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To investigate the long-term biological effect of extreme low dose ionising radiation, we irradiated normal human fibroblasts (HFLIII)
with carbon ions (290 MeV u�1, 70 keV mm�1) and g-rays at 1 mGy (total dose) once at a low dose rate (1 mGy 6–8 h�1), and
observed the cell growth kinetics up to 5 months by continuous culturing. The growth of carbon-irradiated cells started to slow down
considerably sooner than that of non-irradiated cells before reaching senescence. In contrast, cells irradiated with g-rays under similar
conditions did not show significant deviation from the non-irradiated cells. A DNA double strand break (DSB) marker, g-H2AX foci,
and a DSB repair marker, phosphorylated DNA-PKcs foci, increased in number when non-irradiated cells reached several passages
before senescence. A single low dose/low dose rate carbon ion exposure further raised the numbers of these markers. Furthermore,
the numbers of foci for these two markers were significantly reduced after the cells became fully senescent. Our results indicate that
high linear energy transfer (LET) radiation (carbon ions) causes different effects than low LET radiation (g-rays) even at very low
doses and that a single low dose of heavy ion irradiation can affect the stability of the genome many generations after irradiation.
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Ever since the seminal discovery of cellular senescence of human
cells by Hayflick and Moorhead (1961), their finding has
contributed substantially to understanding the mechanism of
aging (Shay and Wright, 2000). Some of the molecular regulators
associated with senescence have been identified (Herbig et al,
2004) these molecules include p21 and p16. Many years before
Heyflick’s finding, Henshaw et al (1947) showed that exposure to
ionising radiation (IR) accelerated the process of aging in animal
experiments. Along with other evidence, genome stability has been
regarded as an important factor in the aging process (Vijg and Suh,
2006). However, premature aging by IR was not clearly demon-
strated in the cell culture model demonstrated by Hayflick
(Holliday, 1991). In contrast, one fairly recent study indicated
the extension of lifespan of human embryo cells in culture with
repeated daily doses of low level g-rays, although these irradiated
cells had a higher number of chromosomal genome instability than
non-irradiated control (Suzuki et al, 1998). Recently, Suzuki et al
(2005) demonstrated a reduction in the lifespan of normal human
fibroblasts exposed to chronic low doses of heavy ion particles,
whereas no reduction in lifespan under similar dose/dose rate of
g-rays was observed. The dose rate they used was about the level
astronauts would receive during their space travel.

To further clarify this important subject of in vitro senescence
phenomenon with IR at low doses, we exposed normal human

fibroblasts to a single dose of low dose/low dose rate high linear
energy transfer (LET) heavy ion irradiation and observed the
cultured cells up to 5 months. Our results indicate a clear
reduction in the cell’s lifespan after a single dose of carbon ion
irradiation, while no reduction in lifespan was observed in
g-irradiated cells under similar conditions. The markers of DNA
double strand breaks (DSBs) were also examined in these cells as a
recent study indicated the accumulation of these markers in
senescent cells (Sedelnikova et al, 2004).

MATERIALS AND METHODS

Cell culture

Normal human lung fibroblasts (HFLIII) were obtained from
RIKEN Cell Bank. Cells were grown in F-12 Nutrient Mixture
(Ham’s F-12) Medium containing 1% antibiotic–antimycotic
supplemented with 15% fetal bovine serum.

Irradiation

Cells were inoculated into a 25 cm2 flask and cultured until at a
confluent state. Medium was changed and the flasks were filled
with new medium before irradiation. Low dose (1 mGy) and low
dose rate (1 mGy 6 –8 h�1) carbon ion (290 MeV u�1 original
energy, 70 keVmm�1) irradiation was performed at Heavy Ion
Medical Accelerator in Chiba (HIMAC) biology facility at National
Institute of Radiological Sciences (NIRS). g-ray irradiation was
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performed at a similar dose and dose rate with 137Cs g-rays
(1 mGy 6 h�1). As a control, non-irradiated cells were placed in
HIMAC biology control room under the same conditions.

Cell growth kinetics and immunofluorescence
measurements

Cell growth kinetics was obtained by counting the number of
subcultured cells using a haemocytometer at regular intervals
(about 7 days) up to 5 months. Two hours after irradiation, cells
were trypsinised, counted, and then reinoculated on coverslips
for immunostaining. The cells on coverslips were immunostained
as described previously (Okayasu et al, 2006). We used anti-
phosphorylated DNA-PKcs (Thr 2609) polyclonal antibody (Sigma
Genosys, Ishikari-shi, Japan) and an anti-g H2AX polyclonal
antibody (Upstate, NY, USA) as primary antibodies. As secondary
antibodies, we used Cy2-conjugated AffiniPure goat anti-rabbit
IgG (Jackson ImmunoResearch, West Grove, PA, USA) for DNA-
PKcs, and Cy3-conjugated AffiniPure donkey anti-mouse IgG for
g-H2AX (Jackson ImmunoResearch).

