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Early mRNA Expression of Neuroendocrine Differentiation 
Signals Predicts Recurrence After Radical Prostatectomy: 

 A Transcriptomic Analysis
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Abstract

Background: Neuroendocrine differentiation (NED) of prostate can-
cer (PC) is a process that often occurs under evolutionary pressure 
from pharmacologic blockade of androgen receptor signaling at ad-
vanced stages of the disease. Identifying a subset of early PC that has 
a higher likelihood to evolve into this entity is key for developing 
therapeutic strategies that could more effectively target this pheno-
type. This study aimed to assess the prognostic relevance of mRNA 
expression of major players involved in NED of primary prostate tu-
mors.

Methods: RNA sequencing data from 122 patients with localized PC 
were analyzed. Transcript levels of key genes involved in NED, with 
a focus on endothelin axis and nuclear factor kappa B (NF-κB), were 
assessed and were correlated with time to prostate specific antigen 
(PSA) recurrence. Copy number alteration of tumor suppressor genes 
and gene expression of additional signals hallmarking NED was com-
pared between altered and unaltered groups, including lineage deter-
mining transcription factors, transcriptional repressors, cell cycle and 
epigenetic regulators.

Results: The presence of altered mRNA expression using a z-score 
threshold of 2 in NFKB1, RELA, EDN1, EDNRA, and EDNRB 
genes was associated with a higher Gleason score (P < 0.001) and 
a shorter time to biochemical recurrence (BCR) (P = 0.029). There 
was a significant direct correlation between NFKB1 and RELA (P 
< 0.001), NFKB1 and EDNRA (P < 0.001), NFKB1 and EDNRB 

(P < 0.001), EDNRA and EDNRB expression (P < 0.001). ASCL1 
(q < 0.001), ONECUT2 (q < 0.001), DLL3 (q = 0.019), AURKA (q 
= 0.013), AURKB (q = 0.014), PLK1 (q < 0.001), and EZH2 (q < 
0.001) were enriched in patients with tumors harboring alterations in 
endothelin axis and NF-κB subunit genes whereas REST was down-
regulated (q < 0.001).

Conclusions: This analysis suggests that altered mRNA expression 
of NF-κB and endothelin axis genes in early PC is not only a harbin-
ger of a more aggressive clinical course but is also associated with 
aberrant gene expression of several transcription factors, transcrip-
tional repressors, cell cycle and epigenetic regulators that are directly 
involved in NED, in line with their biological roles. This may have 
implications for closer follow-up and potential use of targeted thera-
peutic approaches postoperatively in the adjuvant setting to improve 
outcomes of these patients.
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Introduction

Neuroendocrine differentiation (NED) of prostate cancer (PC) 
represents a state of transformation from luminal to small cell 
morphology [1, 2]. This transition is of particular clinical sig-
nificance as it results in a resistant phenotype that does not 
respond to therapies targeting androgen receptor signaling [3]. 
Several acquired gene alterations affecting NED mediators 
and signals are implicated in this process, including loss of tu-
mor suppressors PTEN, RB1, TP53 [4, 5], abundance of mas-
ter transcriptional regulators (ASCL1, ONECUT2) and media-
tors (DLL3) determining lineage plasticity towards a neuronal 
phenotype [6-8], cell cycle genes (AURKA, AURKB, PLK1) 
[9-11], transcriptional repressors (REST) [12] and epigenetic 
modifiers involved in histone methylation and gene repression 
(EZH2) [13, 14].

Nuclear factor kappa B (NF-κB) is a key transcription fac-
tor with known tumor-promoting and anti-apoptotic effects in 
various primaries. NF-κB consists of a heterodimer formed by 
the p50 and RelA (p65) proteins, which are encoded by the 
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NFKB1 and RELA genes, respectively [15]. NF-κB is consti-
tutively active in advanced PC leading to increased angiogen-
esis, invasion and metastasis [16, 17]. More importantly, NF-
κB activation is sufficient to maintain androgen-independent 
growth of PC by regulating androgen receptor (AR) action 
[18].

