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A B S T R A C T

Background: Identification of common spatial disease trends between cattle bovine tuberculosis (BTB) and human
extrapulmonary tuberculosis (EPTB) and drug-resistant tuberculosis (DRTB) can support integrated disease
control and monitoring programmes. We employed the recently developed multivariate disease mapping
methods to examine whether the diseases exhibited any spatial correlation.
Methods: A retrospective study of cattle BTB and human EPTB and DRTB cases from 2018 to 2022 was conducted.
Bivariate shared spatiotemporal components models were fitted to a) cattle BTB and human EPTB and b) cattle
BTB and human DRTB at the district level in Malawi, with cattle density, human density and climatic variables as
independent variables.
Results: Disease specific spatial effects were higher in the southern half of the country, while the shared spatial
effects were more dominant in both the south and western parts of the country. The shared temporal effects
showed constant trends, while disease specific temporal effects showed an increasing pattern for cattle BTB and a
constant pattern for human EPTB and DRTB. The predicted disease incidence pattern for all forms of TB in the
period without data showed a constant pattern over the years. Cattle density was positively associated with cattle
BTB (β: 0.022; 95% Credible Interval (CI): 0.004, 0.042). Human density was positively associated with human
EPTB (β: 0.005; 95% CI: 0.001, 0.009).
Conclusion: Cattle BTB and human EPTB and DRTB have a common spatial pattern in the west and southern parts
of Malawi. Integrated interventions targeting high-density areas for cattle and human may have positive impacts
on cattle BTB and human EPTB and DRTB.

1. Introduction

Bovine tuberculosis (BTB) is listed as one of the priority diseases to
control in Malawi [1,2]. The disease results in significant economic
losses to farmers and the country due to reduced animal productivity
and meat condemnations at abattoirs. The disease has also public health
implications since it also affects humans as zoonotic TB. In cattle, the
prevalence of BTB has been estimated at 5.62% [3]. In Malawi, the
distribution of BTB has shown to vary by district, where an earlier
nationwide tuberculin study [4], showed a higher burden in the north-
ern than central and southern region. A recent study that used case re-
ports from the central veterinary laboratory [5], showed an even trend

across the three regions. Based on an earlier report [4], the prevalence of
zoonotic TB in humans was as high as 42.8% in some areas. A recent
study has shown the zoonotic contribution of 3.3% of all human TB cases
[6]. Bovine tuberculosis control is currently passive since there is no
vaccination program against BTB in cattle. There is also no regular cattle
testing and slaughter due to the cost of testing and the inability of
government to compensate farmers. In this regard, Malawi is considered
to be a third-tier country, where cattle BTB control is a policy, but it is
not or is poorly implemented [7].

Assessment of common spatial and temporal disease trends plays an
important role in providing extra epidemiologic information over and
above that from disease specific trends, which offer an additional insight
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into disease aetiology, especially if the epidemiology of the disease in
question is similar to the epidemiology of another disease. In this regard,
other risk factors of a disease are known based on the risk factors of
another disease that exhibit a similar pattern [8]. The information can
be used in integrated disease control programmes to design integrated
interventions [9,10]. The integrated disease control programmes in turn
result in cost effective benefits compared to single disease control pro-
grammes [10]. Common disease trend analysis between cattle BTB and
human extrapulmonary TB (EPTB) and drug-resistant TB (DRTB) has
been motivated by their similar epidemiology and the absence of the
actual zoonotic TB cases due to the limited laboratory testing by gov-
ernment. Most of the zoonotic BTB cases in humans tend to be associated
with EPTB and DRTB [11,12]. Some of their risk factors are also similar,
for example, cattle and wildlife buffalo density [13,14] and climatic
factors such as humidity and precipitation [15,16].

