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Genome assembly depends critically on read length. Two recent technologies, from Pacific Biosciences (PacBio) and Oxford

Nanopore, produce read lengths >20 kb, which yield de novo genome assemblies with vastly greater contiguity than those

based on Sanger, Illumina, or other technologies. However, the very high error rates of these two new technologies (∼15%
per base) makes assembly imprecise at repeats longer than the read length and computationally expensive. Here we show

that the contiguity and quality of the assembly of these noisy long reads can be significantly improved at a minimal cost, by

leveraging on the low error rate and low cost of Illumina short reads. Namely, k-mers from the PacBio raw reads that are not

present in Illumina reads (which account for ∼95% of the distinct k-mers) are deemed sequencing errors and ignored at the

seed alignment step. By focusing on the ∼5% of k-mers that are error free, read overlap sensitivity is dramatically increased.

Of equal importance, the validation procedure can be extended to exclude repetitive k-mers, which prevents read

miscorrection at repeats and further improves the resulting assemblies. We tested the k-mer validation procedure using

one long-read technology (PacBio) and one assembler (MHAP/Celera Assembler), but it is very likely to yield analogous

improvements with alternative long-read technologies and assemblers, such as Oxford Nanopore and BLASR/DALIGNER/

Falcon, respectively.

[Supplemental material is available for this article.]

Genome assembly quality depends on sequencing coverage depth,
read accuracy, and read length (Nagarajan and Pop 2013; Myers
2016). Nowadays, the cost per sequenced base is small, so in
many cases depth of coverage is no longer a major limiting factor,
100-fold coverage being routine in many projects. Such high cov-
erage also reduces the importance of read accuracy, since errors can
be effectively reduced by consensus while building contigs from
the reads. Read length remains a critical factor. Its importance
stems from repeated sequences, which in many cases cannot be
properly assembled unless the repeated regions are shorter than
the reads. For example, two identical copies of a 7-kb retrotrans-
posable element would require reads longer than the element
length for full assembly; shorter readswould produce a fragmented
assembly. This limitation can be circumnavigated, but only
partially, by mate-pair reads and other methods (Weber and
Myers 1997; Nagarajan and Pop 2013; McCoy et al. 2014). These
requirements of genome assembly are nicely encapsulated in
Gene Myers’ 140-character theorem: “Thm: Perfect assembly possi-
ble iff a) errors random b) sampling is Poisson c) reads long enough 2
solve repeats” (https://dazzlerblog.wordpress.com/2014/05/15/on-
perfect-assembly/).

Sanger sequencing, the first practical technology for large-
scale projects, produces reads between 500 bp to1 kb, which are
accurate (error rate <0.1%) but expensive, the price tag for a
Drosophila-like genome being in the $1 million range (http://
flybase.org/static_pages/news/whitepapers/DrosBoardWP2001.
pdf). Second-generation sequencing technologies (“SGS”) such as
Illumina produce reads that are inexpensive, accurate (error rate
∼0.1%), but short (<500 bp). Their low cost (Drosophila genome
price tag is about $4000) allowed for an explosion of genome pro-
jects. However, due to their short read length, they produce very

fragmented assemblies. Both Sanger and SGS require a huge invest-
mentofmoney, labor, and time if a “finished”genome is the target.

Two recently developed or improved technologies, from
Pacific Biosciences (PacBio) and Oxford Nanopore, produce read
lengths >20 kb, which can yield genome assemblies that are vastly
superior in contiguity to those based on Sanger or short reads
(Goodwin et al. 2015; Koren and Phillippy 2015; Loman et al.
2015). However, reads produced by both technologies have very
high error rates (PacBio:∼15%; Oxford Nanopore: ∼20%) and can-
not be directly handled by current genome assemblers (for an ex-
ception, see Li 2016). Instead, a “hierarchical assembly process” is
used: First the raw reads are error-corrected by aligning them either
to Illumina reads (“hybrid assembly”) (Koren et al. 2012), or
among themselves (“self-correction”) (Chin et al. 2013) and by im-
plementing some sort of consensus algorithm, which reduces the
error rate to <5%. The corrected reads are then assembled by nor-
mal “overlap-layout-consensus” assemblers (“OLC”; designed for
Sanger reads). Self-correction produces better assemblies (Koren
et al. 2013) and is the current state of the art, but it is computation-
ally intensive because the all-by-all alignment must be performed
with rather high sensitivity and specificity in order to detect real
overlaps among the noisy reads. In practice, bacterial genomes
are easily assembled, but large genomes such as those of mammals
still have high computational costs (around 100,000 CPU hours)
(Berlin et al. 2015). It is also unclear how far can accurate assembly
can go into highly repeated regions such as heterochromatin (e.g.,
telomeres and centromeres), segmental duplications, and tandem
gene arrays (e.g., histone and rDNA clusters).

