
human peripheral blood NK cells also show high Myo1g and
Myo1f mRNA (75–77) (https://www.proteinatlas.org).
Interestingly, tumor resident ILC1 and NK cells also express
Myo1g and Myo1f (78). These results suggest that both mouse
andhumanNKcells expressbothmyosinsand that the expression is
maintained in the context of their antitumor effect. Therefore, it
would be essential to analyze the role of these myosins in NK-cell
differentiation, development, and functions. Class I myosins
reported in leukocytes regulate processes requiring the interaction
between the plasma membrane and actin cytoskeleton, such as
cytokines secretion, cell migration, and mobilization of plasma
A

B

FIGURE 1 | Schematic representation of Myo1g and Myo1f structure and heat map of expression of class I myosin in innate lymphoid cells. (A) Myo1g has a sequence
of 1018 amino acids (human) and 1024 amino acids (mouse), while Myo1f has a sequence of 1098 amino acids (human) and 1099 amino acids (mouse). In addition,
both myosins have a motor domain in the amino-terminal region, following a neck region with an IQ domain and a TH1 domain in the tail region which allows
phosphoinositide interaction in a PH-manner dependent. Finally, Myo1f had two additional domains: TH2 (a proline-rich region) and SH3 (a proline-rich-interacting region),
allowing protein-proteins interactions. Created with BioRender.com. (B) Class I Myosin expression in ILCs was explored with data from: http://www.immgen.org. The heat
map was generated using GraphPad Prism version 8.0.0 for Mac OS X, GraphPad Software, San Diego, California USA, www.graphpad.com.
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membranemolecules. Therefore, we aim to analyze class Imyosins’
participation in NKs functions, using information derived from
results published in other leukocytes.
MYO1G AND MYO1F COULD REGULATE
CYTOTOXIC SYNAPSE THROUGH
MORPHOLOGICAL CHANGES

Cytotoxicity is one of the main functions depending on
morphological changes regulated by the cytoskeleton. The
cytotoxic activity of NK lymphocytes first requires interaction
with their target through a cytotoxic synapse and subsequently
the release of cytotoxic granules towards the target cell (79). The
synapse is dependent on the mobilization of different surface
molecules such as adhesion molecules and integrins (80). First,
the synapse requires close contact with the target cell by
generating projections (filopodia and lamellipodia), this
depends on the force generated by the myosins (81). The
formation of these protuberances depends on Cdc42 and RhoA
(29). Physical properties such as membrane tension allow
membrane deformation to generate these projections (81, 82).
Myo1g is abundantly expressed in the protuberances generated
by B lymphocytes (63).

On the other hand, B lymphocytes show reduced membrane
tension in its absence, decreasing their ability to generate
filopodia and lamellipodia (83). Besides, Myo1f siRNA-treated
macrophages decrease their capacity to generate morphological
changes (84). In this way, Myo1g and Myo1f could participate in
the early stages of the cytotoxic synapse of the NK cell, regulating
the formation of membrane protrusions that allow interaction
with their target cell.
PROBABLE PARTICIPATION OF MYO1G
AND MYO1F IN NK CELL MIGRATION

Cell migration depends on cytoskeleton changes that promotes
the interaction of migrating cells with the endothelium. There is
evidence showing that class I myosins regulate the expression of
the molecules during leukocyte migration (65–67, 85). NK cells
are recruited to different tissue compartments, i.e., lymph nodes
and inflamed tissues, where they perform different functions
such as promoting DC maturation, T cell polarization, and as
cytotoxic effector cells (86, 87). NK cells express b1, b2, and b7
integrins, PSGL-1, CD62L, and various chemokine receptors
such as CXCR1, CXCR2, CXCR4, CCR5 y CCR7, which allow
their interaction with HEV during lymph nodes (86, 88, 89). NK
subpopulations in humans and mice show differences in the
expression levels of integrins and adhesion molecules (86).
Therefore, the mechanisms by which NK cells migrate to
different anatomical sites are not yet fully understood. Selectins
and integrins regulate the interaction between the cell and the
endothelium, so the expression of these molecules and their
mobilization is essential during cell migration. Myo1g-deficient
Frontiers in Immunology | www.frontiersin.org 4
B lymphocytes have reduced adhesion to the endothelium due to
a lower expression of LFA-1, CD62L and, VLA-4 (65).

Moreover, in the absence ofMyo1g, B lymphocytes have a lower
capacity for CXCL13-dependent transmigration to the inguinal
node, furthermore in vitro CXCL12-dependent migration is also
reduced (65). Migration defects were attributed to a decrease in the
expression of adhesion molecules and a lower capacity to generate
morphological changes due to the absence of Myo1g. Myo1f-
deficient mice showed a reduction in the recruitment of
neutrophils in a lung damage model (68). These neutrophils did
not present defects in rolling and adhesion but in extravasation in
vivo, explainedby inefficient nucleus deformationduringmigration
(68). In vitro CXCL1-dependent chemotaxis was also affected (68).
Although it has not been observed that Myo1f participates directly
in cell migration, it has been seen that Myo1f affects the expression
of integrins b1 and b7 in mast cells (72).