Univariate spatiotemporal statistics approaches could be considered
in modelling several interrelated diseases. Common and divergent
trends could then be identified from the estimated spatial and temporal
patterns. However, univariate approaches are incapable of being used to
assess interactions and dependencies between the related diseases.
Spatial and temporal disease models that consider the correlation be-
tween diseases improve the estimates of disease risks through increased
statistical power [17]. Several joint spatial and spatiotemporal models
exist for modelling multiple interrelated diseases simultaneously
[18,19]. In this study, we employed the shared spatiotemporal compo-
nents model for a) BTB in cattle and EPTB in humans and b) BTB in cattle
and DRTB in humans. Using this modelling approach, we estimated the
disease-specific spatial and temporal patterns and the shared spatial and
temporal patterns common to the two diseases in either a) or b).
Considering the interrelated BTB in cattle and human EPTB, and BTB in
cattle and human DRTB, it could help public health interventions to be
more integrated, thus better decision-making and evaluation.

2. Materials and methods

2.1. Study area and population

The study focussed on districts in Malawi (Fig. 1). There are 28
districts including four cities, namely, Blantyre, Zomba, Lilongwe and
Mzuzu. Malawi is in the south and eastern part of Africa at − 13.254308
latitude and 34.301525 longitude. It is 840 km long with its breadth
varying between 10 and 160 km. The country covers a total area of
118,484 km2 with land area of 94,449 km2 and water area of 24,035
km2. It is bordered by Tanzania to the north-east, Zambia to the north-
west and central-west and Mozambique to the south.

The study population for cattle BTBwas cattle that went for slaughter
at an abattoir and the study outcome was the number of cattle reported
to have BTB at an abattoir. The study sites were the major abattoirs in
the regional cities of Blantyre, Lilongwe and Mzuzu. The choice of the
major abattoirs from these cities was the fact that cattle originated from
different districts thereby giving a good regional and national coverage.
The study population for human EPTB and DRTB was human population
with TB in each district and the outcome was the number of humans
with either EPTB or DRTB in a district and year. Likoma Island was not
included in the study since cattle farming is almost negligible. Neno
district was part of Mwanza since the map that was used did not have a
separate polygon for Neno.

2.2. Study design and data collection

The study used a retrospective sample study for the 2018 to 2022
period. In this regard, cases of BTB in cattle (Supplementary Table 1),
including their place of origin and year were recorded from logbooks
found at the selected abattoirs (Supplementary Fig. 1). The BTB cases

were also recorded from abattoir-based meat inspection monthly reports
kept at theregional central veterinary laboratory offices (Supplementary
Fig. 2). Using the place of origin, the cattle BTB cases were aggregated at
district level and year to have the outcome of interest in this study. To
avoid an overlap between logbooks and monthly reports, logbooks were
used where monthly reports were not traceable, especially in the central
and northern region. Diagnosis of cases was by postmortem examina-
tion. Data was also collected on cattle population for each district
(Supplementary Table 2) from the 2006–2007 livestock census report
[20]. The cattle population data for the study years 2018 to 2022 was
projected by using the average national annual growth rate (Supple-
mentary Table 3). Cattle population density was then calculated by
dividing population by district area size in km2. The area size of each
district was recorded from the national human census report [21].

Human extrapulmonary and drug-resistant TB cases for each district
and year from 2018 to 2022 (Supplementary Tables 4 and 5) were
collected from National TB and Leprosy Programme after being granted
permission (Supplementary Appendix A). These cases were based on TB
cases recorded by the district hospital and health centres. The EPTB
cases were bacteriologically or clinically confirmed. A positive lateral
flow urine lipoarabinomannan assay (LF-LAM) test result without a
concordant sputum sample was also classified as an EPTB case. For the
EPTB cases that were clinically diagnosed, they were diagnosed based
on the overall clinical presentation of the patient, the laboratory and
radiological results [22]. Drug-resistant TB cases were confirmed by the
Gene Xpert and TB culture diagnostic method. Human 2018 population
data for each district was also collected from the 2018 human

Fig. 1. Map of Malawi land mass showing districts and cities.
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population census report [21] (Supplementary Table 6), which also
yielded the population density upon dividing population by area in km2.
Similar to cattle population, human population for the subsequent study
years was found by using the annual growth rate.

