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Abstract: The epistatic interactions of single nucleotide polymorphisms (SNPs) are considered to be an
important factor in determining the susceptibility of individuals to complex diseases. Although many
methods have been proposed to detect such interactions, the development of detection algorithm is still
ongoing due to the computational burden in large-scale association studies. In this paper, to deal with the
intensive computing problem of detecting epistatic interactions in large-scale datasets, a self-adjusting ant
colony optimization based on information entropy (IEACO) is proposed. The algorithm can automatically
self-adjust the path selection strategy according to the real-time information entropy. The performance of
IEACO is compared with that of ant colony optimization (ACO), AntEpiSeeker, AntMiner, and epiACO
on a set of simulated datasets and a real genome-wide dataset. The results of extensive experiments show
that the proposed method is superior to the other methods.

Keywords: single nucleotide polymorphisms; ant colony optimization; information entropy; epistatic
interactions; self-adjusting algorithm

1. Introduction

A single nucleotide polymorphism (SNP) is a variation in a single nucleotide that occurs at a
specific position in the genome. SNPs are widespread in the genome and easy to detect, so they
are typically used as biomarkers in genome-wide association studies (GWAS) [1–3]. Early GWAS
focused on the association between single-locus and phenotypes, and they have achieved a great
deal in the research of single-gene diseases [4,5]. For many single-gene diseases, also known as
Mendelian diseases, researchers have been able to find the corresponding pathogenic genes [6,7].
Nevertheless, owing to the sophisticated regulation mechanism in the human genome, the genetic
basis of numerous complex diseases is still unknown [8–11]. It is universally acknowledged that these
sophisticated traits are due to the combined action of multiple genetic variations rather than of a single
variation [12,13]. These multiple genetic variations may demonstrate very minor influences alone but
jointly they have strong influences; this is known as multi-locus or epistatic interaction [14,15].

Current approaches for detecting epistatic interactions can generally be classified into four
categories: exhaustive search methods [16–20], stochastic search methods [21–24], evolutionary
computing methods [25–29], and machine learning methods [30]. Among these, exhaustive search
methods can find all possible epistatic interactions but the computational burden is obvious when
datasets become large. Some examples are multifactor dimensionality reduction (MDR) [16–18],
boolean operation-based screening and testing (BOOST) [19], and tree-based epistasis association
mapping (TEAM) [20]. Random methods detect epistatic interactions by random sampling, which
can greatly speed up the process. Epistatic module detection (epiMODE) [21], detection of epistatic
interactions using random forest (epiForest) [22], Bayesian Epistasis Association Mapping (BEAM) [23],
and SNPHarvester [24] are examples. Evolutionary computational methods are stochastic algorithms
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that simulate biological evolutionary processes. Some evolutionary computing methods based
on ant colony optimization (ACO) [31] have been proposed to detect the epistatic interactions in
large-scale association studies, such as AntEpiSeeker [25], AntMiner [26], and epiACO [27]. With the
development of machine learning technologies, machine learning methods are also used to detect
epistatic interactions. Bayesian network (BN) [30] is one example.

The detection of epistatic interactions faces severe computational challenges. A large dataset for
GWAS may have hundreds of thousands to millions of SNPs. For example, there are at least 5 billion
combinations that need to be evaluated by an exhaustive search for two-locus interactions on the
age-related macular degeneration (AMD) dataset [32]. Stochastic search methods and evolutionary
computing methods have been shown to be able to handle large-scale datasets. However, developing
a more efficient and reliable search algorithm is still desired. It has been proven that the ACO is
an effective approach to solve epistatic interaction problems. However, the path selection of ants
is single and blind, making the search fall into the local optimal state. Targeted at the deficiencies
of the ACO, a modified ACO, self-adjusting ant colony optimization based on information entropy
(IEACO), is presented to solve large-scale epistatic interaction problems. Through automatically
self-adjusting the path selection strategy, IEACO is capable of maintaining the diversity of solutions,
and accordingly, improve the quality of the solutions. In order to evaluate the detection power of this
method, we conducted an experiment on a cluster of simulated datasets and a real whole-genome
dataset and did a comparative study of the performance of ACO, AntEpiSeeker, AntMiner, epiACO,
and IEACO. As suggested by the computer simulation results, IEACO has an edge over all the other
approaches. In addition, the feasibility of IEACO was also verified by a real whole-genome experiment.

