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Herein we review our progress on the development of
phosphopeptide-based prodrugs targeting the SH2 domain
of STAT3 to prevent recruitment to cytokine and growth factor
receptors, activation, nuclear translocation and transcription of
genes involved in cancer. We developed high affinity
phosphopeptides (KI = 46–200 nM). Corresponding prodrugs
inhibited constitutive and IL-6 induced Tyr705 phosphoryla-
tion at 0.5–1 mM in a variety of human cancer cell lines. They
were not cytotoxic at 5 mM in vitro but they inhibited tumor
growth in a human xenograft breast cancer model in mice,
accompanied by reduced VEGF expression and angiogenesis.

Signal Transducer and Activator of Transcription 3
(STAT3) is a Target for Anticancer Drug Design

Signal transducer and activator of transcription 3 (STAT3) is
likely the most studied member of the STAT family of proteins.1-7

STAT3 participates in the transcription of numerous proteins and
is hypothesized to play indispensable roles in the development of a
large number of human cancers, metastasis, angiogenesis and
immune evasion.8-10 Thus targeting STAT3 is regarded as a
potential modality for the treatment of cancer.4,5,11-14 STAT3
signals by being recruited to phosphotyrosine residues on growth
factor and cytokine receptors. On binding via its Src homology 2
(SH2) domain, Tyr705 becomes phosphorylated by associated JAK
kinases, Src or the phosphotransferase activity of the receptor.
Phosphorylated STAT3 (pSTAT3) dimerizes by reciprocal pTyr-
SH2 domain interactions, is translocated to the nucleus, then acts
as a transcription factor participating in the expression of acute
phase response genes, vascular endothelial growth factor (VEGF),

matrix metalloproteinase 9, Bcl proteins and others. Recently,
other functions of STAT3 have been discovered.
Unphosphorylated STAT3 was found to act as a co-transctription
factor in complex with NFkB.15 In non-transcriptional roles,
STAT3, phosphorylated on Ser727, was found to be located in
electron-transport complexes in the mitochondria16 and in this
state supported RAS transformation of cells.17 Removing STAT3
from cells using siRNA, antisense or like techniques, or
overexpressing STAT3 or dominant negative versions, likely will
impact multiple STAT3 functions. Precise determination of the
role of Tyr705 phosphorylation can be accomplished by highly
selective inhibitors targeted to the SH2 domain that block
association with receptors and subsequent phosphorylation,
dimerization and transcriptional activities. In this review we
highlight our progress in the development of high affinity
phosphopeptide ligands of the SH2 domain of STAT3, their
conversion to cell-permeable, phosphatase-stable prodrugs and the
evaluation of these in cellular and human cancer xenograft models
of human cancer. We found that although selective inhibition of
Tyr705 phosphorylation is not cytotoxic to cancer cells in vitro, in
vivo tumor growth inhibition can be achieved which may be
driven by reduced angiogenesis.

Targeting SH2 Domains

SH2 domains are 100 amino acid domains that recognize
phosphotyrosine and two to four residues to its C-
terminus.18,19 These domains are involved in the recruitment
of signal transduction proteins to activated receptors of growth
factors and cytokines and aberrant signaling by these pathways
contributes to a variety of diseases such as cancer and asthma.
The SH2 domains of Src, Lck, Grb2 and p85 were easily
expressed and structures of complexes with phosphopeptides
obtained by X-ray crystallography or NMR guided industrial,
government and academic laboratories that developed several
high affinity, elegant peptidomimetics.20-22 In spite of this
great effort, there is a paucity of literature describing the
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biological activity of these materials and no SH2 domain-
targeted phosphopeptide mimetics have advanced to clinical
trials.

