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A B S T R A C T   

Background: The immune-inflammatory pathway plays a critical role in myocardial infarction 
development. However, few studies have systematically explored immune-related genes in rela-
tion to myocardial infarction prognosis using bioinformatic analysis. Our study aims to identify 
differentially expressed immune-related genes(DEIRGs) in ST-segment elevation myocardial 
infarction (STEMI) patients and investigate their association with clinical outcomes. 
Materials and methods: We conducted a systematic review of Gene Expression Omnibus datasets, 
selecting GSE49925, GSE60993, and GSE61144 for analysis. DEIRGs were identified using 
GEO2R and overlapped across the chosen datasets. Functional enrichment analysis elucidated the 
DEIRGs’ biological functions and pathways. We established an optimal prognostic prediction 
model using LASSO penalized Cox proportional hazards regression. The signature’s clinical utility 
was evaluated through survival analysis, ROC curve assessment, and decision curve analysis. 
Additionally, we constructed a prognostic nomogram for survival rate prediction. External vali-
dation was performed using our own plasma samples. 
Results: The resulting prognostic signature integrated two dysregulated DEIRGs (S100A12 and 
IL2RB) and two clinical variables (serum creatinine level and Gensini score). This signature 
effectively stratified patients into low- and high-risk groups. Survival analysis, ROC curve anal-
ysis, and decision curve analysis demonstrated its robust predictive performance and clinical 
utility within the first two years post-disease onset. External validation confirmed significant 
outcome differences between risk groups. 
Conclusions: Our study establishes a prognostic signature that combines DEIRGs and clinical 
variables for STEMI patients. The signature exhibits promising predictive capabilities for patient 
stratification and survival risk assessment.   
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1. Introduction 

Acute myocardial infarction(AMI) constitutes a clinical event characterized by myocardial ischemia leading to tissue injury. 
Diagnosis of AMI relies on troponin elevation, preferably detected using high-sensitivity assays, alongside corroborative evidence such 
as typical symptoms, electrocardiographic changes, or imaging findings indicative of new myocardial loss or regional wall motion 
abnormalities [1]. 

ST-segment elevation myocardial infarction(STEMI), a critical emergency, necessitates immediate medical attention. Its patho-
physiological process involves a cascade of events triggered by abrupt coronary artery occlusion, often due to a ruptured athero-
sclerotic plaque followed by thrombus formation [2]. The urgent problems in STEMI management include timely diagnosis, effective 
treatment to minimize myocardial damage, and accurate prognosis to guide long-term care [3]. Despite advances in reperfusion 
therapies and pharmacological interventions, post-STEMI complications, including heart failure, remain significant concerns. 
Developing robust prognostic models is crucial for identifying patients at risk of adverse outcomes and tailoring individualized 
treatment plans [4,5]. 

Increasingly, innate immunity’s role, particularly that of immune-related genes(IRGs), has gained recognition in STEMI onset and 
progression [6]. Innate immune cells and their cytokines not only contribute to the immediate response to myocardial injury but also 
influence subsequent healing and remodeling processes [7]. Recent studies have highlighted IRGs as potential biomarkers for early 
AMI diagnosis and outcome prediction [8–10]. However, a knowledge gap persists regarding the intricate relationship between these 
IRGs and clinical outcomes in STEMI patients. 

Our prior research has illuminated the prognostic significance of specific IRGs, including CD8A, IL2RB, and S100A12, within the 
context of STEMI [11]. These findings underscore the potential of integrating clinical parameters with IRG profiles to construct a 
robust predictive model for patient outcomes. Yet, comprehensive studies systematically exploring this integration and its practical 
applicability in clinical settings remain scarce. 

This study aims to bridge this gap by employing systematic bioinformatics methods to identify differentially expressed IRGs 
(DEIRGs) and correlate them with clinical factors influencing STEMI outcomes. Our goal is to construct a predictive model that not 
only enhances STEMI prognosis accuracy but also provides insights into underlying mechanisms. Such a model could revolutionize 
STEMI management, offering personalized treatment and care. 