A very efficient approach to analyze DNA sequences is to
decompose them into overlapping stretches of a fixed length of
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k bases, called k-mers. For example, candidate overlapping reads
can be detected because they share k-mers above a certain cut-off
(Berlin et al. 2015). k-mers provide interesting insights into the
relationship between read accuracy and computational cost.
Sequencing errors introduce into the reads a large number of rare
k-mers, a problem that is particularly acute for long reads due to
their very high error rate. In PacBio, assuming a typical k-mer
size of 16, only ∼5% of the distinct k-mers from the reads are error
free (Chaisson and Tesler 2012; see also Results). The relevance of
this number (5% error-free k-mers) becomes apparent when one
considers that all genome assembly algorithms are based on
k-mer decomposition and comparison and that at least at some
steps they must track all distinct k-mers. This means that at some
steps 95% of the computational resources such as memory and
CPU time are wasted with k-mers that cannot indicate real read
overlaps because they contain at least one wrong base.

The three main alignment algorithms for PacBio reads deal
with the above problem somewhat differently. BLASR, the first de-
veloped, originally aimed to align PacBio reads to a reference ge-
nome but can also do the all-by-all alignment. It uses all k-mers
and employs successive refinements of the alignment in order to
detect true overlaps (Chaisson and Tesler 2012). The main limita-
tionof BLASR is its lowspeed: Itworkswell for bacteria andyeast ge-
nomes(4–12Mbp)but is impractical forgenomessuchasDrosophila
(180 Mbp; it used 610,000 CPU hours in the all-by-all step) (Berlin
et al. 2015). DALIGNERemploys highly optimized code to perform
similar tasks (Myers 2014). It is computationally intensive and, in
practice, requires a large computer cluster to assemble Drosophila-
like genomes. The third aligner, MHAP, reduces memory usage
and computational time by sampling a random subset of k-mers
(“sketch”) to detect candidate overlaps (technically, the sequences
are transformed into a reduced representationbyapplyingmultiple
hash functions, defined by sketch size, to all k-mers in a sequence,
and selecting the minimum value from each hash function).
Larger sketch size results inmore sensitivity, but at ahigher compu-
tational cost. Typical sketch sizes range from ∼500 to 1200 k-mers,
with resulting sensitivities in the range of 60%–90% (Berlin et al.
2015).MHAPis thedefaultalignerused inthePBcRpipeline,which,
after correcting the reads, feeds them into the Celera Assembler.
Currently PBcR (and its recent substitute, Canu) (Koren et al.
2016) is the pipeline that requires the smaller computational infra-
structure: Microbial genomes can be assembled with an eight-core
desktop computer in a few hours or less,Drosophila-sized genomes
are assembled in small servers (e.g., 24 cores, 64 Gb of RAM) in 3 d,
and mammalian size genomes require a large cluster.

Whatever the details of the overlapper algorithm, they all
have to cope with a “needle-in-a-haystack” problem (i.e., to find
true overlaps amid a lot of sequencing noise) and, in principle,
would work much better if the large number of “error k-mers” of
the long noisy reads could be identified at the outset and ignored.
We propose a simple solution to achieve this: (1) Use Illumina
reads (which are accurate and inexpensive) to produce a list of er-
ror-free k-mers; (2) k-mers from the PacBio raw reads that are not
present in the Illumina-derived k-mer list (which account for
∼95% of the distinct k-mers) are deemed sequencing errors and
ignored at the seed alignment step.

Results

k-mer frequency distributions in PacBio and Illumina reads

In order to make clear the proposed solution, we investigated
in detail the data from Escherichia coli. The genome of E. coli strain