2. Materials and Methods

2.1. Problem Definition

This paper primarily concentrates on case-control research based on the hypothesis that overall SNPs
are biallelic. With known genotype data at L SNPs of S samples, we used S1 and S2 to express the number
of controls and the number of cases, respectively. rk is used to indicate the kth SNP (1≤ k≤ L). Y is used to
indicate the state of disease, where 1 stands for case and 2 stands for control. We used capital letters (A, B)
to represent major alleles and lowercase letters (a, b) to represent minor alleles. In accordance with the
copy number of minor alleles at each locus, the genotype can be set to either 0, 1, or 2.

2.2. Standard Ant Colony Optimization

Ant colony optimization (ACO) is a successful approach that is useful in the solution of NP-hard
combination optimization problems and it has been widely applied in GWAS. The basic idea of ACO
is to express the feasible solutions of optimization problems with ant paths and use overall paths of
the ant group to constitute the solution space of optimization problems. Ants on relatively short paths
tend to release more pheromone. With the passage of time, pheromone concentration that accumulates
on the short paths gradually increases and more and more ants choose the paths. Eventually, all the
ants will gather on the optimal path under positive feedback, which exactly corresponds to the optimal
solution of the optimization problem.

Artificial ants choose loci per the following formula to solve epistatic interaction problems:

pk(i) =
(τk(i))

αη
β
k

∑L
j=1 (τj(i))

αη
β
j

(1)

where τk(i) denotes the pheromone value on locus k at iteration i; ηk denotes the heuristic factor on
locus k; α denotes the pheromone weight; and β denotes the heuristic weight. The value of pheromone
can be upgraded by the following formula:

τk(i + 1) = (1− ρ)τk(i) + ∆τk(i) (2)
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where ρ denotes the pheromone evaporation rate; ∆τk(i) denotes the variation of pheromone value
(∆τk(i) = χ2); and χ2-test is the fitness function. In terms of epistasis detection problems, the null
hypothesis is that there is no epistatic interaction in the dataset. The alternative hypothesis is that the
p-values in one or multiple epistatic interactions are below the significance level.

The search procedure for solving the epistatic interaction problem is as follow. First, ACO
initializes M ants and sets up an identical pheromone value for each locus. Second, each ant randomly
chooses an SNP set with K locus. Third, we assess each chosen SNP set through the χ2-test and upgrade
the pheromone of each locus. Then, we determine the set with the highest χ2-value as the candidate
and calculate the corresponding p-value. The optimization process should be repeatedly conducted
until the number of iterations totals the preset value. In the end, the candidates whose p values are
smaller than a Bonferroni-corrected significance threshold are reported.

However, when applying ACO to solve epistatic interactions, it can make the ants select an
excessively simple path, easily falling into local optimum. Moreover, owing to its inability to provide
real-time information feedback to regulate the behavior of the ants, ACO usually does not guide the
search direction.

2.3. Self-Adjusting Ant Colony Optimization Based on Information Entropy

To improve the efficiency of ACO, information entropy is incorporated and the novel algorithm is
called self-adjusting ant colony optimization based on information entropy. Entropy is a measure of
the uncertainty of information. The greater the entropy, the higher the uncertainty of the information,
as defined by Equation (3). In the equation, p is the probability of a particular event occurring, and the
logarithm takes 2 as the base. For ACO, pk(i) is the proportion of pheromone on locus k to total
pheromones at iteration i, and it is greater than or equal to 0. The information entropy is the biggest
when each locus has an equal pheromone value. With the convergence of the algorithm, the amount of
pheromone is concentrated on some loci, and the information entropy is reduced.