RESULTS

Cell growth kinetics shows early senescence in low dose
carbon-irradiated cells

We irradiated normal human fibroblasts with carbon ions once at
1 mGy at low dose rate (1 mGy 6 h�1: 0.0028 mGy min�1), observed
the cell growth kinetics for a period of 5 months, and compared
the results with non-irradiated control cells. The dose rate we used
was similar to the level astronauts would be exposed to in space.
The growth of irradiated cells with carbon ions started to slow
down much earlier than that of non-irradiated control cells
reaching senescence (Figure 1). To make certain that this is a
reproducible phenomenon, we repeated the same growth experi-
ment with cells irradiated with carbon at a similar dose and dose
rate. As can be seen in Figure 2, early senescence was again
observed in the carbon-irradiated cells and the slowing down of
cell growth started to occur around the same cell passage number
(about passage 24) as in the first experiment. The data analyses
indicate that the two carbon growth curves are statistically
significant when compared with non-irradiated control cell growth
(see figure legend). We also examined the growth of cells irradiated

with low LET g-rays at a similar dose and dose rate (Figure 2). Of
interest, there was no growth disadvantage in cells irradiated with
g-rays, and these cells showed a rather slight delay in the onset of
senescence; however, this delay was not statistically significant
(see figure legend). We have repeated the g-ray experiment and
basically obtained the same result (data not shown).

The number of foci for DNA DSB markers starts to
increase as cells reach senescence

Figure 3A shows yield of average numbers of g-H2AX foci per cell
as a function of cell passage number after cells exposure to g-rays
and carbon ions along with non-irradiated control. As g-H2AX
foci are known to correspond to DNA DSBs (Paull et al, 2000;
Rothkamm and Lobrich, 2003), the senescence process itself
seemed to produce DSBs as the number of foci increased for all the
samples at passage 22, and this phenomenon was further enhanced
by IR at later passages (see passage 26), especially high LET carbon
ions. In order to confirm the existence of DSBs in senescing cells,
we used a phospho-specific antibody for DNA-PKcs (Thr 2609) to
detect an active NHEJ-type DSB repair process (Dibiase et al, 2000;
Chan et al, 2002) (Figure 3B). The number of phosphorylation sites
for DNA-PKcs started to increase in cells with carbon irradiation at
passage 22, and although the number was further increased for all
the samples, it significantly increased with carbon-irradiated
samples (Po0.1 between control and carbon data at passage 26).
Although these DSB markers could be a sensitive indicator for
senescence as recently reported (Sedelnikova et al, 2004), it
appears that DNA-PKcs phosphorylation is a better marker for
senescence. The representative foci images for g-H2AX and DNA-
PKcs are given in Figure 4A (passage 22) and Figure 4B (passage
26). However, once cells reached the full senescence stage, the
numbers of these markers were significantly reduced.

DISCUSSION

In this report, we have shown for the first time that a single low
dose/low dose rate heavy ion irradiation causes early senescence.
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Figure 1 HFLIII cells were irradiated with 1 mGy carbon ions
(290 MeV u�1 original energy, 70 keV mm�1) at 1 mGy 6 h�1 and the cell
growth was compared with that of non-irradiated control cells. The
numbers in the figure indicate cell passage numbers. Carbon ion irradiation
induced accelerated senescence at passage number around 25. (*Po0.05
compared to non-irradiated control cells by Student’s t-test)
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Figure 2 HFLIII cells were irradiated with 1 mGy carbon ions
(290 MeV u�1, 70 keV mm�1) at 1 mGy 7.3 h�1 and with 1 mGy g-rays at
1 mGy 6 h�1, and the cell growth was compared with that of non-irradiated
control cells. The numbers in the figure indicate cell passage numbers. The
cells irradiated with carbon ions senesced earlier than the non-irradiated
control cells, while the cells with g-irradiation showed delayed senescence
when compared to control. (*Po0.05 compared to non-irradiated control
cells.) However, cells irradiated with g-rays were not statistically significant
(P¼ 0.16) when compared with non-irradiated control.
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The dose and dose rate level we used (1 mGy 6– 8 h�1) was similar
to the level astronauts would receive per day in their space
exploration (about 1 mGy day�1). The general public could receive
this dose level (1 mGy or higher), although it is not heavy ions, in
a diagnostic radiology examination. In the past, a similar life-
shortening phenomenon in normal human fibroblasts was
reported by Suzuki et al (2005) after many days of chronic low
dose/low dose rate charged particles; however, the accumulated
dose was 200– 300 mGy in their case. Thus, our finding with a
single 1 mGy heavy ion exposure is unique and unexpected. We
also found that a single g-ray exposure at the similar dose and
dose rate did not cause life shortening, but rather led to a slight
extension of their lifespan. A similar tendency was reported with
chronic low dose/low dose rate g-ray exposure studies (Suzuki
et al, 1998, 2005). Our senescence data with heavy ion irradiation
are consistent with the animal data with neutron irradiation found
by Henshaw et al (1947) many years ago. This would make sense as
neutron irradiation has been shown to have similar biological
effectiveness as heavy ions (Hall, 1982). Henshaw et al also showed
data with g-irradiation, but the life shortening was much less
distinct. Our theoretical calculations indicate that in cells
irradiated with carbon ions at 1 mGy 6 h�1, only one in eighteen
cells would be hit. These data seem to indicate that the accelerated

senescence caused by low dose carbon irradiation was a result of
bystander effect. Bystander effects are the nontargeted effects
observed in cells that were not directly irradiated, but were either
in contact with or received soluble signals from irradiated cells via
gap junctions. Although the effect of our carbon ion irradiation
was mainly caused by the bystander effect, early senescence was
clearly observed when compared to the non-irradiated control and
g-irradiated cells.