2. Materials and Methods 

2.1. Selection of the expression profile dataset 

We meticulously curated datasets for further evaluation based on the following stringent requirements: (i) we exclusively 
considered datasets that provided comprehensive mRNA expression data related to STEMI from whole peripheral blood samples; (ii) 
we focused on discovery datasets containing mRNA expression profiles from STEMI patients who had undergone primary percutaneous 
coronary intervention(PCI), along with samples from healthy controls. We excluded datasets that met any of the following criteria:(i) 
Utilized RNA sequencing for detection instead of microarray technology; (ii)Included patients who did not receive primary PCI 
treatment; and (iii) contained data related to cell types (such as circulating endothelial cells or nucleated cells) not present in plasma. 
From the 18 datasets initially obtained, we identified six datasets derived from comprehensive transcriptome analyses of plasma. These 
datasets—namely GSE29111, GSE60993, GSE61144, GSE34198, GSE49925, and GSE34571—represented the most prevalent sample 
types. However, due to specific limitations [11], we excluded datasets GSE29111, GSE34198, and GSE34571. To facilitate our analysis, 
we selected three datasets (GSE49925 [12], GSE60993 [13], and GSE61144 [13]) for further investigation. 

In our pursuit of identifying DEIRGs that distinguish STEMI patients from healthy individuals, we carefully selected two compact 
datasets for our initial training phase: (i) GSE60993: This dataset comprises seven samples each from healthy controls and STEMI 
subjects; (ii) GSE61144: It encompasses ten healthy control samples juxtaposed with seven samples from STEMI patients. For vali-
dation purposes, we turned to GSE49925, which includes comprehensive medical records and follow-up data. This dataset facilitated a 
comparative analysis involving 61 individuals with STEMI against a control group of 93 healthy subjects. 

2.2. Identification of DEIRGs 

Our primary objective was to identify differentially expressed genes (DEGs) between healthy control patients and those with 
STEMI. For this purpose, we processed raw microarray data from the GEO database for datasets GSE61144 and GSE60993 using the 
online tool GEO2R2 (based on the R package “limma”). DEGs were screened based on the criteria of |log2(Fold Change)| > 1 and a false 
discovery rate (FDR) < 0.05. Subsequently, we extracted DEIRGs from the DEGs. Specifically, we obtained 1793 unique immunere-
lated genes from the Immunology Database and Analysis Portal (ImmPort) database (https://www.immport.org/home). We compared 
the lists of deregulated genes from the two selected GEO datasets to identify overlapping DEIRGs. Visualization included a Venn di-
agram created using the R packages “ggplot2” and “VennDiagram,” as well as volcano plots and difference ranking plots to characterize 
DEIRG expression levels. Spearman correlation analysis and heatmap visualization were used to explore expression correlations among 
DEIRGs in patients with varying prognoses. All analyses were conducted using the R package “ggplot2”. 
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2.3. Functional and pathway enrichment analysis 

To gain insights into the biological functions of these DEIRGs, we performed functional enrichment analysis, including Gene 
Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses using the R package “clusterProfiler.” Enrichment was 
based on an FDR threshold of <0.05. The top three significant GO terms and KEGG signaling pathways were visually represented using 
R packages such as “ggplot2,” “igraph,” and “ggraph.” 

2.4. Construction of A signature integrating DEIRGs 

We crafted a prognostic model that integrates DEIRGs with clinical predictors using the GSE49925 dataset. This model was 
developed through the application of the Least Absolute Shrinkage and Selection Operator(LASSO) method, which was implemented 
using the Cox proportional hazards regression framework provided by the R packages “survival” and “glmnet”. Prognostic clinical 
factors were pinpointed using a significance threshold of P < 0.1. Consequently, we calculate the risk score for each STEMI patient by 
multiplying the expression level of each parameter by its corresponding coefficient and then summing up the results. Patients within 
the GSE49925 dataset were then stratified into low-risk and high-risk categories based on the median risk score. 

2.5. Clinical utility evaluation of the signature 

To evaluate the performance of our prognostic model, we employed a risk score distribution plot alongside a Kaplan–Meier survival 
curve, utilizing the R package “survival” for the survival analysis of the two risk groups. Further, we conducted a time-dependent 
receiver operating characteristicROC) curve analysis, encompassing 1-, 2-, and 3-year survival predictions, to gauge the model’s 
sensitivity and specificity, using the R package “survivalROC”. Decision curve analysis (DCA) was also utilized to ascertain the model’s 
net benefit. This analytical segment and the visualization of results were facilitated by the R packages “survival” and “stdca.R". 