H(i) = −
L

∑
k=1

pk(i) log pk(i) (3)

Based on the information entropy, IEACO can automatically adjust the path selection strategy
according to Equation (4). This equation gives 2 selection strategies: the first is the path selection
strategy of standard ACO, which is called the positive feedback strategy; the other is the improved
path selection strategy, which is called the negative feedback strategy. In the equation, H(i), wk(i), and γ

are newly added. H(i) is the information entropy at iteration i; wk(i), defined by Equation (5), is the
negative feedback pheromones for locus k at iteration i; and γ is a parameter determining the weight of
negative feedback pheromones. In Equation (5), µ can be seen as the upper bound of negative feedback
pheromones on the worse loci. With deepening of the iteration, the pheromone values of µ–τk (i) on
the bad loci are increased, thereby increasing the probability that these loci are selected. |H(i)–H(i–1)|
represents the difference between the information entropy of 2 adjacent iterations. When the difference
is not greater than a specified switch parameter θ, IEACO uses the newly added negative feedback
strategy to select loci. This small change in the information entropy indicates that the algorithm has
been converging, so it is obvious that utilizing this new equation can increase the probability that
artificial ants choose bad loci.

pk(i) =


(τk(i))

αη
β
k

∑L
j=1 (τj(i))

αη
β
j

|H(i)− H(i− 1)| > θ

(τk(i))
α(ηk(i))

β(wk(i))
γ

∑L
j=1 (τj(i))

α(ηj(i))
β(wj(i))

γ otherwise
(4)

wk(i) = µ− τk(i) (5)
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Self-adjusting ant colony optimization based on information entropy searches for epistatic
interactions by constantly updating the information entropy and self-adjustment of the ant behavior.
At the beginning of the algorithm, the pheromones on each path are equal and the information entropy
is the biggest. As the number of iterations increases, the pheromones on the good paths increase while
the pheromones on the bad paths decrease. At the same time, the information entropy continues
to decrease. When the difference between the information entropy of 2 adjacent iterations is very
small, the algorithm changes the strategy of how ants choose paths. IEACO takes advantage of history
searching information and dynamically guides ant swarms to explore unknown space during the
optimization procedure.

The pseudo-code of IEACO to solve the epistatic interactions is given in Figure 1. IEACO calculates
the information entropy H(i) at current iteration i. After each ant finds an SNP combination, each
SNP combination is evaluated by the χ2-test, and the SNP combination with the highest χ2-value is
recorded. Then, a path selection strategy is used according to a comparison of the difference between
the information entropy of 2 adjacent iterations and the specified switch parameter θ.
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Figure 1. Pseudocode of ant colony optimization based on information entropy (IEACO) to solve
epistatic interactions.