Endothelin-1 (ET-1) is a key neuropeptide, signaling 
through its receptors, endothelin receptor A (ETA) and B 
(ETB) to mitigate proliferative signals to PC cells [19]. High 
immunohistochemical expression of ET-1 and ETA is associ-
ated with aggressive features of PC and is frequently found 
in high Gleason tumors, extracapsular disease and metastases 
[20, 21]. We have previously shown that ET-1 is mechanisti-
cally linked with NF-κB activation, nuclear translocation and 
oncogenic signaling to promote androgen-independent growth 
[22, 23].

Because most genomic alterations characterizing the NE 
phenotype are not present in early PC, we aimed to assess 
the clinical relevance of mRNA expression of NF-κB and en-
dothelin axis-encoding genes in primary prostate tumors with 
regard to biochemical recurrence (BCR), and whether this 
could be associated with early transcriptomic changes of genes 
that function as NED inducers at later stages.

Materials and Methods

Subjects

This study used a publicly available database, cBioportal for 
Cancer Genomics (www.cbioportal.org) with DNA and RNA 
sequencing data from 218 tumor samples (181 primaries, 37 
metastases) and 149 matched normal samples obtained from 
patients treated by radical prostatectomy (RP) at Memo-
rial Sloan-Kettering Cancer Center, USA [24]. Of those, 122 
treatment-naive patients underwent RP, and were subsequently 
followed with history, physical exam, and serum prostate spe-
cific antigen (PSA) testing every 3 months for the first year, 6 
months for the second year, and annually thereafter [24]. For 
all analyses, BCR was defined as PSA ≥ 0.2 ng/mL on two 
occasions [24].

Ethical issues and informed consent

This study represents an analysis of publicly available data 
from a study conducted under Memorial Sloan-Kettering Can-
cer Center Institutional Review Board approval [24], and is in 
compliance with the ethical standards of the responsible insti-
tution on human subjects as well as with the Helsinki Decla-
ration. Informed consent was obtained from all subjects with 
publicly available data [24] involved in this study.

Experimental procedure

DNA and RNA were extracted from dissected tissue contain-
ing greater than 70% tumor cell content [24]. DNA and RNA 

were hybridized to Agilent 244K array comparative genomic 
hybridization (aCGH) microarrays, Affymetrix Human Exon 
1.0 ST arrays, and/or Agilent microRNA V2 arrays, respec-
tively [24]. A total of 251 million bases in coding exons and 
adjacent intronic sequences of 138 cancer-related genes in 91 
samples were polymerase chain reaction (PCR)-amplified and 
sequenced by Sanger capillary sequencing [24]. Ninety-five 
sites of known mutation in 22 genes were also genotyped us-
ing the iPLEX Sequenom platform [24]. Outlier profiles for all 
transcripts and outlier assignments in all tumors were deter-
mined from normalized expression data [24]. A z score thresh-
old of ± 2 was used for comparison of mRNA expression be-
tween tumor and normal prostate samples.

Statistics

The Kaplan Meier method was used to assess the association 
between altered and unaltered mRNA expression levels with 
BCR-free survival. The two-sided t-test was used to assess 
for correlations between mRNA expression of different genes. 
The Chi-squared and Kruskal-Wallis tests were used to assess 
correlations between mRNA expression of genes and clinical 
characteristics. The Benjamin-Hochberg false discovery rate 
(FDR) correction procedure was used for multiple compari-
sons. All results were reported at the 0.05 significance level.

Results

A total of 122 samples from corresponding patients with avail-
able mRNA profiling were included in this study. More than 
half patients (n = 64 or 52.4%) had a Gleason score of 7 (Table 
1). The majority of patients (n = 110) had disease confined 
to the prostate, either T1 (n = 63 or 51.6%) or T2 (n = 47 or 
38.5%) stage (Table 1).

Queried genes were altered in 69 (55%) of patients/sam-
ples. The most commonly altered gene expression was that of 
EDNRA (41%), followed by RELA (16%), NFKB1 (15%), 
EDNRB (6%), and EDN1 (5%) (Fig. 1).The presence of 
mRNA expression alterations was more frequent (P < 0.001) 

Table 1.  Clinical Characteristics of the Study Cohort (N = 122)

N (%)
Gleason score
  6 27 (22.1)
  7 64 (52.4)
  8 10 (8.2)
  9 10 (8.2)
T stage
  T1 63 (51.6)
  T2 47 (38.5)
  T3 6 (4.9)
  T4 1 (0.8)
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in tumors with higher Gleason score, particularly Gleason 8 
(10/10 or 100% altered) and Gleason 9 (8/10 or 80% altered), 
while there was more equal distribution between altered and 
unaltered tumors within Gleason 6 (13/27 or 48.1% altered) 
and Gleason 7 (37/64 or 57.8% altered) scores (Fig. 2).