Two major challenges that have impeded the development of
phosphopeptide-based SH2 domain inhibitors are the negative
charge of the phosphate group that prevents passive diffusion
across cell membranes and the lability of the phosphate group to
phosphatase activity, which renders phosphopeptides unrecogniz-
able. To overcome phosphatase-lability, researchers have replaced
phosphate groups with carboxyl, phosphonate, malonate, phos-
phonomethyl, phosphonodifluoromethyl and heterocyclic groups
that are negatively charged.23,24 Bioreversible esters have been
employed to block the negative charge of the phosphate or
phosphonate oxygens in a variety of compounds including SH2-
domain-targeted peptides and mimetics.25 The Garbay group
employed S-acylthioethyl groups on a series of phosphopeptides
targeting the SH2 domain of Grb2.26,27 Cytotoxicity to cancer cell
lines was observed at 1 mM concentration. Gay et al. employed
the phenyl phosphoramidite approach to deliver phosphopeptides
targeting Grb2 to tumor cells28,29 with concentrations ~25 mM
required to inhibit the target. Stankovic reported pivaloylox-
ymethyl (POM) protection of phosphatase-stable phosphodi-
fluoromethylphenylalanine in a Src SH2 domain inhibitor.30

They were only able to append one POM group to the
phosphonate. Although the mono-POM prodrug entered cells,
no biological evaluation was reported. McKinney et al. reported a
bis-POM protected phosphonodifluoromethyl analog of a
phosphopeptide mimetic targeting STAT4 and STAT6 but no
biological data were presented.31

Development of High Affinity Phosphopeptide Mimics
Targeting the SH2 Domain of STAT3

Several groups have engaged in the development of peptidomi-
metic inhibitors targeting the SH2 domain of STAT3. The team
of James Turkson and Patrick Gunning has developed inhibitors
derived from the Tyr705 sequence32,33 and from screening and
medicinal chemistry approaches.34-39 Others have used the Tyr705

sequence40 as well as our lead, Peptide 1.6.41 To develop high
affinity and selective phosphopeptides targeting the SH2 domain,
our laboratory screened a set of candidates derived from putative
STAT3 binding sites on receptors for IL-6, EGF, IL-10 and
G-CSF and found that Ac-pTyr-Leu-Pro-Gln-Thr-Val-NH2

(termed Peptide 1.6) from the sequence surrounding Tyr904 of
the IL-6 co-receptor gp130, was a high affinity ligand (Fig. 1).
Peptide 1.6 inhibited STAT3-DNA complex formation with an
IC50 = 150 nM, as judged by electrophoretic mobility shift
assays.42 Wiederkehr-Adam et al. found similar peptides using a
combinatorial phosphopeptide approach.43 Peptide 1.6 possesses
the pTyr-Xaa-Yaa-Gln motif reported to be the recognition
determinant of STAT3.44,45 Substitution of the glutamine of
Peptide 1.6 with alanine, glutamic acid and asparagine reduced
affinity thereby supporting the requirement for glutamine at pY+3
for high affinity binding to the SH2 domain of STAT3.42

To probe the molecular surface of the SH2 domain of STAT3
and to search for high-affinity modifications, we substituted

natural and unnatural amino acids at each position of our lead
peptide. We independently developed a fluorescence polarization
assay to monitor the ability of phosphopeptides to compete with
the N-terminally fluorescein-tagged version of Peptide 1.6 (FAM-
Ala-pTyr-Leu-Pro-Thr-Val-NH2, FAM = 4 carboxyfluorescein)
for binding to full length STAT3.46 Haan et al. expressed just the
SH2 domain of STAT3 but it only bound a phosphopeptide at
pH 5.5.47 Due to potential conformational variation at the lower
pH that might not exist at physiological pH, we expressed full-
length protein for our assays. Peptide 1.6 exhibited an IC50 of
290 nM. We utilized the truncated peptide Ac-pTyr-Leu-Pro-
Thr-NH2 (termed Peptide 3.1, IC50 = 739 nM, Fig. 1) as the
template for our studies. In spite of the reduced affinity of peptide
3.1, its smaller size meant significantly less synthetic steps in the
mostly manual syntheses that produced the phosphopeptides we
assayed. Affinity was recaptured with the modifications we
incorporated. We showed that hydrophobic groups could be
appended to the N-terminal nitrogen of pTyr (position pY−1)
suggesting a hydrophobic patch exists on the protein surface
adjacent to the phosphotyrosine binding pocket.46 Leucine at
pY+1 could be substituted with a variety of hydrophobic residues.
Aliphatic amino acids such as norleucine and cyclohexylalanine
provided higher affinity than aromatic phenylalanine.46