2.4. An Example of Self-Adjusting Ant Colony Optimization Based on Information

There are 10 SNPs (r1, r2, r3, r4, r5, r6, r7, r8, r9, and r10), and their initial pheromones are 100. In this
example, suppose that the interaction is embedded in the position of (r2, r9). ACO and IEACO respectively
generate 3 artificial ants to search through 3 iterations in this space. Figure 2a gives the search process
of ACO. k is the SNP locus, τk(i) is the pheromone of locus k at iteration i, and pk(i) is the proportion of
pheromones on locus k to total pheromones at iteration i. At iteration 1, each ant selects an SNP set ((r1, r2),
(r3, r4), and (r5, r6)), and the χ2-value for each SNP set is calculated. It is assumed here that the χ2-values
between different loci are known (χ2(r1, r2) = 50, χ2(r3, r4) = 40, and χ2(r5, r6) = 20). Then, the SNP set with
the highest χ2-value is recorded as a candidate solution (χ2(r1, r2) = 50), and the pheromone for each locus
is updated. The above procedure is executed for 3 iterations. Finally, the 3 recorded candidate solutions
are compared and the interaction (r1, r2) with the highest χ2-value is output. If the interaction position
detected by the algorithm is inconsistent with the real position, the result is a false positive. The search
process of IEACO is shown in Figure 2b. Compared with ACO, IEACO calculates the information entropy
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before each iteration to select the search strategy. The positive feedback strategy is the default at iteration 1.
Here, the upper bound of negative feedback pheromone on worse paths µ is 300, and the switch parameter
θ is set to 0.01. For iteration 2, the positive feedback strategy is selected again due to |H(1)−H(0)| = 0.03
> θ. After completing this iteration, |H(2)−H(1)| = 0 ≤ θ, so the negative feedback strategy is adopted.
Loci 9 and 10, with the least amount of pheromones, are selected as negative feedback loci. The pheromones
of the 2 loci are recalculated (w9(2) = µ–τ9(2) = 219 and w10(2) = µ–τ10(2) = 219), and their corresponding
probabilities are increased. Finally, the correct solution (r2, r9) is obtained through iteration 3.Genes 2019, 10, x FOR PEER REVIEW 6 of 14 
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3. Results and Discussion

3.1. Data Preparation and Parameter Setting

We compared the proposed IEACO algorithm with ACO, AntEpiSeeker [25], AntMiner [26],
and epiACO [27] on a wide range of simulated datasets. The reason for choosing these algorithms
is that they are ACO-based methods and have shown their detection power in a variety of disease
models. The datasets contain eight commonly used two-locus epistasis models [33,34], and the details
of these models are shown in Table 1. Models 1 and 2 are multiplicative models with marginal effects,
and Models 3 and 4 are threshold models with marginal effects [35]. The other four are epistasis models
without marginal effects. Models 5 and 6 are directly cited from [33], Model 7 is a ZZ model [36],
and Model 8 is an XOR model [33]. For each model, 200 datasets were generated [37], and each dataset
contains 2000 samples (1000 cases and 1000 controls). There are 500 SNPs in the first 100 datasets,
and the number of SNPs increases to 5000 in the other 100 datasets. Minor allele frequency (MAF) refers
to the frequency at which the second most common allele occurs in a given population. Prevalence is
the proportion of a particular population found to be affected by a disease.

It is essential to ensure that the computational effort of different comparative methods is set up
equally. In the five ACOs, the number of calls of the fitness function is equal to the number of ants in
an iteration. Therefore, the same number of iterations makes the fitness function the same for each
algorithm. For the two-locus epistasis detecting experiment, the number of iterations is N = 0.2 ×
number of SNPs, the number of ants M is 500 on 500-SNP datasets and 200 on 5000-SNP datasets,
the initial pheromone τ is 100, the heuristic factor η is 1, the weight parameters α and β are 1, and the
evaporation rate ρ is 0.05. For AntEpiSeeker, AntMiner, and epiACO, the other parameter settings
are set as default values [25–27]. For IEACO, the upper bound of negative feedback pheromone on
worse paths µ is 300, the parameter determining the weight of negative feedback pheromone γ is 1,
the switch parameter θ is 0.001. These parameters of IEACO were obtained by running this algorithm
many times on the same dataset.

Table 1. Details of eight commonly used two-locus epistasis models.