2.6. Prognostic nomogram formulation 

To quantitatively predict the survival risk of STEMI patients, we constructed a nomogram based on our established model. Each 
clinical parameter within the nomogram was assigned a score, and the total score was derived by summing the individual scores of all 
parameters. Calibration curves were then plotted to compare the predicted survival against the actual outcomes, thus assessing the 
nomogram’s predictive accuracy. The plotting of the nomogram and calibration curves was executed using the R package “rms". 

2.7. External validation 

92 patients with STEMI admitted to our centers were used as an external validation cohort for this model. The inclusion criteria 
were: 1) age ≥18 years; 2) ESC guidelines-based STEMI diagnosis; 3) symptom onset within 12 h prior to PCI; and 4) informed consent 
obtained. We excluded patients who presented with any of the following conditions: 1) cardiogenic shock; 2) prior myocardial 
infarction or coronary artery bypass grafting; 3) severe hepatic or renal dysfunction; 4) cancer or other terminal illnesses; and 5) 
antiplatelet or anticoagulant therapy intolerance. We collected blood samples from the antecubital vein before PCI and stored them in 
EDTA tubes at − 80 ◦C for analysis. We extracted total RNA from plasma samples using the miRNeasy Mini Kit (Qiagen, Germany) 
according to the manufacturer’s protocol. We performed reverse transcription using the High-Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems, USA) and random primers. We calculated the relative expression levels of the target genes using the 2^-ΔΔCt 
method, where ΔCt = Ct(target gene) - Ct(GAPDH) and ΔΔCt = ΔCt(sample) - ΔCt(calibrator). The calibrator was a pooled sample of 
plasma RNA from healthy controls. Patients were divided into high-risk and low-risk groups based on our median risk score value. We 
followed up the patients prospectively to record major adverse cardiovascular events (MACEs) for a median duration of 345 days, 
comprising cardiac death, myocardial infarction recurrence, heart failure hospitalization, and revascularization repetition. Kaplan- 
Meier survival curves and risk distribution plots were employed to evaluate the prognostic value of the model. The study protocol 
adhered to the Declaration of Helsinki and obtained approval from Tianjin Chest hospital’s ethics committee. 

2.8. Statistical analysis 

SPSS version 24.0 (SPSS Inc., Chicago, IL, United States) and R 4.2.1 (found at http://www.R-project.org, The R Foundation) were 
employed in this study. Normal distributed quantitative data were given as mean standard deviation and contrasted using t-tests or t’ 
tests for two-group comparisons in order to characterize and compare the baseline demographic, clinical, and laboratory parameters. 
Quantitative data with an abnormal distribution were reported as median and interquartile ranges, and Mann-Whitney U-tests were 
used to compare results. Qualitative data were given as frequency and composition, and Fisher’s exact test was used to analyze the 
differences in constituent ratios between two groups. All P values were two-sided, and P < 0.05 was considered for determining 
statistical significance. 
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3. Results 

3.1. Identification of DEIRGs 

The analysis of 14 STEMI samples and 17 normal samples pooled from GSE60993 and GSE61144 gave rise to 86 DEGs. Afterwards, 
17 DEIRGs were extracted from the DEGs (Fig. 1A), including 14 up-regulated and 3 down-regulated genes (Table 1). As shown in the 
volcano plot (Fig. 1B) and difference ranking plot (Fig. 1C), MMP9 and GNLY are the top up-regulated and down-regulated DEIRGs in 
the early stage of STEMI patients. 

The term that exhibited the highest enrichment across biological processes, cellular components, and molecular functions was 
“positive regulation of NF-kappa B transcription factor activity”, “plasma membrane signaling receptor complex”, and “immune re-
ceptor activity”, respectively (Fig. 2A, Supplementary Table 1). These functions are closely related to immune regulation, inflam-
matory response, vascular permeability, etc. Functional enrichment analysis indicated that the “cytokine–cytokine receptor 
interaction pathway” was the most relevant to the DEIRGs. These pathways are closely related to myocardial ischemia-reperfusion 
injury, myocardial remodeling, heart failure, etc. The correspondence between DEIRGs and GO term was visualized via a network 
in Fig. 2B. 