Methylation of the nitrogen of Leu at pY+1 abrogated binding,46

which supports experimentally the hydrogen bond between the
NH of Leu706 and the C = O of Ser636 observed in the crystal
structure of the STAT3 dimer published by Becker, et al.48

Alanine scanning showed that proline at position pY+2
contributed significantly to binding42 and throughout our studies
19 proline analogs were substituted at this position to probe this
site.46,49-51 Of this group, cis-3,4-methanoproline (mPro) provided a
two-fold increase in affinity46 and this amino acid was utilized in
later structure-affinity relationship studies. Peptide bonds containing
proline (Xaa-Pro) can exist either in the cis or trans conformation.
Pseudoproline derivatives, 2,2-dimethyl-1,3 oxazole-4-carboxylate
and 2,2-dimethyl-5-methyl-1,3 oxazole-4-carboxylate, result in
predominantly cis-peptide bonds, as opposed to native proline,
predominantly trans.52 Incorporation of these pseudoproline
residues resulted in 63–69% cis conformation (proline, 2%) and
decreased affinity 3- to 5-fold suggesting that the when bound to the
SH2 domain of STAT3, Leu-Pro is in the trans conformation
(Fig. 1, peptides DRCIV-5C and DRCIV-7C).49

Overall, we substituted 45 Gln surrogates at pY+3 to probe the
binding site.46,53-55 Methyl substitutions on the side chain amide
nitrogen were not tolerated and isosteric methionine sulfoxide
resulted in a . 10-fold loss in affinity.46 These results indicated
the importance of hydrogen bond donation by the side chain
amide group of Gln. Various cyclic and aliphatic glutamine
surrogates were tolerated with slight losses in affinity.49,53-55

Threonine at pY+4 was replaced with a variety of groups:
organic, heterocyclic and peptidic.46,55 The most effective
substitution was a simple benzylamide.46 Taking these lessons
into account, we incorporated a hydrophobic N-terminus, mPro,
and a C-terminal benzyl amide to create SMI-48B2 (Fig. 1),
which had an IC50 of 125 nM, a five-fold increase in affinity over
Peptide 3.1.
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Conformationally Constrained Phosphopeptides

Properly constrained peptide inhibitors can lead to increased
affinity by presenting the contact groups in the proper orientation
for binding to the target protein. By constraining the molecule to
the bioactive conformation, the system does not lose the entropy
of rotation of all of the peptides’ bonds on binding, leading to a
favorable entropic term in the free energy equation. The dihedral
angle of C-Ca-Cβ-Cc of the phosphotyrosine residue in the
STAT3 crystal structure is 174 degrees.48 The phosphotyrosine
mimic, 4-phosphoryloxycinnamate (pCinn), constrains this angle
to 180° and resulted in a 5-fold increase in affinity of peptide 3.1
(PM-50D, IC50 = 136 nM, Fig. 1).50 Interestingly, pCinn
resulted in a 11-fold loss in affinity for a phosphopeptide
inhibitor of the Src SH2 domain.56 Examination of the crystal
structure of STAT3 bound to DNA48 as well as models generated
by us57 led to the hypothesis that addition of a methyl group on
the β-carbon of pTyr or pCinn would lead to greater hydrophobic
interaction with the side chain methylene groups of Glu638, which
lines the phosphotyrosine binding pocket. We developed
synthetic methodology for β-methylcinnamate and found that
this substitution increased affinity 1.5–3 fold in a series of
peptides (e.g., PM-235E vs. SMI-247B2, Fig. 1).53

To constrain the central dipeptide, Leu-Pro was substituted with
a series of azabicyclo[4.3.0]-nonane-9-carboxylates (ABN), in
which the side chain of leucine was incorporated in a
6-membered ring fused to the 5-membered ring of proline.58 All
stereoisomers of this bicylic lactam reduced activity.50 However,
substitution with the tricyclic heterocycle, Haic, increased affinity
of our peptides . three-fold (DRCIV-35B, IC50 = 231 nM,
Fig. 1).50 Chen et al. incorporated azabicyclo[6.3.0]undecane
(ABU) and found that this substitution increased affinity
20-fold.59 All of these dipeptide replacements constrain the y
dihedral angle of the pY+1 residue. The size of the ring fused to the
five-membered ring of proline is important. The eight-membered
ring in ABU appears to allow the most optimal orientation of the
Gln with respect to the phosphotyrosine, as compared with the
seven-membered ring of Haic and the six-membered ring of ABN.