There were significant direct correlations of mRNA ex-
pression between NFKB1 and RELA (Fig. 3a), NFKB1 and 
EDNRA (Fig. 3b), NFKB1 and EDNRB (Fig. 3c), EDNRA 
and EDNRB genes (Fig. 3d). Thirty-two (26.2%) patients re-
curred during follow-up while 80 patients remained disease-
free (65.6%). Patients with tumors harboring mRNA expres-
sion alterations in the tested genes experienced a significantly 
shorter BCR-free survival (log-rank P = 0.029) (Fig. 4).

Because most typical molecular features of the NE pheno-
type are not present in early PC, we tested whether the subset 
of patients with tumors harboring altered NF-κB and endothe-
lin axis genes could be enriched in early genomic and tran-
scriptomic changes that are etiologically related with NEPC, 
including tumor suppressors PTEN, RB1, TP53, master tran-
scriptional regulators ASCL1, ONECUT2, REST, and DLL3 
determining lineage plasticity towards a neuronal phenotype, 
cell cycle genes AURKA, AURKB, PLK1 and epigenetic 
modifier EZH2 which is involved in histone methylation and 
gene repression [4-14].

First, we found that a higher number of tumors with altered 
NF-κB and endothelin axis gene expression displayed copy 
number losses of the tumor suppressors RB1 (7.2% vs. 1.7%), 
TP53 (2.9% vs. 1.7%) and PTEN (14.5% vs. 7.0%), compared 
to those without NF-κB and endothelin axis gene alterations 
(Table 2, Fig. 5). Second, mRNA expression of ASCL1 (log ra-

tio = 0.88; q < 0.001), ONECUT2 (log ratio = 0.93; q < 0.001), 
DLL3 (log ratio = 0.58; q = 0.019), AURKA (log ratio = 0.94; 
q = 0.013), AURKB (log ratio = 0.53; q = 0.014), PLK1 (log 
ratio = 1.08; q < 0.001), and EZH2 (log ratio = 1.87; q < 0.001) 
were enriched in patients with tumors harboring alterations in 
endothelin axis and NF-κB subunit genes whereas transcrip-
tional repressor REST was downregulated (log ratio = -0.86; q 
< 0.001) (Fig. 6).

Discussion

In this study we assessed the transcriptional expression, inter-
relations and clinical significance of major NED pathways in 
patients with primary PC undergoing RP. We demonstrate that 
changes in mRNA levels of NFKB1, RELA, EDN1, EDNRA, 
and EDNRB are interrelated and are associated with Gleason 
score and BCR after RP. These results are consistent with im-
munohistochemical expression findings from other groups and 
ours, who reported that ET-1 and NF-κB protein staining in 
primary prostate tumors predicts aggressiveness of PC with re-
gard to grade and stage, as well as with risk of BCR [25-32]. 
Thus, our findings complement our prior work and provide a 
comprehensive understanding of the prognostic value of key 
members of the endothelin axis and NF-κB subunits both at the 
transcriptional and protein expression levels.

Taking a step further, our study strengthens the role of NF-
κB and endothelin axis genes as early predictors of NED in 
primary PC by providing evidence of direct association with 
known NED mediators and signals implicated in this process, 

Figure 1. Oncoplot of mRNA expression (high, low, no alterations) among endothelin axis and NF-κB subunit genes.

Figure 2. Bar graphs of the distribution between altered and unaltered groups of patients within different Gleason scores.
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Figure 3. Scatter plots depicting the correlation of mRNA expression between: (a) NFKB1 and RELA, (b) NFKB1 and EDNRA, 
(c) NFKB1 and EDNRB, (d) EDNRA and EDNRB genes.