K-12MG1655 has been sequenced and finished to high quality us-
ing Sanger reads (Blattner et al. 1997). More recently, it has been
sequenced using Illumina and PacBio technologies at high cover-
age (77× and 94× respectively) (Kim et al. 2014; https://basespace
.illumina.com). The genome is 4.64Mbp in length and hence con-
tains approximately 4.64million distinct k-mers, the vast majority
of them occurring only once, since bacterial genomes have few re-
petitive regions (throughout this manuscript we set k = 16, which
is a typical value). The PacBio reads contain 436 million k-mers
in total (4.64 million k-mers times 94-fold coverage); if there
were no sequencing errors, these k-mers would correspond to
4.64 million distinct k-mers, each one occurring on average 94
times. However, these reads actually contain 292,687,635 distinct
k-mers; among these, 4,513,248 (1.5%) are correct (i.e., present
in the finished E. coli genome sequence), and the remaining
288,174,387 (98.5%) are sequencing errors (“error k-mers”; see
Methods). As expected, the correct k-mers show up repeatedly,
and their proportion among the total k-mers is 16.6%. On the oth-
er hand, most error k-mers are unique, because the chance that
random errors create the same 16-mer sequence twice (or a pre-ex-
isting 16-mer) is small. Figure 1 shows the k-mer frequency spec-
trum of the PacBio and Illumina reads. First, consider the
Illumina reads (Fig. 1, left panels): The huge peak on the left con-
tains rare k-mers that mostly result from sequencing errors; the
next peak, located approximately at the sequencing coverage, cor-
responds to single-copy sequences in the genome; and finally,
smaller peaks on the right correspond to repetitive DNA (they
are much more pronounced in repeat-rich genomes such as
Drosophila and mammals). A similar pattern occurs with PacBio
reads (Fig. 1, right panels), except that the error peak ismuch larger
(note the y-axis scale) and that the single-copy peak is strongly
shifted toward the left (because so many k-mers were “lost” due
to sequencing errors). Roughly similar values were obtained for
other genomes; more typically, ∼5% of the distinct k-mers in the
PacBio reads are correct (Supplemental Table S1). As we comment-
ed before, this low accuracy implies a high cost: At some steps of
genome assembly, 95% of the computational resources are wasted
with k-mers that cannot indicate real read overlaps because they
contain sequencing errors.

Note that particularly in the case of Illumina reads the large
peak on the left contains nearly no correct k-mer (Fig. 1), whereas
nearly all correct k-mers are located to the right. This suggests an
interesting possibility: In the absence of a finished genome, an ac-
curate list of “valid k-mers” can be obtained from the Illumina
reads by taking those k-mers that occur at least, say, 10 times (sin-
gle-copy k-mers are expected to occur about 70 times in this data
set). In the E. coli example, if we use the Illumina-based list to
validate the k-mers of the PacBio reads, we would miss only
0.003% of the correct k-mers (145 out of 4,513,248) and would in-
correctly validate 0.1 % of the error k-mers (32,456 k-mers out of
288,174,387). Such an Illumina “valid k-mer list” is inexpensive
to produce and may improve long-read assembly by identifying
in the long reads the k-mers that should be ignored.

We implemented this k-mer validation procedure in the
MHAPoverlapper, as detailed inMethods, and in the next sections
we tested its performance in overlap detection, read error correc-
tion, and genome assembly. We used data from genomes of five
model organisms; in four of them, PacBio and Illumina reads
from the same strain are available: bacteria (E. coli strain K-12
MG1655; genome size of 4.64 Mbp), yeast (Saccharomyces cerevisae
strain W303; 12.1 Mbp), worm (Caenorhabditis elegans strain
Bristol N2; 103 Mbp), and flies (Drosophila melanogaster strain
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ISO1; ∼180 Mbp). We also included the plant Arabidopsis thaliana
(strain Ler-0; 135Mbp), although in this case most of the Illumina
reads came from a different strain (Ler-1) and were shallower
(Supplemental Table S2). Finally, as a proof of principle,we applied
the k-mer validation to three difficult regions (segmental dup-
lications) of the human genome and to human chromosomes
15 and 17. We operationally defined as valid k-mers all those
with a frequency bigger than one seventh of the single-copy
peak from Illumina reads (Supplemental Fig. S1; Supplemental
Table S2). This cut-off was chosen after a limited exploration
(Supplemental Results).