Model 1
Prevalence = 0.100, MAF(a) = 0.30, MAF(b) = 0.20

Model 2
Prevalence = 0.100, MAF(a) = 0.20, MAF(b) = 0.20

AA Aa aa AA Aa aa

BB 0.087 0.087 0.087 BB 0.092 0.092 0.092
Bb 0.087 0.146 0.190 Bb 0.092 0.145 0.181
bb 0.087 0.190 0.247 bb 0.092 0.181 0.227

Model 3
Prevalence = 0.100, MAF(a) = 0.05, MAF(b) = 0.05

Model 4
Prevalence = 0.100, MAF(a) = 0.50, MAF(b) = 0.50

AA Aa aa AA Aa aa

BB 0.096 0.096 0.096 BB 0.052 0.052 0.052
Bb 0.096 0.533 0.533 Bb 0.052 0.137 0.137
bb 0.096 0.533 0.533 bb 0.052 0.137 0.137

Model 5
Prevalence = 0.064, MAF(a) = 0.20, MAF(b) = 0.20

Model 6
Prevalence = 0.171, MAF(a) = 0.40, MAF(b) = 0.40

AA Aa aa AA Aa aa

BB 0.486 0.960 0.538 BB 0.068 0.299 0.017
Bb 0.947 0.004 0.811 Bb 0.289 0.044 0.285
bb 0.640 0.606 0.909 bb 0.048 0.262 0.174

Model 7
Prevalence = 0.038, MAF(a) = 0.50, MAF(b) = 0.50

Model 8
Prevalence = 0.010, MAF(a) = 0.50, MAF(b) = 0.50

AA Aa aa AA Aa aa

BB 0.000 0.000 0.100 BB 0.000 0.020 0.000
Bb 0.000 0.050 0.000 Bb 0.020 0.000 0.020
bb 0.100 0.000 0.000 bb 0.000 0.020 0.000

3.2. Detection Power Comparison

The detection power is the ratio of the number of successful identifications to the number of
all experimental datasets. The proposed IEACO algorithm was compared with ACO, AntEpiSeeker,
AntMiner, and epiACO on 500-SNP and 5000-SNP datasets, and the experimental results are shown
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in Figures 3 and 4. The horizontal axis represents the eight models, and the vertical axis represents
the percentage of interactions correctly identified by each tested algorithm. As seen from the figures,
IEACO is not significantly superior to the other algorithms on 500-SNP datasets, but the method
still has the best detection power because it identifies all the epistatic interactions on four models.
The detection power on 5000-SNP datasets is lower than that on 500-SNP datasets because of the
increased search space. The detection power of IEACO is significantly superior to that of the other
tested algorithms on 5000-SNP datasets. This is because IEACO automatically adjusts the behavior of
ants to increase the possibility of searching for interactions in a large-scale search space. In addition,
Table 2 shows the mean and standard deviation of IEACO. For each model, all of the power results
solved by the proposed algorithm in 30 runs are used as experimental data. As can be seen from
the figures, the resulting distribution of IEACO is concentrated. Thus, it can be concluded that the
proposed algorithm is stable and powerful.

Table 2. Mean power of IEACO with its respective standard deviation.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

500-SNP 100 ± 0.00 92 ± 1.85 100 ± 0.00 100 ± 0.00 97 ± 1.06 100 ± 0.00 93 ± 2.59 94 ± 2.08
5000-SNP 70 ± 4.03 68 ± 4.20 63 ± 2.89 61± 4.56 16 ± 3.03 17 ± 3.14 20 ± 1.99 17 ± 2.05
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3.3. Recall and Precision Analysis

Recall and precision, concepts in the field of information retrieval, are important indicators that
reflect the search effect. Recall is the number of resulting true positives divided by the total number of
true positives in all datasets as in Equation (6), while precision is the number of resulting true positives
divided by the sum of resulting values as in Equation (7).

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)
(6)

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(7)

The results of recall and precision were recorded and are shown in Tables 3 and 4. The recall is
represented as R, and the precision is represented as P in the two tables. The algorithm with the highest
recall or accuracy on a model is displayed in bold font. For 500-SNP datasets, IEACO has the highest
recall in five of the eight models, and it achieved the highest precision in six of them. AntMiner and
epiACO also achieved high recall and precision. For 5000-SNP datasets, the recall and precision of
IEACO are the highest of all eight models, and these which are obviously superior to those of the
other algorithms. In conclusion, most of the results indicate that the proposed IEACO algorithm is an
effective method for detecting epistatic interactions.