Constrained peptidomimetics exhibited high affinity. Among
the more notable candidates were a series containing glutamine
surrogates (R)-4-aminopentamide, in which the a-carboxyl group
of Gln was reduced to a methyl group (PM-228F, KI = 66 ± 13
nM), straight chain ethylcarbamate (PM-229F, KI = 114 ± 14 nM)
and a straight chain ethylurea (PM-233F, KI = 46 ± 6 nM) (Fig. 1).

Structure of Phosphopeptides Bound to the SH2
Domain of STAT3

Structures of protein-ligand complexes are extremely useful in
drug development programs. Unfortunately, STAT3 was difficult

to crystallize and in the one structure we obtained, the electron
density for the peptide (PM-50D) was too weak to determine its
structure.60 However, molecular modeling approaches provided
some insights of phosphopeptide-SH2 domain interactions. In the
first model we examined potential interactions between the
phosphopeptide, Ac-pTyr-Leu-Pro-Gln-NHBn, and STAT3
using the structure of a phosphopeptide complexed with
STAT161 as a template.57,62 This model showed three hydrogen
bonds between the Gln CONH2 of the inhibitor and the protein,
highlighting the importance of this residue for recognition and
affinity (Fig. 1B).46,54 In the second, docking and molecular
dynamics simulations of the peptidomimetic inhibitor, pCinn-
Haic-Gln-OH, showed that the glutamine binds in a slightly
different pocket (Fig. 1C). A loop of STAT3 (residues 659–668)
moves so that Met660 forms a hydrophobic interaction with the
five- and six-membered rings of Haic. The main chain NH of
Met660 hydrogen bonds with the OH of Tyr657 which is involved
with a hydrogen bond with the C = O of Haic.50

Inhibition of STAT3 Phosphorylation in Intact Cells
and Development of Phosphopeptide Mimic Prodrugs

To inhibit STAT3 phosphorylation in intact cells we employed a
prodrug approach.53,63 The phosphate was replaced with the
phosphatase-stable phosphonodifluoromethyl group.64 The nega-
tive charge of the phosphonate oxygens was blocked with the
pivaloyloxymethyl group (POM), which is cleaved by carboxyl
esterases (Fig. 2A).65 Our first prodrug, BP-PM6 (Fig. 2A),
inhibited constitutive phosphorylation of STAT3 in human
MDA-MB-468 breast tumor cells at a concentration of 10 mM,
supporting the hypothesis that the compound entered the cells,
was stripped of its POM groups by esterases and bound to the
SH2 domain of STAT3, preventing receptor recruitment and
phosphorylation of Tyr705.63 The reduction of pSTAT3 also
suggests that STAT3 is phosphorylated and dephosphorylated in a
dynamic equilibrium, which we can perturb with phosphopeptide
mimics.

We converted several phosphopeptide mimetics into cell-
permeable prodrugs (Fig. 2B). Although the range in affinity of
the phosphate bearing root structures was within a factor of 3, the
structures of these prodrugs had a striking effect on potency of
inhibition of constitutive pSTAT3 in intact MDA-MB-468 cells in
culture.51,53,63 Addition of a methyl group to the β-position of the
cinnamoyl moiety produced a slight increase in potency (BP-PM6
vs. PM-70G and PM-299G vs. PM-73G, Fig. 2C), which reflected
the increase in affinity of the corresponding phosphopeptides for
STAT3.53 Interestingly, the potency of prodrugs in which the
C-terminal benzylamide group (CONHCH2C6H5) was replaced
by a simple methyl group was enhanced . 10-fold (BP-PM6 vs.
PM-299G and PM-70G vs. PM-73G, Fig. 2C).53 This was not