3.2. Construction of an immune-related gene prognostic signature 

The prognosis related DEIRGs and clinical parameters were identified, and the prediction signature was established based on the 
GSE49925 dataset. Based on the Meta data available, the study subjects were observed over an average duration of 2.4 years for the 
incidence of cardiovascular mortality. Out of the 61 individuals diagnosed with STEMI, 55 remained alive, whereas six succumbed to 
cardiac-related mortality during the observation period. The demographics and clinical characteristics of the STEMI cohort can be 
referred to our previously published literature [5]. 

A principal component analysis(PCA) framework was constructed for the DEIRGs to categorize STEMI patients based on their 
prognostic outcomes within the dataset. The graphical representation of the initial two principal components revealed a clear 
demarcation, accounting for a cumulative 65.1 % of the dataset’s variance (Supplementary Fig. 1). The expression correlation heatmap 
intuitively demonstrated that the expression profiles of the DEIRGs in STEMI patients with different prognosis were significantly 
different (Fig. 3A). Moreover, in the group that experienced mortality, the expression correlation among the DEIRGs was markedly 
diminished when contrasted with the group that survived (Fig. 3B). 

Comparing the DEIRGs in patients with varying prognoses revealed significant upregulation of transcription levels for S100A12 and 
IL2RB in the mortality group, as opposed to the survival group (Fig. 4A). Next, all available clinical indicators (body mass index, 
systolic/diastolic blood pressure at admission, white blood cell count, Gensini score, high and low-density lipoprotein cholesterol, 
triglyceride, total cholesterol, fasting blood glucose, serum creatinine) were introduced into a LASSO penalized Cox proportional 
hazards regression. Serum creatinine level at admission and Gensini score were identified as candidates of the model. Multivariate Cox 
regression confirmed that the two clinical parameters were independent prognostic factors for STEMI patients (Table 2). 

Here, we conduct a proportional risk hypothesis test on the included variables and the multivariate model to verify whether Cox 
regression meets the prerequisites for application. The results showed that all the included univariates and the model met P > 0.05, 
indicating that the multivariate model meets the proportional risk assumption (Supplementary Table 2). The biomarker signature was 
thus formulated using the expression data for the primary indicators, each weighted by their respective Cox regression coefficients, in 
the following manner: [Expression level of S100A12 × 0.835]+[Expression level of IL2RB × (− 1.432)]+[Expression level of Gensini ×
0.0201]+[Expression level of creatinine (mg/dl) × 0.297]+1.267. 

Fig. 1. Identification of DEIRGs from GSE61144 and GSE60993 microarray. (A) Venn diagram of 17 DEIRGs from the two microarray datasets. (B) 
The volcano plots of DEIRGs in the two datasets. Red indicates genes with high levels of expression, blue indicates genes with low levels of 
expression based on the criteria of P < 0.05 and |log(Fold Change)| > 1.0, respectively. (C) Ranking of the transcriptional difference among the 
DEIRGs. DEGs differential expression genes, DEIRGs differential expression of immune-related genes. 
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3.3. The signature predicts survival of STEMI patients 

For internal validation, the cohort of 61 STEMI patients from the GSE49925 dataset was stratified into groups of lower and higher 
risk using the median risk score value, with the model’s threshold set at − 0.418. Illustrated in Fig. 4B, the risk scores associated with 
the deceased were notably elevated compared to those who survived. A marked disparity in survival rates was evident, with high-risk 
individuals faring significantly worse than their low-risk counterparts, as depicted in Fig. 4C. 

The model’s predictive accuracy was gauged using time-dependent ROC curves, showcased in Fig. 5A. The areas under the curve for 
1-year, 2-year, and 3-year survival were 0.991, 0.983, and 0.717, respectively, demonstrating the model’s robust capability in tracking 
short-to medium-term survival outcomes. The risk score’s cutoff point at the 1-year mark was established at 2.99, and the sensitivity 
and specificity were 100 % and 96 %, respectively. At 2-year and 3-year follow-up, the above values were 1.467, 100 %, 92 % and 
1.467, 49 %, 100 %, respectively. A Kaplan-Meier curve also confirmed that the survival rate of patients in the low-risk group was 
significantly higher than that in the high-risk group during the 2-year follow-up period (HR = 5.56, Log-rank P = 0.077) (Fig. 5B). The 
results of DCA analysis also showed that the signature had greater clinical net benefits than its component(s) within the first two years 
after the onset of STEMI (Fig. 5C&D), and this benefit weakened thereafter (Supplementary Fig. 2). 