k-mer validation increases the sensitivity and the specificity of

overlap detection

The MHAP program compares pairs of uncorrected PacBio reads,
aiming to detect real overlaps while keeping false positives at
a minimum. We compared the performance of the modified
MHAP against the standard version (1.5b1) following the proce-
dures of the original publication (Berlin et al. 2015). Namely,
artificial PacBio reads were generated by applying the typical
PacBio error rates (insertion: 10%; deletion: 2%; substitutions:
1%) to 10-kb segments of known genomes (we tested E. coli, yeast,
C. elegans, and Drosophila, and also random DNA sequences).
These segments were arranged as pairs with a 2-kb overlap; mem-
bers of different pairs do not have any real overlap butmay contain
similar sequences due to repetitive DNA. We measured sensitivity
as the proportion of true overlaps that were detected (i.e., among
members of the same pair). Overlaps between members of dif-

ferent pairs estimate the false-positive
rate (i.e., the specificity); this is more
reliably done with random DNA se-
quences, because biological sequences al-
most always contain repeats that will
inflate the false-positive rate. We varied
sketch size (the “num-hashes” parame-
ter) (Berlin et al. 2015) between 64 and
2048; this parameter is very important
because it controls the trade-off of com-
putational cost (CPU time plus memory
usage) versus sensitivity. All other param-
eters were kept fixed at their default
values (k-mer size = 16; num-min-match-
es = 3; threshold = 0.04). As shown in
Figure 2, k-mer validation caused a huge
increase in sensitivity with E. coli data:
At the typical sketch size of 512 (Berlin
et al. 2015), the standard MHAP detec-
ted 24% of the true overlaps (61 out
250), whereas with k-mer validation, we
got 95% (238 out 250). Other genomes
and also random DNA sequences pro-
duce similar results (Supplemental Fig.
S2). Finally, the improvement using the
Illumina-derived list of valid k-mers is
very similar to the one using the true
k-mer list derived from the finished
genome (Supplemental Fig. S3), which
suggests that the former is a good proxy
for the latter.

It is interesting also to look at the
false-positive rate, which estimates the

specificity. The observation that false positives are absent in ran-
dom DNA sequences and seem to be more frequent in repeat-
rich genomes (Supplemental Fig. S4) strongly suggests that repeti-
tive DNA is the culprit, and indeed, we found transposable ele-
ments and other repeats when we checked some of them. These
spurious alignments are undesirable, and k-mer validation offers
a simple and effective way to nearly eliminate them: We just
have to remove from the valid k-mer list all k-mers that seem
to occur more than once in the genome (we used as a cut-off

Figure 1. k-mer frequency distributions for Illumina and PacBio E. coli reads. (A) Illumina, all k-mers (k =
16 in all panels). (B) Illumina, with correct k-mers shown in red and error k-mers in blue. Note that most
error k-mers have very low frequency. The peak at k-mer frequency about 70 corresponds to genomic
single copy k-mers. (C,D) PacBio reads. Note the huge number of error k-mers. The reference list of valid
k-mers came from the finished genome (see Methods).

Figure 2. Sensitivity of read overlap detection with and without k-mer
validation. Simulated PacBio reads from E. coli (250 pairs of 10-kb sequenc-
es with 2-kb overlaps) were subjected to standard MHAP (dashed line) or
MHAP with masking of low-frequency k-mers (solid line) for overlap detec-
tion. The reference list of valid k-mers came from Illumina reads.
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1.5-fold of the Illumina single-copy peak; 105 in the E. coli case)
(see Supplemental Results). As shown in Figure 3, this procedure
causes minimal losses in sensitivity, while suppressing most of
the “false positives.” In the next sections, we will always compare
the performance of standard MHAP (“M”) with the two types of
k-mer validation: masking only low-frequency k-mers (“L”) or
masking both low-frequency and high frequency k-mers (“LH”).
Illumina reads allow a precise k-mer classification; given enough
coverage, two-copy k-mers (e.g., from a segmental duplication)
can be reliably separated from single-copy ones (Supplemental
Fig. S5). For the purpose of read correction and assembly, ideally
only k-mers that are single copy in the genome should be
used as seeds in overlap detection; as we will see below, using
Illumina reads and the modified MHAP one gets close to this.

k-mer validation improves the error correction

of long-reads

We assessed the performance of read error correction by counting
for each read the number of correct k-mers among the total k-mers
(Supplemental Methods). Uncorrected PacBio reads from dif-
ferent organisms contain between 15% to 38% correct k-mers
(Supplemental Table S1). During read correction in all assembly
pipelines, the raw reads were aligned, the regions with poor align-
ment were trimmed, and the discrepant bases were deemed as
sequencing errors and were corrected by a consensus algorithm