District level data was also collected on climatic variables such as
annual average temperature, maximum temperature, minimum tem-
perature and precipitation (Supplementary Table 7). Climatic data was
downloaded from WorldClim (https://www.worldclim.org/data). The
data represented the district level averages based on data from 1970 to
2000 computed by the R raster package. WorldClim data was used since
the annual weather data from Malawi meteorological department did
not cover all districts. The use of WorldClim data is supported in the
literature [23,24]. Permission to conduct the entire study and to collect
BTB case data for cattle was granted by the department of animal health
and livestock development in Malawi (#DAHLD/AHC/10/2022/1)
(Supplementary Appendix B).

2.3. Statistical analysis

As the data were the observed counts of TB cases, an appropriate
spatial model could have been based on the Poisson spatial model with a
log-linear link function. However, the number of cattle exposed to TB at
each abattoir could not be measured. Thus, we instead modelled the log
of count in a linear spatial model, where we added a one to each count.
Using a linear model allowed us to avoid the limitations of not having
the exposed number of cattle. In application of the linear model, we
initially compared the linear models with different constants added to
count data with the negative binomial using simulation [25,26] (Sup-
plementary Appendix C). In comparison, we also considered the linear
model of log of count, after the zeros were replaced with 0.5.

Univariate linear spatiotemporal models of the number of cattle BTB
and human EPTB and DRTB cases were fitted (Supplementary Appendix
C). This was followed by fitting the bivariate shared component
spatiotemporal linear models, one between BTB in cattle and EPTB in
humans, and another between BTB in cattle and DRTB in humans
(Supplementary Appendix C). We also fitted the bivariate spatiotem-
poral negative binomial model for comparison with the linear model on
the predicted counts, considering that the linear model of log of count
plus one tend to perform poorly under small counts [27]. In these
models, we used the number of cases as the dependent variable, while
district, year, cattle density, human density and climatic variables such
as precipitation and temperature were used as independent variables.
District, year and their interaction were modelled as spatial, temporal
and spatiotemporal random effects respectively, representing the effects
of unobserved factors of disease incidences. The choice of independent
variables other than district and year was based on the literature
[14,16]. For each bivariate model, three models were fitted, namely, the
full model with all covariates, including district and year (Model 1), the
reduced model with significant covariates, including district and year
(Model 2), and the space-time model with only district and year without
covariates (Model 3).

Model inference was Bayesian implemented in R using integrated
nested Laplace approximation (INLA) [28]. The spatial and temporal
effects were assigned the conditional autoregressive (CAR) distribution
(Supplementary Appendix C). The other priors were based on Knorr-
Held [29], G’omez-Rubio et al. [30] and Otiende et al. [31]. The map
of posterior probability that the spatial effect was positive denoted as
p(si > 0), also known as exceedance probability was used to determine
districts with high probability that the spatial effect had an increasing
effect. To assess spatial, temporal and spatiotemporal dependence be-
tween BTB in cattle and EPTB and DRTB in humans, a correlation matrix

of the weights of the shared effects was made. Model comparison was by
the deviance information criterion (DIC). We also predicted disease
mean counts for the years where there was no data.

3. Results

Fig. 2 shows the time series plot of the number of BTB cases in cattle
and EPTB and DRTB cases in humans. There were 828 cases of BTB in
cattle recorded in the study period. The average of BTB cases was 6 and
the standard deviation was 27. The total number of cases for EPTB and
DRTB in humans in the study period was 26,852 and 545 respectively.
The mean number of human EPTB cases was 207 and the standard de-
viation was 291. The average number of human DRTB cases was 4, while
the standard deviation was 5. In this regard, there was high heteroge-
neity among the cattle BTB and human EPTB cases. The number of BTB
cases in cattle had been increasing, while the number of EPTB and DRTB
cases in humans had been fluctuating in the study period. The number of
BTB cases in cattle and DRTB cases in humans had been low compared to
the number of EPTB cases in humans. A map of the number of cases
(Fig. 3), showed an almost similar south-north gradient of BTB in cattle
and EPTB and DRTB in humans, with a greater number of districts in the
southern half of the country having more cases compared to districts in
the northern half. The pattern for cattle BTB cases also showed west-east
gradient, with more cases in the west than in the east. Districts with high
number of cases in terms of both cattle BTB and human EPTB and DRTB
were Chikwawa, Chiradzulu, Mchinji and Mzimba.