Additionally, in mast cells, the activation of phosphatidylinositol
3-kinase (PI3K) increases PI(3,4,5)P3, causing the recruitment and
association of 3BP2 with Myo1f during KIT activation (69).
Although the consequence of the interaction of both proteins in
other cell types has not been evaluated, in mast cells, 3BP2
participates in different processes; such as degranulation, by
regulating the SYK, LAT, and PLC-g pathway; in survival, by
regulating the KIT, STAT1, Akt and ERK pathway; and during
cell migration, by activating the Cdc42 and Rac2 pathway and
regulating the expression of integrin b1 (69). Furthermore, 3BP2 is
essential for activating Vav1 (73), impacting the activation of
GTPases of the Rho family. The absence of Myo1f impacts the
activation of Cdc42 (72), then its association with 3BP2 could play a
role in the activation of Vav1. Consequently, the activation of the
GTPases of the Rho family, essential in the polymerization of
the actin cytoskeleton, will be affected. RhoA controls the
polymerization of cortical actin through its interaction with
ROCK1 and ROCK2, forming stress fibers (90). Rac1 and Rac2
are involved in the polymerization of the actin cytoskeleton via the
SCAR/WAVE effectors, while Cdc42 controls cell polarity for
migration, synapse formation, and cytokine secretion via effectors
of the WASP family (29, 91). The role played by Myo1f, and 1g
could be crucial for the migration of NK lymphocytes since they
could participate by independent mechanisms due to their
structural differences.
MYO1G AND MYO1F REGULATE
ADHESION MOLECULES EXPRESSION
IN LEUKOCYTES

Adhesion molecules such as selectins and integrins, in addition
to regulating the migration, and increasing the adhesion during
cytotoxic synapse, also participate in the activation of NK cells.
b1 and b2 integrins regulate the interaction of the NK cell
synapsis, while LFA-1 participates in the polarization of
cytotoxic granules and increasing adhesion during synapse (92,
93). As an example of its importance in other lymphocytes,
Myo1g-deficient B cells have reduced CD62L and LFA-1 (65). It
has been speculated that Myo1g participates in the vesicular
December 2021 | Volume 12 | Article 760290
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Cruz-Zárate et al. Myosin Class I in NK Cell Functions
trafficking of these molecules (66). However, no significant
differences in LFA-1 expression were found in Myo1g-deficient T
cells (64).Thus, it isnecessaryfirst to evaluateLFA-1expressionand
other adhesion molecules in Myo1g-deficient NK cells. LFA-1 has
acquired notoriety in NK cells because it participates in the
activation, adhesion, and regulation of cytotoxic granules (38).

Similarly, Myo1f is crucial for the expression of integrins in
leukocytes. Myo1f-deficient neutrophils increase the expression of
b2-integrin, which enhances their adherence to ICAM-1 (67).
Additionally, macrophage cell lines such as RAW 264.7 and J774,
with stable overexpression of Myo1f-GFP, have an increased
expression of integrin aVb3, leading to increased adhesion
vitronectin and promoting an inflammatory phenotype via ILK/
Akt/mTOR activation (70). Silencing Myo1f in human mast cells
negatively impacts the expression of the integrin b1 and b7,
affecting exocytosis (72). Therefore, the role of Myo1f may be
highly relevant for the cytotoxicity of NK cells because it is
plausible to think that it may regulate the expression of integrins
or other membrane molecules essential in NK cell activation.
MYO1G AND MYO1F COULD REGULATE
NK CELL CYTOTOXICITY

Unlike cytotoxic T lymphocytes, NK cells have performed
cytotoxic granules (31). Thus, NK cells have a faster cytotoxic
activity, which becomes relevant in viral infections where a quick
response is required (94, 95). Once the cell recognizes its target,
these granules are mobilized to the synapse site by the mTOC
(96). Then, these granules fuse with the cell membrane and are
released into the pocket of the synapse (97, 98). Thus, LFA-1
primarily mediates tight maintenance of the synaptic cleft (92).
In this regard, Myo1f has been reported to participate during
granule mobilization in mast cells through a mechanism
dependent on Cdc42 activation (72). However, it has not been
evaluated whether Myo1g could have a similar function in
activating GTPases of the Rho family (69, 72).
PARTICIPATION OF MYO1G AND
MYO1F IN CYTOKINE PRODUCTION
AND RELEASE