Utilizing the established signature, we developed a prognostic nomogram designed as a quantitative tool for forecasting individual 
patient survival risks (Fig. 6A). A prognosis calibration was then perform to analyze the fitting between the model established by the 
Cox regression method and the actual situation, As shown in Fig. 6B, the nomogram’s calibration curves demonstrated commendable 
alignment between the predicted and observed 1- and 2-year survival rates within the STEMI cohort, with a Concordance index (C- 
index) of 0.936 (ranging from 0.912 to 0.959). However, it was noted that the predictive precision notably declined in the third year. 

3.4. The signature is an independent prognostic indicator 

To establish the independence of the signature, we conducted multivariate Cox proportional hazards regression analysis within the 
STEMI cohort from GSE49925. The findings revealed a significant association between the risk score and survival (P < 0.05). 
Consequently, the index was deemed an independent prognostic indicator in the STEMI cohort [HR (95 % CI) = 2.535 (1.124–5.714), 
P = 0.025]. 

3.5. External validation by our cohorts 

We evaluated the expression levels of the two genes in the patients’ blood and calculated a risk score using our signature. Based on 
this score, we categorized patients into low-risk and high-risk groups, using the median as the threshold. The groups were similar in 

Table 1 
17 DEIRGs were identified from GSE60993, GSE61144 microarrays for STEMI.  

DEGs Gene symbol * 

Downregulated (3) CD8A, IL2RB, GNLY 
Upregulated (14) TLR4, AQP9, CMTM2,CSF3R, PGLYRP1,PROK2, IL1R2, S100A12, RBP7, IL18R1, CXCL16, IL18RAP, MMP9, FPR1 

DEGs, differentially expressed genes; STEMI ST-segment elevated myocardial infarction. 

Fig. 2. GO enrichment and KEGG pathway analysis of DEIRGs. (A) Group display of biological processes, cellular components, and molecular 
functions of DEIRGs. (B) Network of the association between DEIRGs and GO terms and KEGG pathways. GO Gene Ontology, KEGG: Kyoto 
Encyclopedia of Genes and Genomes, NAD + nicotinamide adenine dinucleotide, ADP adenosine diphosphate, BP for biological process, CC for 
cellular component and MF for molecular function. 
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terms of age, gender, smoking status, comorbidities, heart rate, and blood pressure. However, the expression of two genes, as well as 
serum creatinine and Gensini score, were markedly different between the groups (Table 3). During the follow-up period (median 426 
days), the low-risk group had only 2 events, one repeat heart attack and one hospitalization for heart failure; the high-risk group had 8 
events, including one death, one repeat heart attack, five hospitalizations for heart failure, and one additional revascularization. The 
group identified as high-risk exhibited a markedly elevated incidence of events compared to the low-risk group (P = 0.044). Illustrated 
in Fig. 7A, the incidence of actual MACEs was substantially greater in the high-risk group relative to the low-risk group. Fig. 7B 
presents the Kaplan-Meier survival curves, demonstrating a less favorable survival outcome for the high-risk group (HR = 4.34), with 
the survival disparity approaching statistical significance (Log-rank P = 0.068). 

4. Discussion 

STEMI is a common cardiovascular disease in emergency and critical cases, whose pathogenesis involves the necrosis of car-
diomyocytes and the activation of immune-inflammatory pathways [7,14,15]. In this study, we found that MMP9 and GNLY, as two 
immune-related genes with the most significant differences in expression, showed consistent trends of expression changes in early 
serum of STEMI patients with previous research conclusions [16,17]. Matrix metalloproteinases(MMPs) constitute a group of enzymes 
responsible for extracellular matrix degradation, significantly impacting myocardial remodeling [18]. Specifically, MMP9 plays a role 
in the inflammatory response, fibrosis, and angiogenesis following AMI [18]. Previous research has consistently demonstrated elevated 
MMP9 levels in the serum of AMI patients, correlating with an unfavorable prognosis [17,19]. The upregulation of MMP9 may be due 
to the stimulation of factors such as myocardial cell necrosis, inflammatory cell infiltration, oxidative stress, etc. caused by myocardial 
ischemia [16]. The high expression of MMP9 may lead to plaque instability, increased fragility, fibrinolysis inhibition, etc., increasing 

Fig. 3. (A) Expression correlation heatmap of DEIRGs between different prognostic groups of GSE49925. Cor correlation coefficient. (B) Co- 
expression heat maps between DEIRGs based on an individual level. The correlation was significantly weakened in the death group (left) 
compared to the survival group (right). 
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the risk of reinfarction and cardiac death [20]. Consequently, MMP9 holds promise as a valuable diagnostic and prognostic marker for 
AMI and a potential therapeutic target. 