Fig. 2. Annual trends in cattle BTB and human EPTB and DRTB cases.
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Fig. 4 shows the mean bias and root mean square error of the log of
count models and the negative binomial model. The negative binomial
model showed the minimum bias throughout the confidence interval of
the true mean of cattle BTB cases. The log of count plus one, log of count
plus half and the log of count with zeros replaced with half model had a
higher positive bias for the mean count less than the average of cattle
BTB cases and a higher negative bias for the mean count more than
average of cattle BTB cases, meaning the models had the tendency to
overestimate small counts and underestimate higher counts. Despite this
behaviour, the log of count plus one and the log of count plus half model
were indistinguishably unbiased in terms of estimating the point mean
value of cattle BTB cases, which was 6 and they had the minimumRMSE.
Although the log of count plus 0.001 model had the smaller bias below
and above the point true mean value and was close to the standard
model of counts, the negative binomial, it was biased in terms of esti-
mating the point average value of cattle BTB cases. Due to this reason,

further univariate and bivariate spatiotemporal modelling was based on
the log of count plus one model. For comparison purposes, bivariate
spatiotemporal prediction of disease counts using the negative binomial
was also done.

Table 1 and Tables 2 and 3 show results of univariate and bivariate
spatiotemporal linear models of the log transformed number of cases
respectively. There was no difference in terms of the number of signif-
icant predictors between univariate and bivariate models. In both cases,
cattle density was a significant risk factor of cattle BTB and human
density was a significant risk factor of human EPTB. Human density was
a borderline significant factor of DRTB. Precipitation was also a
borderline significant common risk factor of cattle BTB and human EPTB
and DRTB cases. Cattle density was positively associated with cattle BTB
cases. Similarly, human density was positively associated with human
EPTB and DRTB cases. On the contrary, precipitation was negatively
associated with the number of cattle BTB and human EPTB and DRTB
cases. In general, bivariate models fitted the data better than univariate
models since they had smaller DIC. Due to this reason and for the sake of
estimating both the shared and disease specific trends, further statistical
inference was based on the bivariate models. A comparison of a bivariate
model with all significant covariates, including space and time, with the
space-time model, showed the space-time model fitting the data better
when we jointly modelled cattle BTB and human DRTB. To have com-
parable shared patterns between BTB and EPTB and between BTB and
DRTB, and also for the reason of having a less adjusted spatial pattern
which can be compared to the raw spatial pattern in Fig. 3, further
inference was based on the space-time linear model. For comparison
with the standard count data model, results on the predicted counts
based on the negative binomial model were included in the supple-
mentary materials (Supplementary Figs. 3 & 4).

Figs. 5 and 6 show the spatial effects on cattle BTB and human EPTB
and DRTB and their posterior probability. The distribution of disease
specific spatial effect on BTB in cattle showed an increasing effect in the
west than in the east. The disease specific spatial effect on human EPTB

Fig. 4. Mean bias and root mean square error from count data models fitted to negative binomial simulated data based on parameters of the empirical cattle
BTB data.

Table 1
Estimates of univariate linear model of cattle BTB and human EPTB and DRTB.