(Chin et al. 2013; Berlin et al. 2015).
Looking first at the sequencing errors
(Table 1, columns 5, 8, and 11), the stan-
dardMHAPoverlapper (coupledwith the
default falconsense correction algo-
rithm) brings the reads from 15%–38%
to 94.0% correct k-mers (range across dif-
ferent organisms: 92%–97%), and k-mer
validation further improves this to
94.7% (L masking) and 94.8% (LHmask-
ing). Second, there are also gains in the
total amount of sequence recovered
(Table 1, columns 3, 6, and 9), presum-
ably due to improved alignment and re-
duction of unnecessary trimming. The
combined effect of these two factors is
that reads corrected with LH masking
have on average 220 additional correct
k-mers (i.e., 15,615 minus 15,395) com-
pared with the standard MHAP. So k-

mer validation indeed improves the correction of long-reads in
both trimming and error correction. The effect differs between or-
ganisms, which is expected, since it will depend on the quality of
PacBio and Illumina sequencing and on the specificities of each ge-
nome (e.g., amount and composition of repetitive DNA). In partic-
ular, the smallest improvement occurred in Arabidopsis, possibly
because it has the worst Illumina data set (Supplemental Table
S2; Supplemental Fig. S1). It is interesting also to note that most
of the improvement in error correction seems to be due tomasking
of low-frequency k-mers (L-masking); LH-masking (i.e., simultane-
ousmasking of low-frequency andhigh-frequency k-mers) adds lit-
tle in most genomes. We will return to this point later.

During read correction (and assembly), we always used an
Illumina-derived list of valid k-mers, but in E. coli and C. elegans
(which have completely finished genomes), we also tested the
genome-derived list of valid k-mers to guide the read alignment.
The effect in read correction is negligible (Supplemental Table
S3), indicating, as seen in the previous section (Supplemental
Fig. S3), that Illumina-derived lists are good proxies for the real
k-mer lists.

Finally, the effect of k-mer validation looks small (e.g., 220 ad-
ditional k-mers in 15,395, or 1.4%), but we should note that these
are average values. Most assembly breaks occur at repetitive re-
gions, and as we will see below (see Assembly of a “Model
Genome”), at these difficult regions k-mer validation has a strong
effect on read correction.

Figure 3. Sensitivity and specificity of read overlap detection with masking of repetitive k-mers.
Simulated PacBio reads from D. melanogaster (1000 pairs of 10-kb sequences with 2-kb overlaps) were
subjected to standard MHAP (blue), MHAP with masking of low-frequency k-mers (red), or MHAP
with masking of low-frequency and high-frequency k-mers (black). Note that masking of low- and
high-frequency k-mers cause a huge improvement in specificity (right) with minimal losses in sensitivity
(left). The reference list of valid k-mers came from Illumina reads.

Table 1. Read error correction with different methods

Organism
No. of
readsa

Standard MHAP L masking LH masking

Total
k-mers

Correct
k-mers

%
correct

Total
k-mers

Correct
k-mers

%
correct

Total
k-mers

Correct
k-mers

%
correct

E. coli 7410 15,045 14,242 94.9 15,118 14,467 95.9 15,119 14,469 95.9
S. cerevisae 11,968 11,968 11,016 91.7 12,122 11,348 93.3 12,132 11,377 93.4
C. elegans 128,710 18,700 17,391 93.0 18,806 17,563 93.4 18,805 17,576 93.5
Arabidopsis 185,276 17,428 16,864 96.9 17,470 16,973 97.3 17,468 16,950 97.2
Drosophila 228,023 18,734 17,460 93.3 18,826 17,639 93.9 18,854 17,705 94.1
Grand mean – 16,375 15,395 94.0 16,468 15,598 94.7 16,476 15,615 94.8

All values are 95% trimmed means (to remove outliers).
aExactly the same reads were compared across the three methods.
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k-mer validation results in more contiguous assemblies

We assembled the five complete genomes with the three assembly
methods (standard MHAP, L-masking, and LH-masking) and used
the Quast package (Gurevich et al. 2013) to compare them for
metrics such as contiguity (NG50) and misassembly frequency
(Supplemental Methods). When tested with the simple genomes
of E. coli (4.64 Mbp) and yeast (12.1 Mbp), all three assembly
methods yield similar results (Supplemental Table S4). In E. coli,
all three approaches yield one contig spanning the complete ge-
nome, with high identity to the reference sequence. In yeast, the
NG50 from MHAP and LH assemblies are the same (818 kb),
whereas L-masking yields a bit smaller value (751 kb). The yeast
PacBio data came fromW303 strain, for which there is no available
finished sequence for comparison; however, theNG50 of the three
assemblies approached the NG50 of the finished reference yeast
strain (924 kb), so it seems that they are close to completeness.
Hence both E. coli and yeast provide a nice demonstration of the
power of long-reads, which, however, leaves little room for com-
parison among assembly methods. However, the difference be-
tween the three assembly methods becomes visible in these
simple genomes when we use more challenging conditions such
as low coverage data or small sketch size: In both cases, k-mer
validation leads to huge improvements in assembly contiguity
(Fig. 4A).