GNLY is an enzyme secreted by natural killer cells and T lymphocytes that can kill target cells and is involved in immune regulation 
and myocardial protection after AMI [21]. The downregulation of GNLY may be due to the impairment or reduction of natural killer 
cells and cytotoxic lymphocytes function or number caused by STEMI. The low expression of GNLY may lead to decreased immune 
surveillance function, increased infection risk, delayed myocardial repair, etc., affecting the prognosis of STEMI patients. Similarly, 
GNLY may also serve as a valuable diagnostic and prognostic indicator for AMI, with potential therapeutic implications. 

Unfortunately, MMP9 and GNLY were not significantly associated with patient prognosis in our study. There may be several ex-
planations for this phenomenon. First, their expression levels may be influenced by other factors, such as age, gender, genetic poly-
morphism, drug treatment, etc., resulting in reduced association with prognosis. Secondly, the two genes may be only part of the 
pathogenesis mechanism of STEMI, rather than decisive factors. The prognosis of AMI may be influenced by multiple genes and 
pathways, such as plasminogen activator inhibitor 1 [22], vascular endothelial growth factor [23], etc. Thirdly, MMP9 and GNLY may 
only play a role in the early stage of STEMI, rather than continuously affect prognosis. Notably, our study exclusively assessed gene 
expression levels during the early stages of AMI, without accounting for temporal changes in gene expression over time. Some genes 
may show association with prognosis only in the late stage of STEMI, such as aging-related genes ETS2 [24]. In summary, the phe-
nomenon that MMP9 and GNLY are not significantly associated with AMI prognosis may reflect the complexity and dynamics of STEMI 
pathogenesis and prognostic determinants. It is warranted to further study the mechanism and time effect of them in STEMI, as well as 
other genes and pathways that may affect prognosis. 

Our primary finding centered on the significant association of S100A12 and IL2RB as DEIRGs with STEMI prognosis. S100A12, a 
member of the S100 protein family, plays a crucial role in regulating inflammatory processes and immune responses [25,26]. Primarily 
secreted by neutrophils, S100A12 interacts with the receptor for advanced glycation end products, implicated in atherosclerosis and 
cardiovascular diseases [27,28]. Prior studies consistently reported elevated S100A12 levels in the plasma of STEMI patients, sug-
gesting its potential as an early-stage prognostic biomarker [29]. Our findings align with existing research, demonstrating significant 
upregulation of S100A12 in the serum of STEMI patients [11,29]. This upregulation may result from neutrophil activation, chemotaxis, 
and release triggered by STEMI [30]. The binding of S100A12 to RAGE on vascular endothelial cells, monocytes, and macrophages 
initiates pro-inflammatory responses, including activation of the NF-κB signaling pathway and subsequent expression of various 

Fig. 4. GSE49925 validated the survival prediction of this signature. (A) Comparison of 17 DEIRGs in patients with different prognosis of GSE49925 
(Wilcoxon rank sum test, *P < 0.05). (B) Comparison of risk scores between different prognostic groups. (C) A risk distribution plot intuitively shows 
the significant difference of survival outcomes between the two groups with different risk stratification. 

Table 2 
The univariable and multivariable Cox regression results of Clinical features.  

Characteristics Total(N) Univariate analysis Multivariate analysis 

Hazard ratio (95 % CI) P value Hazard ratio (95 % CI) P value 

Gensini 61 1.012 (1.002–1.023) 0.022 1.020 (1.004–1.036) 0.012 
CREAT 61 1.306 (1.113–1.532) 0.001 1.346 (1.100–1.647) 0.004  
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cytokines and adhesion molecules [15]. This interaction contributes to the inflammatory milieu characteristic of AMI, promoting 
further leukocyte recruitment and sustaining the inflammatory response. The high expression of S100A12 may lead to endothelial cell 
damage, vascular inflammation, plaque instability, etc., increasing the short-term risk of cardiovascular events in STEMI patients [23]. 