Table 3. Results of recall and precision on 500-SNP datasets.

ACO AntEpiSeeker AntMiner epiACO IEACO

R P R P R P R P R P

Model 1 0.74 0.74 0.89 0.76 1 0.78 1 0.82 1 0.83
Model 2 0.77 0.83 0.81 0.84 0.93 0.92 0.83 0.89 0.92 0.93
Model 3 0.88 0.78 0.95 0.88 1 0.89 0.97 0.79 1 0.90
Model 4 0.90 0.89 0.87 0.91 0.96 0.82 1 0.84 1 0.92
Model 5 0.64 0.72 0.72 0.74 0.81 0.88 0.96 0.80 0.97 0.85
Model 6 0.78 0.82 1 0.86 0.90 0.93 0.86 0.91 1 0.94
Model 7 0.69 0.65 0.96 0.78 1 0.81 0.95 0.77 0.93 0.84
Model 8 0.84 0.91 0.88 0.85 0.82 0.84 1 0.93 0.94 0.89

Table 4. Results of recall and precision on 5000-SNP datasets.

ACO AntEpiSeeker AntMiner epiACO IEACO

R P R P R P R P R P

Model 1 0.34 0.54 0.48 0.61 0.57 0.70 0.62 0.72 0.70 0.74
Model 2 0.41 0.52 0.50 0.64 0.64 0.66 0.53 0.71 0.68 0.72
Model 3 0.45 0.57 0.49 0.68 0.57 0.63 0.57 0.65 0.63 0.69
Model 4 0.36 0.48 0.51 0.55 0.46 0.59 0.59 0.64 0.61 0.67
Model 5 0.07 0.19 0.02 0.13 0.04 0.16 0.07 0.17 0.16 0.24
Model 6 0.00 0.00 0.05 0.17 0.11 0.38 0.11 0.27 0.17 0.31
Model 7 0.05 0.45 0.06 0.40 0.15 0.48 0.13 0.55 0.20 0.56
Model 8 0.12 0.63 0.06 0.56 0.12 0.44 0.14 0.50 0.17 0.58

3.4. Hypothesis Test

To prove the validity of IEACO in solving the epistatic interaction problem, hypothesis tests
were used. Hypotheses included Holm (Holm), Hochberg (Hoch), and Hommel (Homm) [38,39].
The power values of the eight models were combined as experimental data. The comparative analysis
results for IEACO with ACO, AntEpiSeeker, AntMiner, and epiACO are shown in Tables 5 and 6.
These procedures reject the hypotheses when p-values ≤ 0.05. On 500-SNP datasets, IEACO is not
significantly superior to AntEpiSeeker, AntMiner, and epiACO. On 5000-SNP datasets, IEACO is
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significantly superior to the other algorithms on all hypothetical tests. This shows that the proposed
algorithm has a natural advantage in solving the epistatic interaction for large-scale data.

Table 5. Adjusted p-values on 500-SNP datasets.

Hypothesis Unadjusted p pHoch pHoch pHoom

IEACO vs ACO 3.743122471085636E-4 0.00149724898843425 0.00149724898843425 0.00149724898843425
IEACO vs AntEpiSeeker 0.0577795711235972 0.17333871337079185 0.17333871337079185 0.17333871337079185

IEACO vs AntMiner 0.5270892568655381 1.0541785137310762 0.5270892568655381 0.5270892568655381
IEACO vs epiACO 0.5270892568655381 1.0541785137310762 0.5270892568655381 0.5270892568655381

Table 6. Adjusted p-values on 5000-SNP datasets.