When we tested the k-mer valida-
tion procedure with three complex ge-
nomes (C. elegans, A. thaliana, and D.
melanogaster), we found that in all three
cases it produced significantly more con-
tiguous assemblies: In C. elegans, the
NG50 rose from 2221 kb to 2838 kb; in
Arabidopsis, from 9588 kb to 13,500 kb;
and in Drosophila, from 7158 kb to
13,655 kb (all valuesMHAP vs. LH-mask-
ing) (Table 2; Fig. 4B). The improvement
in contiguity is also seen in the largest
contig size (Table 2). Statistics such as
NG50 focus only on the largest contigs
(e.g., in Drosophila only the four or five
largest, all euchromatic) and can change
drastically from only a few contig joins;
however, the NGx plots, which capture
the full continuity of the assemblies, in-

dicate robust contiguity improvements across all size ranges
(Supplemental Fig. S6). Aggressive assembly algorithms can spuri-
ously increase statistics such as NG50 at the expense of increasing
misassemblies; this was not the case of k-mer validation, which ac-
tually in most cases yield smaller numbers of misassemblies, mis-
matches, and indels, compared with the standard MHAP (Table
2). We also checked all assemblies with mummerplot (Kurtz et al.
2004) for the presence of gross misassemblies (e.g., contigs
with spurious junctions between different chromosomes) that
might inflate the NG50 of LH over MHAP assemblies, and found
none (Supplemental Fig. S14). We did find in Arabidopsis a case
of gross misassembly, but it occurred in all methods (M, L, and
LH) (Supplemental Results, see PBcR Assemblies with Different
Memory Parameters; Supplemental Fig. S7). Although we have
not tested even more complex genomes such as mammals and
large plant genomes, it is very likely that k-mer validation will
lead to improved assemblies in these cases as well.

Three points areworthmentioning here. First, improvements
in assembly causedby k-mer validation are similarwhenweuse the
Illumina- or the genome-derived list of valid k-mers (Supplemental
Table S5). This shows that in terms of assembly, Illumina-derived
lists are good proxies for the real k-mer lists, as seen before for
overlap detection (Supplemental Fig. S3) and read correction
(Supplemental Table S3).

Figure 4. Contiguity of assemblies produced with different methods. (M) standard MHAP; (L) MHAP
with low-frequency k-mer masking; (LH) MHAP with low and high frequency k-mer masking. (A)
Assembly of simple genomes under the challenging conditions of low coverage (E. coli; coverage reduced
from 94× to 30×) or small sketch size (yeast; MHAP sketch size reduced from 512 to 128). (B) Assembly of
three complex genomes (C. elegans, A. thaliana, and D. melanogaster).

Table 2. Assembly quality assessment

Assemblya Contig No. Largest contig Total length NG50 Misassemblies > 1 kbb Mismatches/100 kb Indels/100 kb

cel_M 153 5,285,091 104,406,335 2,220,855 1749 15.64 46.44
cel_L 153 4,763,590 104,240,890 2,031,208 1546 14.40 46.53
cel_LH 108 7,255,918 103,011,904 2,838,280 1649 15.26 47.12
ara_M 727 15,819,004 134,469,351 9,587,932 6019c 600.43c 162.15c

ara_L 620 17,168,897 133,073,544 8,919,426 5880c 598.11c 164.15c

ara_LH 633 18,788,518 133,270,108 13,499,602 5767c 602.62c 168.38c

dros_M 1072 21,678,627 169,543,188 7,157,936 11,136 14.57 93.37
dros_L 963 18,648,553 167,735,167 7,147,503 10,278 14.40 88.27
dros_LH 1019 25,756,195 169,542,479 13,654,652 11,161 14.60 110.28