Figure 1 (See previous page). Structures of phosphopeptides and phosphopeptide mimics targeting the SH2 domain of STAT3. (A) Highlights of
structure-affinity relationship studies. (B) Model of Ac-pTyr-Leu-Pro-Gln-NHBn bound to the SH2 domain of STAT3 (see reference 57). (C) Model of pCinn-
Haic-Gln-OH bound to the SH2 domain of STAT3 (see reference 55). In (B and C) hydrogen bonds are depicted as dotted lines. The inhibitor is depicted
with the green coloring scheme and STAT3 in white.
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reflective of the intrinsic affinity of the corresponding phosphopep-
tides in which the benzylamide-containing peptides were 2-fold
more avid than the corresponding methyl substituted peptides.53

Replacing the CONHBn with an isosteric ether CH(CH3)OBn
resulted in highly potent inhibition of constitutive pSTAT3 (PM-
72G-1).55 Replacement with a methyl group retained the potency
in cells (Fig. 2C, PM-72G1 vs. PM-274G-1) whereas in the
corresponding phosphopeptides the CH(CH3)OBn resulted in
slightly more affinity for isolated STAT3 (2.5-fold) than the methyl
group.55 Prodrugs containing mPro were very highly potent
inhibitors of STAT3 phosphorylation (PM-72G-1 and
PM-274G-1, Fig. 2C).53 As mPro is no longer commercially
available and its synthesis by any of the reported methods is
expensive and low yield,66,67 we sought less expensive proline
derivatives.51 In a prodrug containing native proline (PM-296G,
Fig. 3A), complete inhibition occurred at 10 mM. However,
prodrugs containing the substituted prolines, mPro, 4,4-dimethyl-
proline and 4,4-difluoroproline were all significantly more potent.
Complete inhibition occurred at 500 nM.51 It is unclear at this time
why this difference occurs. However, one could speculate that there
may be proteolysis of the proline peptide and that the substituted
prolines may not fit in the active site of the putative protease.

Three prodrugs, PM-73G, PM-274G and PM-72G, were
studied in detail (Fig. 2B). These compounds had β-methyl
cinnamate and were varied at both the central dipeptide and the
glutamine surrogate. After a two-hour exposure of MDA-MB-468
cells, significant inhibition of constitutive phosphorylation of
STAT3 was observed at 100 nM and complete inhibition
occurred at 500 nM (Fig. 2C). Commercially available mPro is a
mixture of “L” and “D” enantiomers, and in the cases of PM-72G
and PM-274 two prodrugs were isolated in the synthesis,
designated with either a -1 or -2 to reflect the order of elution
from the preparative HPLC. The second stereoisomers were much
less potent, requiring 25 mM for complete inhibition, which
reflects the relative affinities of the phosphopeptides.46 Time
course experiments showed significant inhibition at 30 min with
recovery of pSTAT3 at about 8 h.53 These materials inhibited
Tyr705 phosphorylation in a variety of human cancer cell lines
including U266 (multiple myeloma), MDA-MB-231, SUM190,
SUM 149 (breast), HCC-827 (lung) and SKOV3-ip (ovarian).
They also inhibited IL-6 stimulated phosphorylation in MeWo
and A375 (melanoma) and HeyA8 (ovarian) cells.53

Based on similarity of binding free energies of phosphopep-
tides to a set of SH2 domains, Ladbury and colleagues postulated
that selective inhibition of SH2 domains within cells is
unlikely.68,69 To test this hypothesis, we assayed for the effect

of our STAT3 inhibitors on the activities of SH2 domain-driven
pathways. Administration of epidermal growth factor (EGF) to
MDA-MB-468 cells resulted in phosphorylation of STAT5. Our
prodrugs did not inhibit that process, suggesting that they do not
bind appreciably to STAT5 (Fig. 3B). Phosphatidylinositol-3-
kinase is recruited to receptors via the SH2 domains of the p85
regulatory domain, which activates the kinase domain leading to
the phosphorylation of Akt. Our prodrugs did not inhibit
constitutive Ser473 phosphorylation, suggesting that they did not
bind to p85 (Fig. 3B). Via its SH2 domain, Src kinase binds to
the focal adhesion kinase and selectively phosphorylates Tyr861.70

Our prodrugs did not impact this process indicating selectivity
for STAT3 over Src (Fig. 3C). Significant inhibition of
interferon-c stimulated phosphorylation of STAT1 was observed
at 1 mM but 5 mM was required for complete inhibition
(Fig. 3D). These are 10-fold higher concentrations that observed
for the inhibition of pSTAT3. The amino acid sequences and the
three dimensional structures of the phosphopeptide binding
regions of STAT1 and STAT3 are nearly identical,57 so cross
reactivity is not surprising. However, at high concentration
(25 mM) selectivity for STAT3 over these processes was
abolished.