Parameter BTB EPTB DRTB

Fixed Mean (95% CI) Mean (95% CI) Mean (95% CI)

Cattle density 0.023* (0.004, 0.042) 0.011 (− 0.008, 0.030) 0.002 (− 0.014, 0.020)
Human density 0.000 (− 0.004, 0.003) 0.005* (0.001, 0.008) 0.003† (0.000, 0.006)
Temperature 0.040 (− 0.173, 0.255) 0.037 (− 0.199, 0.275) 0.032 (− 0.164, 0.231)
Precipitation − 0.002† (− 0.003, 0.000) − 0.002† (− 0.004, 0.000) − 0.001† (− 0.003, 0.000)
Random
Spatial 2.381 (1.295, 4.951) 3.597 (2.183, 6.711) 2.165 (1.218, 4.329)
Temporal 0.063 (0.020, 0.380) 0.017 (0.001, 0.122) 0.001 (0.000, 0.023)
Spatiotemporal 0.452 (0.353, 0.595) 0.094 (0.074, 0.124) 0.287 (0.224, 0.375)
DIC − 840.57 − 842.10 − 837.99

* Statistically significant at 5% significance level and yborderline significance.

Fig. 3. Spatial trends in cattle BTB and human EPTB and DRTB cases, 2018
to 2022.
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Fig. 5. Disease specific and shared spatial effect on cattle BTB and human EPTB (a) and their posterior probability (b).

Fig. 6. Disease specific and shared spatial effect on cattle BTB and human DRTB (a) and their posterior probability (b).
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and DRTB showed more districts in the southern half of the country
having an increasing effect than those in the northern half. The gradient
of the shared spatial effect on cattle BTB and human EPTB was west-east,
with districts in the west having an increasing effect than those in the
east. The gradient of the shared spatial effect on BTB and DRTB was
south-north. The posterior probability regarding the shared spatial effect
on cattle BTB and human EPTB or cattle BTB and human DRTB showed
low probability that the spatial effect was positive. Figs. 7 and 8 show
the temporal effects on cattle BTB and human EPTB and DRTB. The
temporal effect on cattle BTB showed a reducing effect from 2018 to
2020 and an increasing effect thereafter. The disease specific temporal
effects on human EPTB and DRTB were constantly close to zero,
implying insignificance. The shared temporal effects on cattle BTB and
human EPTB or cattle BTB and human DRTB were also close to zero.
Spatiotemporal prediction (Fig. 9) in the study period showed an
increasing pattern for cattle BTB and a constant pattern for human EPTB
and DRTB. The gradient for all forms of TB in each year was approxi-
mately south-north. The predicted counts in years with no data showed a
constant trend for all forms of TB over time (Fig. 10). Prediction of
counts in years with no data based on the negative binomial model
(Supplementary Fig. 4) also showed similar patterns with minor differ-
ences. In this regard, the predicted mean cattle BTB cases under the
linear model (Fig. 10) were lower than those predicted under the
negative binomial model (Supplementary Fig. 4). The predicted cattle
BTB cases under the negative binomial model also showed an increasing
pattern over the years.

The contribution in amount of variation due to random factors
(Tables 2& 3, Model 3), showed that much of the variation in cattle BTB
when we modelled cattle BTB and human EPTB was due to disease
specific spatial (86%) and spatiotemporal (12%) factors. For human
EPTB, the variation due to disease specific spatial factors was substantial
(98%). In the bivariate spatiotemporal modelling of cattle BTB and
DRTB, much of the random variation in BTB was due to disease specific
spatial (88%) and spatiotemporal factors (11%), while much of the
variation in human DRTB was due to disease specific spatial factors
(92%). An evaluation of spatial, temporal and spatiotemporal correla-
tion of the random factors of cattle BTB and human EPTB and DRTB
using the bivariate correlation of weights of the shared effects (Table 4&

Supplementary Table 8), showed a significant positive temporal corre-
lation of cattle BTB and human EPTB random factors. There was also
significant positive temporal and spatiotemporal correlation of the

Fig. 10. Predicted cattle BTB and human EPTB and DRTB in 2023 and 2024.

Fig. 7. Disease specific and shared temporal effect on cattle BTB and
human EPTB.

Fig. 8. Disease specific and shared temporal effect on cattle BTB and
human DRTB.

Fig. 9. Predicted cattle BTB and human EPTB and DRTB, 2018 to 2022.
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random factors of cattle BTB and human DRTB. Positive temporal cor-
relation means that the random factors of cattle BTB and human EPTB
and DRTB were similar over the study period. The observed positive
spatiotemporal correlation means that the random factors of cattle BTB
and human DRTB were similar over space and time.