Figure 4. Kaplan Meier curve of BCR-free (disease-free) survival according to presence or absence of mRNA expression altera-
tions in endothelin axis and NF-κB subunit genes. BCR: biochemical recurrence.
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including tumor suppressors (PTEN, RB1, TP53), master tran-
scriptional regulators (ASCL1, ONECUT2, REST) and media-
tors (DLL3) determining lineage plasticity towards a neuronal 
phenotype, cell cycle genes (AURKA, AURKB, PLK1), and 
epigenetic modifiers involved in histone methylation and gene 
repression (EZH2) [4-14].

Our findings suggest that altered NFKB1, RELA, EDN1, 
EDNRA, and EDNRB genes in primary prostate tumors 
could serve as surrogates of early NED through acquisition 
of early genomic and transcriptomic changes in NED hall-
mark genes. Previous studies have emphasized that low PSA, 
high-grade PC of Gleason 8 - 10 has very high risk for PC-
specific mortality, potentially responds poorly to androgen 
deprivation therapy, and is associated with neuroendocrine 
genomic features [33]. This becomes even more important in 
our study given that the majority of tumors were Gleason ≤ 
7 and only 16% of tumors were Gleason 8 or 9; yet we were 
still able to detect preliminary transcriptomic changes asso-
ciated with NED that led to a shorter time to BCR. Hence, 
while NED is a well-described phase in the continuum of 

advanced PC, predicting transition to this state at an early 
stage while PC remains curable opens new avenues for early 
therapeutic targeting of this resistant phenotype. The type of 
definitive local therapy (RP vs. radiation) itself might result 
in different outcomes of these patients, according to a Sur-
veillance, Epidemiology, and End Results (SEER) database 
analysis of 309 de novo NEPC cases, in whom RP improved 

Figure 5. Copy number loss in tumor suppressor genes between en-
dothelin axis/NF-κB altered and unaltered groups.

Table 2.  Copy Number Loss in Tumor Suppressor Genes 
Between Endothelin Axis and NF-κB Altered and Unaltered 
Groups

Genes and group N (%) P value q value
PTEN
  Altered 10/69 (14.49) 0.148 0.598
  Unaltered 4/57 (7.02)
RB1
  Altered 5/69 (7.25) 0.154 0.598
  Unaltered 1/57 (1.75)
TP53
  Altered 2/69 (2.90) 0.572 0.600
  Unaltered 1/57 (1.75)

Figure 6. Gene expression of neuroendocrine differentiation signals 
between endothelin axis and NF-κB altered and unaltered groups.
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overall survival (OS) among individuals with non-metastatic 
disease, whereas radiation therapy did not affect OS rates 
[34]. Additionally, considering the impact of different surgi-
cal approaches on quality of life after treatment in this subset 
of patients with aggressive disease, it might be reasonable to 
favor a robotic-assisted RP which has been associated with 
higher 12-month urinary function and 6-month sexual func-
tion propensity scores compared to laparoscopic and open 
RP, respectively [35].

The present study is limited by the relatively small number 
of patients included; however, the fact that an external pro-
spective PC cohort was analyzed adds more value to our prior 
observations at the protein expression level of endothelin axis 
and NF-κB pathway. Further, high Gleason score (≥ 8) tumors 
were a minority in this study which explains the small num-
ber of patients who experienced BCR during this study’s long 
follow-up of up to 150 months. It may be postulated that if 
the study had included more high-risk PC patients, the mRNA 
expression levels of endothelin axis and NF-κB subunit genes 
as well as the enrichment in NED genomic and transcriptomic 
signatures would be more pronounced.

Conclusions

Collectively, this study supports the clinical significance of en-
dothelin axis and NF-κB subunits mRNA expression in early 
PC as surrogates of BCR and of a typical NED transcriptomic 
profile. It also poses implications for therapeutic targeting 
against key members of these pathways. ETA antagonists, in-
cluding atrasentan and zibotentan have been tested previously 
in patients with advanced, castration-resistant PC, unfortunate-
ly without success [36, 37]. Given the association of endothe-
lin axis genes with targetable NED markers, pharmacologic 
inhibition of AURKA, DLL3 or EZH2 which is already being 
investigated in the advanced castration-resistant setting [38-
40] might be worth testing at an early stage.
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