These results suggest that it is indeed possible to dial in
specificity for specific SH2 domains in intact cells, but
concentrations must be carefully regulated. Two features of our
peptides contribute to the selectivity for the SH2 domain of
STAT3: (1) the cinnamic acid-derived pTyr mimic, which
reduced affinity for the Src SH2 domain56 and (2) the glutamine
surrogate. Most SH2 domains, e.g., Src, p8522 and STAT5,71

recognize hydrophobic residues at pY+3 and the hydrophilic side
chain amide of the Gln mimic would not be accommodated in
these binding pockets. The Ladbury analysis focused on the SH2
domain of Src.

Effect of STAT3 Inhibition on the Growth and Survival
of Cancer Cells In Vitro

The possible linkage between STAT3 phosphorylation inhibition
and cell survival has been a point of marked controversy based on
many studies. Our efforts have for the first time provided effective
tools for dissecting these responses and reveal them as distinct. We
examined the effect prodrugs on proliferation of MDA-MB-468
breast cancer cells using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl
tetrazolium (MTT) or sulforhodamine B (SRB) assays. PM-73G,
PM-274G-1 and PM-274G-2 showed little or no ability to
inhibit growth up to 50 mM (Fig. 4A), which is a concentration

Figure 2 (See previous page). Inhibition of the phosphorylation of STAT3 Tyr705 in intact cells. (A) Prodrug strategy showing the phosphatase-stabilizing
CF2 substitution and the POM blocking groups. Cleavage of the POM groups liberates the negatively charged phosphonate for binding to the SH2
domain of STAT3. (B) Structures of prodrugs used to study STAT3 phosphorylation. (C) Inhibition of constitutive Tyr705 phosphosphorylation in MDA-MB-
468 breast cancer cells. The left column shows the effect of addition of a methyl group on the b-position of the cinnamate (BP-PM6 vs. PM-70G and PM-
299G vs. PM-73G) and the increase in potency on substituting the CONBn group with a simple methyl group (BP-PM6 vs. PM 299G and PM-70G vs. PM-
73G). The center column shows inhibition by the Nle-mPro-containing prodrugs PM-72G-1 and PM-274G-1 and the reduced potency of the
stereoieomers possessing “D” mPro. The right column shows the time course of inhibition of Tyr705 phosphorylation (5 mM prodrug) and the dose
response of the prodrug of one of the highest affinity phosphopepides, PM-173G. Gels are presented in pairs in which the upper is pTyr705 STAT3 and the
lower is total STAT3. With the exception of the time course study, cells were exposed to prodrugs for 2 h before lysis and protein determination by
western blots.
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100 times that at which constitutive pSTAT3 was completely
inhibited. However, both stereoisomers of PM-72G inhibited
growth at with an IC50 of 10–15 mM. Since PM-72G-2, which
contains the “D” stereoisomer of mPro and required 25 mM to
inhibit pSTAT3, also inhibits cell growth, it is likely that
inhibition by both of the PM-72G versions is due to off-target
effects due to the C-terminal Gln-benzyl ether group, which is
missing in structural analog PM-274G and in PM-73G. Realizing
that levels of pSTAT3 recover after about eight hours following
exposure to prodrug, assays were repeated with daily administra-
tion of PM-73G and PM-72G-1 (Fig. 4B). The IC50 for
PM-73G was between 25 mM and 50 mM, which is 50 times
higher than the 0.5 mM concentration that completely inhibited
pSTAT3. Growth and survival assays were also performed on
multiple tumor cell lines including melanoma (A375 and MeWo),
lung (HCC-827, H1299, H1819, H520 H528 and A549), breast
(MCF7, MDA-MB-231, SUM190 and SUM149), ovarian
(SKOV3-ip) and multiple myeloma (U266) cells, again with no
appreciable toxicity detected at 5 mM. A direct comparison of