4. Discussion

This paper has investigated common and disease specific spatial and
temporal trends in the epidemiology of cattle bovine tuberculosis and
human extrapulmonary and drug-resistant tuberculosis in Malawi. We
applied the recently developed multivariate spatiotemporal models for
several related disease outcomes. The shared spatiotemporal compo-
nents model was used and estimated by Bayesian methods. We used
cattle BTB data from the central veterinary laboratory offices and ab-
attoirs and human EPTB and DRTB data from National TB and Leprosy
Programme. Higher common disease spatial effects were found in the
western and southern parts of the country.

Using multivariate spatiotemporal models to estimate cattle BTB and
human EPTB and DRTB trends resonates well with One Health. The
approach is encouraging in understanding comorbidity of zoonoses be-
tween humans and animals in sub-Saharan Africa, where their risk
including BTB is high [6,32]. Nevertheless, the approach is likely to be
hampered by lack of livestock disease data due to poor data monitoring
systems in livestock health. Furthermore, zoonotic diseases in humans
are not well monitored and hence forth their data is also hard to find. An
improvement in both animal and human zoonotic data monitoring is
required for the quality implementation of multivariate spatial model-
ling. The observed differences in the predicted cattle BTB counts in 2023
and 2024 between the linear model (Fig. 10) and the negative binomial
model (Supplementary Fig. 4) may be attributed by the poor approxi-
mation by the linear model under small counts [27].

An explanation to the observed disease spatial and temporal trends is
a matter of conjecture. Districts such as Chikwawa, Mchinji and
Lilongwe among others have shown a similar disease increasing spatial
effect on cattle BTB and human EPTB and DRTB probably due to similar
zoonotic contextual risk factors such as high cattle population density.
This is likely considering that previous studies have shown bovine
density to be positively correlated with BTB in cattle and TB in humans

[13,14]. Most districts with the observed increased shared spatial effect
are known to have high cattle population [20]. Other similar contextual
risk factors in play may be climatic conditions such as precipitation,
temperature and humidity [15,16], and this study found precipitation as
a possible common driver of cattle BTB and human EPTB and DRTB
incidences based on the borderline significance [33]. Lack of the
outright statistical significance of precipitation may be attributed by the
low statistical power of a linear model compared to the classical count
data models [34]. An explanation to the observed negative effect of
precipitation on cattle BTB and human EPTB and DRTB incidences is
that prolonged exposure to dry conditions tend to reduce production of
protective mucus on the surface of the respiratory system which can
make cattle and humans vulnerable to TB infection [15]. In addition,
low precipitation may result in cattle competing for fewer waterholes
and food, which, in turn, due to close contacts, may result in infections.
This explanation is possible considering that a previous study found
waterpoint density per unit surface being negatively associated with
cattle BTB [35].

The observed west-east gradient of the shared spatial effect may be
explained by the increase in cattle and human activities in the west than
in the east, and some of these activities include cattle movements and
markets. Cattle movement networks have been known to be positively
associated with BTB infection [36]. Cattle markets may also put buyers
and workers at risk of zoonotic TB which tends to be extrapulmonary.
More cattle and human activities in the west than in the east may be
attributed by the major national road M1. The observed divergent dis-
ease specific trends would be attributed by disease specific risk factors
such as farming systems for BTB in cattle [37] and human socioeco-
nomic factors such as living conditions for human DRTB [38]. For
example, the increased spatial effect on cattle BTB in the southern tip of
the country is probably due to the intensive farming system practiced by
large farm owners who keep their animals in feedlots. Also, dissimilar
trends of BTB in cattle and EPTB and DRTB in humans in Blantyre may
be attributed by high human population density, which mainly affects
humans other than cattle. This is evident from this study where human
population density has been found as a significant determinant of EPTB
in humans, but not BTB in cattle. The divergent disease trends may also
be explained by other risk factors of EPTB and DRTB in humans which
are not zoonotic such as HIV infection [39]. The south-north gradient of

Table 4
Assessment of spatial, temporal and spatiotemporal correlation.