Hypothesis Unadjusted p pHoch pHoch pHoch

IEACO vs ACO 9.546919845278683E-6 3.818767938111473E-5 3.818767938111473E-5 3.818767938111473E-5
IEACO vs AntEpiSeeker 1.478023103344183E-4 4.434069310032551E-4 4.434069310032551E-4 4.434069310032551E-4

IEACO vs AntMiner 0.01770606580736659 0.03541213161473319 0.03541213161473319 0.03541213161473319
IEACO vs epiACO 0.03983261924474151 0.03983261924474151 0.03983261924474151 0.03983261924474151

3.5. Execution Time Analysis

Since execution time is also a critical indicator for evaluating the performance of detection
algorithms, we conducted a comparative study of the time performance of five algorithms on the
eight models. The average running times with their respective standard deviations were recorded in
terms of seconds per run, and the data are shown in Tables 7 and 8. ACO is the fastest and IEACO
has the second fastest execution speed, because it consumes more time with its self-adjusting strategy.
The next two algorithms are AntEpiSeeker and epiACO, because the post-processing of AntEpiSeeker
is time-consuming and the two evaluation objective calculations of epiACO. Because it uses some prior
knowledge, AntMiner has the slowest execution time. IEACO, which performed best in the previous
experiments, does not have an advantage in time performance; in comparison to the fastest ACO,
the execution time of IEACO does not greatly increase. Based on the above analysis, we can conclude
that IEACO will not improve performance at the cost of increasing the execution time.

Table 7. Results of running time on 500-SNP datasets.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

ACO 12.3 ± 0.4 14.1 ± 0.3 19.8 ± 4 10.3 ± 0.5 18.0 ± 0.4 19.1 ± 0.5 17.7 ± 0.5 11.7 ± 0.3
AntEpiSeeker 28.2 ± 0.5 27.3 ± 0.5 28.0 ± 0.6 30.3 ± 0.7 29.4 ± 0.6 36.8 ± 0.8 38.2 ± 0.8 34.5 ± 0.7

AntMiner 108.9 ± 4.1 123.4 ± 3.3 98.9 ± 3.4 100.6 ± 3.8 112.3 ± 4.4 109.9 ± 3.1 131.2 ± 4.6 132.0 ± 3.9
epiACO 25.6 ± 0.8 24.9 ± 0.5 22.2 ± 0.5 23.1 ± 0.6 20.4 ± 0.7 29.0 ± 0.7 28.8 ± 0.7 23.2 ± 0.6
IEACO 17.7 ± 0.6 18.1 ± 0.4 16.5 ± 0.4 16.8 ± 0.5 21.2 ± 0.5 22.5 ± 0.5 23.1 ± 0.6 17.0 ± 0.6

Table 8. Results of running time on 5000-SNP datasets.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

ACO 84.7 ± 4.5 82.3 ± 5.1 78.9 ± 3.4 80.5 ± 4.2 83.4 ± 3.9 85.1 ± 4.5 79.3 ± 3.6 80.1 ± 4.1
AntEpiSeeker 187.8 ± 8.9 182.3 ± 9.1 178.9 ± 7.8 179.9 ± 8.1 186.7 ± 8.4 179.0 ± 6.9 170.3 ± 6.3 177.4 ± 7.2

AntMiner 824.1 ± 67.4 865.2 ± 76.8 778.4 ± 57.3 894.3 ± 62.6 842.2± 63.1 811.5 ± 60.7 870.1 ± 79.2 888.3 ± 80.3
epiACO 126.5 ± 74 119.7 ± 8.1 116.7 ± 7.0 115.0 ± 6.8 133.6 ± 5.7 130.2 ± 6.2 123.1 ± 5.4 120.4 ± 6.0
IEACO 93.8 ± 5.2 91.4 ± 4.2 90.3 ± 3.7 94.1 ± 4.1 97.9 ± 5.1 96.5 ± 5.0 89.4 ± 4.4 92.3 ± 3.9