MCF7 cells (no constitutive pSTAT3) and SKOV3-ip, HCC-827
and MDA-MB-468 cells (constitutive pSTAT3) with daily
administration of PM-73G revealed no correlation between
STAT3 phosphorylation and cytotoxocity (Fig. 4C).53 No
inhibition of cyclin D1 or Bcl protein expression at 5 mM of
PM-73G, PM-72G-1 or PM-274G-1 was observed. PM-7G does
not have cleavable phosphonate blocking groups and it displays
minimal effect on survival of MCF7, SKOV3-ip, HCC-827 and
MDA-MB-468 cells (Fig. 4D). Thus the cinnamoyl-Haic-Apa
sub-structure is not cytoxic on its own and the phosphonate
contributes to the observed cell death.

At the relatively high concentration of 25 mM in MDA-MB-
468 cells, PM-73G inhibited phosphorylation of FAK pTyr861
and Akt Ser473 after two hour treatment, as well as EGF-
stimulated STAT5 phosphorylation (Fig. 4E). Thus, at high
concentrations, selectivity for individual SH2 domains is
compromised and cytotoxicity correlates with off-target effects.

Collectively, these results challenge the hypothesis that Tyr705

phosphorylation of STAT3 is required for cell growth and

Figure 3. (A) Effect of proline on the inhibition of STAT3. (B) Prodrugs do not inhibit EGF induced STAT5 phosphorylation or Ser473Akt phosphorylation.
(C) Prodrugs do not inhibit Src phosphorylation of Tyr861 of FAK. (D) Prodrugs inhibit IFNc-stimulated phosphorylation of STAT1 but at 10-fold higher
concentration than constitutive STAT3. In (A) cells were treated with prodrug for 2 h before lysis and protein determination by western blots. In (B–D)
cells were treated with prodrug for 1.5 h at which time EGF or IFNc was added. After 30 min cells were lysed and protein levels determined by western
blots.

www.landesbioscience.com JAK-STAT 269



proliferation in vitro. Further challenges come from inhibition of
pSTAT3 by JAK kinase inhibitors. The first example came from
Kreis et al., who noted that treatment of several melanoma lines
with Pyridone 6 completely inhibited STAT3 phosphorylation but

had no impact on cell growth.72 Hedvat et al. reported that the
JAK2 inhibitor, AZD1480, at concentrations that completely
inhibited pSTAT3, had no effect on the proliferation of MDA-
MB-468 (breast), DU145 (prostate) and MDAH2774 (ovarian)

Figure 4. (A–D) Prodrugs are minimally cytotoxic to cultured cancer cell lines. (E) At high concentration (25 mM), PM-73G displays off-target effects by
inhibition of the phosphorylation of STAT5, Ser473Akt and Tyr861FAK. (F) Intraperitoneal administration of PM-73G inhibits breast tumor growth and
angiogenesis.
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cancer cells in vitro.73 This was reported in subsequent publications
from this group74,75 and others.76 Looyenga et al. found that the
JAK1/2 inhibitor ruxolitinib did not affect growth of lung cancer
cell lines in vitro.77 Treatment of ovarian cancer cells with the anti-
IL-6 monoclonal antibody siltuximab inhibited STAT3 phosphor-
ylation but did not affect proliferation of cells grown on plastic as
adherent cultures.78 Thus it would appear that selective inhibition
of Tyr705 phosphorylation is not cytotoxic to cancer cells of
epithelial origin in vitro. Furthermore, if an agent or compound is
killing these cells, it is acting by off-target effects. Controversy still
exists as Zhang et al. recently reported that an apparently selective
small molecule (not a phosphopeptide mimic) targeting the SH2
domain of STAT3 displays cytotoxicity in vitro.39

Effect of Selective STAT3 Inhibition In Vivo

In spite of the lack of cytotoxicity, we evaluated the ability of PM-73G
to inhibit tumor growth in vivo using the MDA-MB-468 breast
tumor model.79 In an initial intratumoral (IT) administration trial, we
found that tumor growth was inhibited which was accompanied by a
reduction in tumor microvessel density and VEGF protein. IT
administration of concentrations as low as 8 mM resulted in inhibition
of pSTAT3 in tumor sections as determined by immunohistochem-
ical staining of tumor sections using anti-pSTAT3 antibodies.