Note that k-mer validation (L and especially LH) increases the contiguity statistics (NG50, largest contig), while slightly decreasing the assembly errors
(last three columns).
a(M) Standard MHAP; (L) MHAP with low-frequency k-mer masking; and (LH) MHAP with low and high frequency k-mer masking.
bAs reported by Quast (Gurevich et al. 2013): misassemblies >1 kb, or joining different chromosomes. The large values in Drosophila probably were
caused by fragmentation of the reference sequence.
cThe reported assembly errors in Arabidopsis are unreliable because the reference genome came from a different strain.
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Second, it may be argued that since Illumina sequencing has
coverage bias against GC-rich and AT-rich regions (Ross et al.
2013), the use of k-mer validation might propagate such bias
into the assembly of PacBio reads (which are believed to be almost
bias free).We addressed this question by simulating Illumina reads
with a coverage bias stronger than the reported cases (Ross et al.
2013) and then measuring its effect on the assembly of simulated
PacBio reads of the same region. We found that k-mer validation
assembly is insensitive to the normally encountered bias in
Illumina coverage (Supplemental Results, see “k-mer Validation
Assembly in the Presence of Coverage Bias of Illumina Reads;
Supplemental Table S6). This counterintuitive result probably is
explained by the fact that PacBio reads are much longer than the
Illumina coverage gaps (which span a few hundred base pairs at
most), so most read overlaps will still be detected because the
k-mers outside the coverage gaps provide enough alignment seeds.

Finally, overlap detection (Fig. 3; Supplemental Fig. S4) and
read error correction (Table 1) are essentially the same with L-
and LH-masking, but most or all the assembly contiguity gains
in complex genomes occur with LH-masking (Fig. 4B). The next
section suggests an explanation for this discrepancy: Assembly
contiguity gains probably are due to improved overlap specificity
and read correction in a small subset of the reads and sites (i.e.,
at the Sequence Family Variant sites of repeated regions), which
effect is imperceptible in the aggregate statistics reported in
Table 1.

Assembly of a ‘model genome’

The causal events underlying the improvements in read correction
(Table 1) and assembly (Fig. 4) probably are complex and scattered
inmany regions of the genome,making a detailed analysis imprac-
tical (e.g., how exactly does LH masking improve contiguity?). In
order to better understand the reasons for the observed improve-
ments, we isolated a small and difficult region and used it as a
model: a 44-kb segmental duplication (98% identity between the
two copies), which is part of a much larger segmental duplication
complex located in the 10q11 region of the human genome. The
finished sequence of both copies was obtained by painstaking
BAC cloning and sequencing (Chaisson et al. 2015). As detailed
in Supplemental Methods, we used the finished sequence to
simulate PacBio reads from both copies of the 44-kb segmental
duplication, along with ∼300 kb of flanking sequence; we used
simulated reads because we want to know which segmental dupli-
cation copy they came from.We then assembled the readswith the
three methods (standard MHAP, L-masking, and LH-masking). In
the case of L- and LH-masking, we obtained the valid k-mer lists
from the finished sequence. The perfect assembly of this “model
genome” should yield two contigs (“left” and “right”), each repre-
senting one copy of the segmental duplication and the correct
flanking sequences. Standard MHAP (“M”) assembly resulted in
11 contigs; L-masking, three contigs; and LH-masking, the expect-
ed two contigs (Supplemental Table S7). The majority of the
assembly breaks in the M and L assemblies occurred within or
close to the segmental duplication region, and particularly in the
M assembly, there is a large amount of sequence duplication
(19%), caused by partially overlapping contigs in this region
(Supplemental Table S7).

Since the three assemblies differ only in the initial alignment
of the uncorrected reads, all assembly differences must ultimately
trace to it. When we investigated the read alignment, we found
that both the standard MHAP and MHAP with L-masking fail to

sort the two copies of the segmental duplication in most cases
(i.e., in most reads ∼50% of the detected overlaps are between
reads from different copies) (Supplemental Fig. S8), whereas with
LH-masking, 92% of the detected overlaps are correct.

The next step in the assembly pipeline is the read correction
by a consensus algorithm, using the overlaps obtained above.
Since we know the origin of reads, we can score for each site of
each corrected read if it has the right base, a wrong base, or a
gap. We should distinguish three types of sites here: (1) outside
the segmental duplication (NSD sites), (2) within the segmental
duplication at positions that are variable between the two copies
(SFV sites, for “sequence family variant”) (Dennis et al. 2012;
Hughes and Rozen 2012), and (3) within the segmental dupli-
cation at positions that are conserved between the two copies
(SDC sites). Note that at SFV sites, there will be conflicting se-
quence information in the overlaps produced by standard MHAP
and by L-masking (but not by LH-masking), because as seen above
these two methods mix almost indistinctly reads from the two
copies of the segmental duplication. At the NSD and SDC sites,
there is no such conflicting information, because at these sites
either the two contigs do not align at all (NSD) or have the same
sequence (SDC). As shown in Figure 5, the three methods work
equally well for NSD and SDC sites: In the corrected reads, 98%
of the bases at these sites are right. However, at SFV sites there is
a huge difference: Whereas with LH-masking, read correction still
works very well (97% right bases), with the standard MHAP and