3.6. Power Comparison of Multiple Epistasis Detection

To prove the power of IEACO for detecting multiple epistatic interactions, we compared the
method with ACO, AntEpiSeeker, AntMiner, and epiACO on eight 1000-SNP simulated datasets (Case
1–Case 8). Each of the eight cases is composed of five pure epistatic models [40] with the same MAF
and heritability. The top five two-SNP interactions with p-values below significance are reported in
Figure 5. The detection power is divided into three parts: the percentage of true positive epistatic
interactions, the percentage of false positive epistatic interactions, and the percentage of undetected
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epistatic interactions. The detection ability of ACO is low for true positives and high for false positives.
Although the number of true positives identified by AntEpiSeeker is small in some cases, the number of
true positives identified by the algorithm is also small. Although AntMiner and epiACO perform well
in detecting true positives, they have poor detection performance for false positives. Compared with
the other algorithms, IEACO identifies the largest percentage of true positive epistatic interactions
and the lowest percentage of false positive epistatic interactions on most large-scale datasets, which
suggests that IEACO significantly outperforms the other algorithms.Genes 2019, 10, x FOR PEER REVIEW 11 of 14 
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3.7. Results from Age-Related Macular Degeneration Dataset

The feasibility of IEACO was verified by analyzing a real age-related macular degeneration
(AMD) dataset containing 146 samples (96 cases and 50 controls) and 116,204 SNPs [32]. Table 9
presents the epistatic interactions related to AMD. It follows that most epistatic interactions contain
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either rs380390 or rs1329428, because these two SNPs have the strongest principal effects among
overall SNPs. As a result, the combination of the two with other SNPS usually demonstrates relatively
strong interaction effects and identification prominence. SNPs rs380390 and rs1329428 exist in the
gene CFH, where the mutation of the gene has a close connection with hemolyticuremic syndrome
and chronic hypocomplementemic nephropathy. The two loci are also thought to be significantly
correlated with AMD [21]. SNP rs1394608, which is located in the SGCD gene of chromosome 5,
has also been reported to be strongly associated with AMD [21], and it is speculated that the interaction
of rs1394608 with rs1740752 influences AMD. However, IEACO merely detects epistatic interactions,
excluding rs380390 and rs1329428. The possible correlation between AMD and the interactions
(rs994542, rs9298846) and (rs1740752, rs1368863) is detected. The four SNPs in the noncoding region
perhaps result in AMD by regulating gene expression level. These results verify the feasibility of the
proposed IEACO algorithm and may provide some clues for exploring the pathogenic factors of AMD.

Table 9. Experimental results of age-related macular degeneration (AMD) data identified by IEACO.

SNP 1 Chromosome Gene SNP 2 Chromosome Gene

rs380390 1 CHF rs1363688 5 N/A
rs380390 1 CHF rs2402053 7 N/A
rs380390 1 CHF rs2224762 9 KDM4C

rs1329428 1 CHF rs2113379 2 ADAM23
rs1329428 1 CHF rs3922799 2 N/A
rs1329428 1 CHF rs1822657 21 NCAM2
rs1394608 5 SGCD rs1740752 10 N/A
rs994542 6 N/A rs9298846 9 N/A

rs1740752 10 N/A rs1368863 11 N/A

4. Conclusions

The detection of epistatic interactions is one of the most critical stages in GWAS application.
Actually, epistatic interactions not only play a vital role in the research on the pathogenesis of complex
diseases triggered by geno-variation, but are also highly valuable to real research of SNPs. As a
result, it is essential to reinforce the accuracy of detection algorithms and reduce their time complexity.
In this paper, the proposed IEACO algorithm is a simple but effective method for solving epistatic
interactions. It can automatically self-adjust the path selection strategy of ants as per real-time
information, and accordingly, it has better epistatic interaction detection capacity. Simulated and AMD
datasets were used to evaluate the performance of IEACO. As proved by the experimental results,
the algorithm has significant efficiency and feasibility.
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