To determine the utility of systemic administration, mice
bearing MDA-MB-468 tumors were treated with 170 mg/kg of
PM-73G administered intraperitoneally (i.p.) daily for 5 d
followed by two days rest over four weeks.79 (Rodents have
circulating carboxyesterases which prematurely deprotect the
POM group, thus necessitating such a high dose.) Tumors from
the treated animals grew at much lower rates than those given the
vehicle (20% Trappsol/PBS) (Fig. 4F). Immunohistochemical
analysis revealed nearly complete inhibition of vascularization.
Two hours after administration of PM-73G pSTAT3 levels were
significantly reduced, compared with vehicle (Fig. 4F). Thus
selectively inhibiting STAT3 phosphorylation impedes commun-
ication with the microenvironment, i.e., VEGF signaling and
angiogenesis. Necroscopic examination revealed no organ toxicity
and no changes in complete blood counts (cbcs). To the best of
our knowledge, this is the first example of a phosphopeptide-
based prodrug targeting an SH2 domain showing the ability to
inhibit its target by systemic administration. This contrasts with
the compounds of Zhang et al., which utilize carboxyphenyl
groups to target the phosphotyrosine binding pocket.38,39

Of the four cell lines examined in Figure 4C, MDA-MB-468 was
the most sensitive to growth inhibition in vitro. The others were not
evaluated in vivo so it is unclear if the observed reduction in tumor
growth and microvessel density is cell line-dependent. However, our
results are similar to those recently reported for JAK2 kinase
inhibitors AZD148075 and ruxolotinib77 that employed other cell
lines. Whereas inhibition of STAT3 phosphorylation is not
intrinsically cytotoxic, anti-tumor activity is the result of impaired
communication between tumor cells and the microenvironment, e.
g., VEGF production and activity. AZD1480 impacts immune cell
recruitment to the tumor, supporting the proposed role(s) of STAT3
in immune surveillance and tumor immunity.75

Synthesis of Amino Acid Surrogates
and Peptidomimetics

The structure-affinity and structure-activity studies described in
this communication utilized phosphotyrosine, Leu-Pro dipeptide
and glutamine surrogates that were not available commercially.
Synthetic strategies had to be developed for these materials which
was a major part of the program. Readers are referred to
references 46, 54 and 55 for the synthesis of glutamine mimics;
49, 50, 51 and 58 for the synthesis of pseudoproline peptides,
Leu-Pro mimics and proline analogs; 50, 53 and 63 for
constrained tyrosine mimics; and 53 and 63 for the synthesis
of the prodrugs.

Summary

At the outset of the program our laboratory had two goals: (1) to
develop cell-permeable phosphopeptide mimics targeting an SH2
domain and (2) to use this technology to inhibit an important
cancer target, STAT3. Our chemistry effort developed very high
affinity phosphopeptides and were able to convert these into
prodrugs which hit their target in vivo with systemic (ip)
administration. Our data and that of Zhang et al.38,39 suggest that
the SH2 domain is indeed druggable, despite the failed attempts of
the industrial, government and academic labs mentioned above. As
mentioned, the bis-POM prodrug strategy is useful for proof of
principle studies, but it suffers from premature loss of one of the
POM groups due to both esterase activity and chemical hydrolysis.
Improvements to the bio-reversible ester strategy are ongoing.
Although we do not have a clinical candidate as of yet, our selective
phosphopeptide mimics have been useful tools for the study of
Tyr705 phosphorylation. From our work and the studies of the JAK
inhibitors, the dogma of STAT3 signaling is shifting. For epithelial
tumors, it appears that phosphorylated STAT3 is not necessary for
tumor cell survival. However, the original studies on the effects of
STAT3 on VEGF expression and signaling80,81 have borne true.
Inhibition of STAT3 Tyr705 phosphorylation appears to be new
antiangiogenesis strategy.
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