Fig. 5. The signature predicts survival of STEMI patients in GSE49925. (A) Time-dependent ROC curves. TPR true positive rate, FPR false positive 
rate. (B) Kaplan-Meier survival curves. HR hazard ratio. (C&D) Decision curve analysis of the constructed model at one and two years of onset. 

Fig. 6. Construction and performance verification of nomogram. (A) Nomogram for predicting 1-,2-, and 3-year survival in the entire cohort. (B) 
Calibration curves of nomogram on consistency between predicted and observed 1-, 2- and 3-year survival in the entire cohort. The grey line at 45◦

implicated a perfect prediction, and the actual performances of our nomogram were shown in colored lines. 
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Therefore, S100A12 may be a valuable prognostic indicator for STEMI, as well as a potential therapeutic target. 
IL2RB, identified as the beta subunit of the interleukin-2 receptor (IL-2Rβ), is pivotal in the immune system’s reaction to acute 

tissue damage [31]. Predominantly found on lymphocyte surfaces, IL-2Rβ′s activation is instrumental in T-cell growth and diversifi-
cation [32]. Altering IL2RB expression may impact the mobilization and stimulation of regulatory T cells, which mitigate myocardial 
damage by curbing rampant inflammation. In AMI scenarios, IL2RB’s expression irregularities could signify a shifted immune 
response, possibly tipping the scales of pro-inflammatory and anti-inflammatory signaling [33]. Our analysis revealed a notable 
downregulation of IL2RB in STEMI patient serum, aligning with findings from prior studies [11,34]. The downregulation of IL2RB may 
be due to immune suppression or tolerance caused by STEMI. The low expression of IL2RB may lead to impaired immune function, 
increased infection risk, delayed myocardial repair, etc., affecting the prognosis [34]. Therefore, IL2RB may also be a valuable 
prognostic indicator for AMI, as well as a potential therapeutic target. 

Further, we established a predictive model composed of S100A12 and IL2RB by logistic regression analysis, combined with serum 
creatinine level and coronary angiography Gensini score, which can effectively predict the risk of death within two years in STEMI 
patients. Some peers have developed early diagnostic models for AMI utilizing DEIRGs; however, the differential genes involved differ 
from those in our study [35,36]. This indicates that the pathogenesis and prognosis of AMI may be associated with a variety of 
immune-related genes. The expression of these genes can be influenced by various factors during STEMI onset and outcome, and their 
prognostic associations may also be affected by diverse elements. Notably, Gorav et al. developed biomarker-based prediction models 
for 1-year risk of cardiovascular death and AMI in acute coronary syndrome patients undergoing PCI [37]. Their model incorporated 
common clinical variables along with peripheral blood levels of growth differentiation factor 15 and N-terminal pro-B-type natriuretic 
peptide. Interestingly, there is currently no published literature on constructing prognosis models specifically for STEMI patients using 
DEIRG. The dysregulation of these genes, in conjunction with clinical indicators of renal function and coronary artery disease severity, 
offers insights into the systemic nature of AMI and its impact on patient outcomes. The combined analysis underscores the importance 
of a multi-faceted approach to understanding and predicting the prognosis of AMI, taking into account both molecular and clinical 
factors. 

Importantly, we rigorously validated the accuracy and stability of our constructed predictive model through multidimensional 
assessments. Firstly, a risk factor distribution plot visually demonstrated significant survival outcome differences across patients with 

Table 3 
Clinical characteristics of external validation cohort.  

Parameter High risk (n = 46) Low risk (n = 46) P value 

Age 63.2 ± 10.6 61.5 ± 9.8 0.412 
Male [n(%)] 34(73.9 %) 35(76.1) 0.810 
Hypertension [n(%)] 28(60.9 %) 26(56.5) 0.672 
Diabetes [n(%)] 14(30.4) 12(26.1) 0.643 
Heart rate (beats/min) 84.1 ± 13.6 82.3 ± 12.4 0.518 
Systolic blood pressure (mmHg) 138.2 ± 19.4 136.5 ± 18.7 0.643 
Scr (mg/dL) 1.20(1.08, 1.27) 0.89(0.85, 0.94) <0.001 
Gensini score 42.3 ± 4.6 36.9 ± 8.7 0.016 
S100A12(2− ΔΔCt) 3.20(2.70,3.63) 1.60(1.30,1.93) <0.001 
IL2RB(2− ΔΔCt) 0.00(-0.43,0.50) 2.0(1.70,2.30) <0.001  