NK cells produce and secrete IFN-g and TNF-a (7). It has been
reported that IFN-g production in infections by murine
norovirus depends on ISG15 signaling (99–101). The binding
of ISG15 to LFA-1 strongly induces the production of IFN-g and
IL-10 (99–101). The absence of Myo1g decreases LFA-1
expression in B lymphocytes (63, 65), suggesting that Myo1g
could participate in the LFA-1-dependent IFN-g production in
the context of viral infections. Cytokines release depends on the
fusion of secretory vesicles with the plasma membrane, resulting
in the content release towards extracellular space (102). Diverse
reports have shown the participation of Myo1g and Myo1f in
releasing TNF-a, IL-6, IL-1, lactoferrin, IFN-g, and prolactin in B
Frontiers in Immunology | www.frontiersin.org 5
lymphocytes, neutrophils, and mast cells (63, 67, 70, 72).
Whether Myo1g and Myo1f are required for cytokines released
by NK cells waits to be determined. However, accumulated
evidence with other leukocytes points out in that direction.
MYO1G AND MYO1F COULD REGULATE
OTHER ESSENTIAL NK CELL FUNCTIONS

Myo1g, through its PH domain, participates in mobilizing and
recycling lipid rafts, indirectly moving molecules, such as CD44
(66, 103). Lipid rafts from NK cells’ membrane are mobilized to
the contact site of target cells, but they are excluded in cells
resistant to lysis (104). It has been suggested that signaling the
KIR2DL1 protein in the cytotoxic synapse inhibits the polarization
of the lipid rafts, thus preventing the death of the target cell (104).
Given the role of Myo1g in mobilizing lipid rafts (66), it is likely
that it participates in mobilizing these microdomains during
activation and inhibition of NK-cell cytotoxicity. For this reason, it
wouldbe interesting toanalyzewhetherMyo1ghasa similar function
during NK-cell lipid rafts mobilization during synapsis and in other
functions, where lipid microdomains mobilization is also required.
Besides, it has been reported that in the absence of Myo1g,
lymphocytes present a lower membrane tension, which decreases
their ability to generate membrane structures (64, 83). In addition to
regulating the elasticity and stiffness of the membrane, membrane
tension can generate morphological changes through the PLD2-
mTORC2 signaling pathway (82, 105). Since, Myo1g andMyo1f are
located adjacent to the plasmamembrane, co-localizingwith cortical
actin (63, 67). So then, it would be interesting to know if Myo1g and
Myo1f intervene in themechano-transductionprocess byNKcells as
described in other cell types.
DISCUSSION

To date, there is no information about the role of class I myosins in
NKcells functions.However, evidence inother cell lineages suggests
thatMyo1g andMyo1f could participate by regulating different NK
cell functions such as cytokines release, synapse formation, granule
mobilization, and migration. The functional defects described by
the absence of Myo1g and Myo1f could similarly affect NK cells,
causing increased susceptibility to viral infections and tumor
development. Due to the tail’s structural differences, the
mechanism by which Myo1g and Myo1f may regulate these
processes will not be the same. Since Myo1f has a TH2 and an
SH3 domain, the functions of Myo1f could depend on protein-
protein interactions (85, 106), while the function of Myo1g could
depend on its interaction with phosphoinositides present in
membranes and vesicles (85). The function of class I myosins
seems to depend on cell activation but also cell lineage. Therefore,
it would be interesting to study these proteins in the context of NK
cells and other ILCs subpopulations. To date, there is no
information available about myosin mutations in humans that
could be associated with NK cell function. However, the use of
December 2021 | Volume 12 | Article 760290
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murine models or cell lines deficient or overexpressing Myo1g and
Myo1f could reveal the role of these myosins in NK cells and other
ILCs subpopulations. Figure 2 summarizes what we believemay be
the participation ofMyo1g andMyo1f in the functions of NK cells.
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at the cytotoxic synapse (7) will impair cytotoxic activity. Additionally, a lower amount of LFA-1 in the membrane would cause a lower interaction with ISG15 and
defects in Src family kinases signaling (8), which induces the secretion of cytokines and IFN-g, also mediated by Cdc42 (9). Therefore, it would be possible that the
interaction of Myo1f and 3BP2 (10) could regulate Src; however, none of these interactions have been proven in NK cells. Finally, membrane tension negatively
regulates actin polymerization through the PLD2-mTORC2 pathway (11). Thus, both Myo1g and Myo1f could regulate NK cell membrane tension and, consequently,
mechano-transduction. Created with BioRender.com.
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Garcıá-Cordero JL, Schnoor M, et al. Myo1g Is Required for Efficient
Adhesion and Migration of Activated B Lymphocytes to Inguinal Lymph
Nodes. Sci Rep (2021) 11:7197. doi: 10.1038/s41598-021-85477-y
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