Sedelnikova et al (2004) showed that g-H2AX foci accumulated
in senescing human cells and in aging mice, and these foci
colocalised with DSB repair proteins such as 53bp1, Mre11, Rad50,
and Nbs1. They indicated that cells accumulated persistent DNA
lesions that contain unrepairable DSBs during senescence. Zhang
et al (2005) also showed histone H2A variant, macroH2A foci
increased exponentially as the cells approached senescence. We
confirmed their finding with the g-H2AX assay and further
indicated that low dose heavy ion irradiation created extra
unrepaired DSBs after many days of culturing; this should not
be caused by the direct hit of radiation as the sample from an
earlier passage (passage 20 for example) did not show the increase.
To confirm the appearance of DSB damage many days after
irradiation, we used an antibody to detect the phosphorylation of
DNA-PKcs, an NHEJ protein, which indicates the actual occur-
rence of DSB repair process. Our data clearly revealed the passage-
and irradiation-dependent appearance of this phosphorylation
signal, suggesting that aged cells sustained DSB, and low dose
heavy ion irradiation further induced novice DSBs in late passages.
We also analysed senescence-associated b-galactosidase, but not
much difference among g-ray irradiated, carbon ion irradiated,
and non-irradiated control cells was observed. As mentioned
before, g-H2AX and DNA-PKcs foci could be more useful
indicators than the senescence-associated b-galactosidase
analysis for cell senescence. This would be the first time that the
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Figure 3 (A) Yield of average numbers of g-H2AX foci per cell as a
function of cell passage number after irradiation. The number of foci at
presenescence stage (p26) was increased in all the cells and further
increased especially in carbon-irradiated cells. In the fully senescent (p30)
cells, the number of foci was significantly reduced. (B) Yield of average
numbers of phosphorylated DNA-PKcs foci per cell as a function of cell
passage number after irradiation. Similar tendencies as in (A) can be
observed (P¼ 0.054 between carbon and control foci numbers).
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Figure 4 (A) Representative images of g-H2AX foci and phosphory-
lated DNA-PKcs (Thr 2609) foci in cells irradiated with carbon ions and
g-rays along with non-irradiated control cells at passage 22. The red and
green dots indicate the g-H2AX foci and phospholyrated DNA-PKcs foci,
respectively. (B) Representative images of g-H2AX foci and phosphory-
lated DNA-PKcs (Thr 2609) foci in cells irradiated with carbon ions and
g-rays along with non-irradiated control cells at passage 26. The red and
green dots indicate the g-H2AX foci and phosphorylated DNA-PKcs foci,
respectively.
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phospho-specific DNA-PKcs marker was introduced as an
indicator for cell senescence. If DSBs were associated with cell
senescence, the senescent status on NHEJ-deficient cells would
be affected. In this regard, our preliminary results with NHEJ-
deficient human fibroblasts 180BR showed further accelerated
senescence than normal cells (data not shown). These results are
consistent with our DSB marker results. In addition, once cells
reach the full senescence stage, the signals for the DSB markers
decreased significantly, indicating that the fully senesced cells have
different metabolic functions (less need for repair function). A
similar finding was recently reported by Bakkenist et al (2004).
They indicated that although ATM activation and g-H2AX foci
formation were induced by telomere dysfunction as a stress
response in late-passage presenescent cells but not in early-passage
cells, they disappeared once cells become fully senescent. They
concluded that fully senescent cells do not require these stress
responses induced by telomere dysfunction for the maintenance
of senescence. Moreover, there are a number of studies discussed
about the correlation between telomere shortening (cellular
senescence) and DNA damage response (d’Adda di Fagagna
et al, 2003; Takai et al, 2003; Shay and Wright, 2004; von Zglinicki

et al, 2005; Herbig and Sedivy, 2006). We showed an increase in the
number of foci related to DSBs at the presenescence stage.

In summary, we showed that a single low dose/low dose rate
irradiation (1 mGy 6–8 h�1) with heavy ion particles induced early
senescence in normal human fibroblasts, while g-irradiation under
a similar dose/dose rate condition did not cause life shortening.
DNA DSB and DSB repair markers were increased at the
presenescence stage and were further enhanced in number for
cells irradiated once with low doses of carbon ions. However, these
DSB markers were significantly reduced once cells became fully
senescent, suggesting less necessity for DNA damage/repair
function in that stage.
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