Fig. 7. The results of external validation. (A) A risk distribution plot and (B) Kaplan-Meier survival curves analysis showed significant differences in 
the incidence of MACEs among different risk groups. 
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varying model score intervals, effectively distinguishing different risk levels. Secondly, Kaplan-Meier survival curves revealed sub-
stantial survival rate disparities among risk-stratified patients during the 3-year follow-up period, indicating the model’s efficacy in 
short-term survival prediction. Thirdly, time-dependent ROC curves validated the model’s predictive value over 1-year, 2-year, and 3- 
year intervals, with optimal performance observed in the first two years. Decision curve analysis of the clinical application net benefit 
further confirmed the model’s utility in guiding clinical decisions and interventions. Lastly, our prognostic nomogram, calibrated 
against actual survival rates, effectively assessed individualized patient risk within the initial two years. In summary, these results 
indicated that our prediction model demonstrates high accuracy, stability, and reliability, providing valuable prognostic information 
and clinical guidance across different time points and scenarios. 

4.1. Clinical utility and application 

The practical significance of our research holds considerable importance for primary care physicians, who frequently serve as the 
initial medical consultants for individuals with cardiovascular conditions. The prognostic framework we’ve developed, which syn-
thesizes DEIRGs with clinical factors, provides an innovative instrument for the preliminary categorization of STEMI patients based on 
their risk levels. This tool has the potential to inform clinical decision-making in several ways. Firstly, the signature can aid primary 
care physicians in identifying patients at higher risk of adverse outcomes post-STEMI. By incorporating this signature into routine 
evaluations, physicians can prioritize referrals and expedite specialist consultations for those who may benefit from more aggressive 
treatment or closer monitoring. Secondly, the integration of serum creatinine levels and Gensini scores with DEIRGs provides a more 
comprehensive view of a patient’s condition. This holistic approach not only reflects the cardiac event’s severity but also captures the 
systemic nature of the immune response, which is crucial for tailoring patient management plans. Incorporating this signature into 
electronic health records could streamline the risk assessment process, allowing for more efficient patient care. Additionally, the 
prognostic nomogram we constructed can serve as a user-friendly tool for physicians to estimate survival rates, facilitating more 
informed discussions with patients regarding their prognosis and treatment options. 

4.2. Strengths and limitations of the study 

This study boasts certain advantages in advancing STEMI patient prognosis through the systematic analysis of public microarray 
data to pinpoint key DEIRGs. We have developed a predictive model that marries these genes with clinical factors such as serum 
creatinine and Gensini scores, refined via LASSO regression. Our model has been validated on multiple fronts, including external 
cohorts, and stands out for its accuracy in forecasting two-year outcomes. This represents a pioneering effort in employing DEIRGs for 
STEMI prognosis, paving the way for more personalized treatment and nuanced risk assessment. 

It’s essential to recognize certain constraints within our investigation: (1) The reliance on public databases introduced constraints 
in data volume, sample source variability, and potential selection bias. (2) The use of microarray technology for gene expression data, 
while effective, comes with inherent noise and variability that may impact data accuracy and reproducibility. Additionally, this 
technology is limited to known genes, potentially overlooking significant immune-related genes yet to be annotated. (3) The predictive 
model was constructed using Cox regression, which carries certain assumptions and parameters that could influence the model’s 
generalizability and interpretability. (4) In the external validation of our predictive model, the Logrank test P-value for the Kaplan- 
Meier survival curves approached statistical significance, indicating a promising trend. Despite the limitation, the multidimensional 
validation we conducted affirms the model’s precision and stability. We are dedicated to conducting further research with larger 
cohorts and longer follow-up periods to robustly substantiate our findings. 

5. Conclusion 

This study underscores the pivotal role of IRGs in AMI prognosis. The prognostic signature developed through the integration of 
DEIRGs and two readily available clinical variables offers a novel approach to stratifying patients based on survival risk. The model 
was demonstrated to possess high accuracy and stability, demonstrating that the model has higher predictive ability and clinical 
application value than traditional clinical risk factors or single biomarkers. Additionally, our exploration into the functions of S100A12 
and IL2RB in AMI’s immune response sheds light on the intricate mechanisms that propel the disease’s progression, paving the path for 
precise therapeutic strategies. 
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