BTB & EPTB

Spatial Temporal Spatiotemporal

BTB EPTB BTB EPTB BTB EPTB

Spatial BTB − 0.051a 0.191 0.119 0.020 0.207
EPTB − 0.051a 0.034 − 0.023 0.074 0.173

Temporal BTB 0.191 0.034 0.230b 0.144 0.124
EPTB 0.119 − 0.023 0.230b 0.013 0.025

Spatiotemporal BTB 0.020 0.074 0.144 0.013 − 0.059c

EPTB 0.207 0.173 0.124 0.025 − 0.059c

BTB & DRTB

Spatial Temporal Spatiotemporal

BTB DRTB BTB DRTB BTB DRTB

Spatial BTB 0.000a − 0.189 0.373 0.211 − 0.032
DRTB 0.000a − 0.210 0.087 0.343 0.033

Temporal BTB − 0.189 − 0.210 0.170b − 0.293 − 0.044
DRTB 0.373 0.087 0.170b − 0.083 − 0.286

Spatiotemporal BTB 0.211 0.343 − 0.293 − 0.083 0.750c

DRTB − 0.032 0.033 − 0.044 − 0.286 0.750c

a Spatial correlation.
b Temporal correlation.
c Spatiotemporal correlation.
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EPTB and DRTB is likely to be caused by higher human population
density in the south and centre than in the northern region. High burden
of cattle BTB in some southern districts may also be attributed by high
cattle population, especially in the southern tip of the country.

The increasing temporal pattern of BTB in cattle in the study period
may be due to an increase in human population which has hence forth
increased trading activities thereby increasing BTB incidences. It may
also be attributed by the increasing overall cattle population in the
country [40]. The other possible reason for the increasing temporal
pattern of cattle BTB may be the lack of implementation of control
measures, due to lack of resources such as human, financial and labo-
ratory equipment [5,7]. A possibility of sampling biases due to the
absence of a well organised data base system might also be the
contributing factor to the observed cattle BTB temporal pattern. The
constant temporal trend of human EPTB and DRTB, especially the
random effect to be constantly zero or insignificant, may be related to
the reduced zoonotic TB transmissions due to the dwindling animal
population per capita [41]. Also, this may be due to the decreasing
human HIV infections which tend to exacerbate TB infections [42].

The study has weaknesses including that data for BTB in cattle was
not collected from a well organised electronic surveillance system which
might have resulted into some spatial and temporal sampling biases.
Diagnosis of cattle BTB cases was based on postmortem examination and
hence forth some incidences might not be the true cases. Nevertheless,
the study results make sense and are consistent with the previous studies
[4,5]. In addition, the study did not use the actual zoonotic TB cases in
humans due to their absence since they are usually not diagnosed due to
the limited hospital testing capacity. Nonetheless, the EPTB cases acted
as a good proxy for zoonotic TB cases since in most cases the two tend to
be positively correlated. Future studies with enough financial resources
may conduct a national representative laboratory sample survey of
M. bovis in cattle and humans and then use multivariate shared
component spatial modelling for joint spatial pattern analysis.

5. Conclusions

Districts with the increased shared spatial effect between cattle BTB
and human EPTB or between cattle BTB and human DRTB were mostly
on the west and southern half of the country. The distribution of disease
specific human EPTB and DRTB spatial effects showed a south-north
gradient. The spatial effect on cattle BTB showed a west-east gradient.
The shared temporal effects were constantly close to insignificance. The
predicted cattle BTB and human EPTB and DRTB cases in the period with
no data showed a constant pattern over time. Cattle density was posi-
tively associated with BTB cases. Human density was positively associ-
ated with EPTB. Integrated programmes to control cattle BTB and
human EPTB and DRTB may focus on the western and southern half of
the country. The interventions may be prioritized in cattle and human
densely populated districts.
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