Figure 5. Read correction accuracy within a segmental duplication
(human 10q11 region). Corrected reads were aligned with the original se-
quence, and each base of each read was scored as “correct” (light gray),
“wrong” (black), or “deleted” (dark gray). “SFV sites” (for “sequence fam-
ily variant”) are located within the segmental duplication, at positions
where the two copies are different. “Non-SFV sites” are sites locatedwithin
the segmental duplication and identical between the two copies or located
outside the segmental duplication (they produce identical results andwere
lumped in the figure). Note that standard MHAP and MHAP with L-mask-
ing frequently fail at SFV sites, whereas LH-masking correctly handles
them. Data from 450 sites of each type; reads were corrected with
the default falconsense algorithm (for the pbdagcon correction, see
Supplemental Fig. S10).
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Lmethods, only∼80%of the bases are right; inmost cases, the SFV
site is deleted (substituted by a gap). This 80% value is the average
for the whole segmental duplication; sites closer to the border
actually have almost perfect correction, whereas those in the mid-
dle of segmental duplication can get below 50% correct bases
(Supplemental Fig. S9). This heterogeneity in error correction
makes sense: Close to the border of the segmental duplication,
the flanking sequence ensures the correct read overlap (and proper
read correction). In the same vein, the SFV sites around a 1.5-kb
indel in the middle of the segmental duplication were “protected”
from miscorrection (Supplemental Fig. S9). The above results
employed falconsense as the consensus algorithm; the more pre-
cise (and slower) pbdagcon yields essentially the same result
(Supplemental Fig. S10), themain difference being the type ofmis-
correction at SFV sites: Whereas falconsense almost always intro-
duces a gap, pbdagcon either does this or introduces a wrong
base. The bottom line is that in both cases the SFV information
is destroyed.

So it seems that the “model genome” provided a quite com-
plete answer for the question “how exactly does LH-masking im-
prove contiguity?” The increase in overlap detection efficiency
due to masking of error k-mers helps. But even more important
is the stringent masking of repetitive k-mers (defined as all
k-mers that are not single-copy in the genome): The different
copies of a repeat can be very similar (in our example, 98% identi-
cal), and without this stringent masking, the signal from SFV sites
is swamped by the signal from conserved sites at the aligner
step, leading first to indiscriminate overlaps (Supplemental Fig.
S8), then to rampant read miscorrection at the SFV sites (Fig. 5;
Supplemental Fig. S9), and finally to assembly breaks (Supple-
mental Table S7).

The assembly breaks are a direct consequence of the destruc-
tion of the SFV information: When a repeat is longer than the vast
majority of the reads, it can only be correctly traversed by a tiling
path of SFVs. Ultimately, failure to correctly handle repeats during
overlap detection and read correction leads to fragmentation and
other assembly errors. The problems posed by repeats in genome
assembly have been recognized a long time ago (Myers 1995;
Phillippy et al. 2008; Nagarajan and Pop 2009; Koren et al.
2012), and long reads have a dual relationship with them: When
they fully span the repeat, they solve the problem, but when the
repeat is longer than the reads, the problem becomes harder
because the overlap detection in principle could not be stringent.
In a sense, LH-masking implements stringent overlap detection in
noisy reads.

While the above results are encouraging, it is reasonable to
question their generality since they are based on one example
andwhat resolves duplications in some casesmay fragment others.
Sowe tested additional duplications in the human genome, which
were longer and harder: two segmental duplications in tandem,
with sizes of 130 and 100 kb, both with 97%–98% identity. They
are located in the same 10q11 region of the human genome stud-
ied by Chaisson et al. (2015). As detailed in the Supplemental
Results (see Assembly of Additional Segmental Duplications),
both MHAP and L-masking severely misassembled these duplica-
tions, whereas LH-masking yields a perfect assembly of them
(Supplemental Table S8). Finally, it would be interesting to test
k-mer validation with human data sets larger than individual seg-
mental duplications. So, as detailed in the Supplemental Results,
we applied the k-mer validation to sorted reads from human chro-
mosomes 15 and 17; we found again that LH-masking produced
more contiguous assemblies (Supplemental Fig. S11), with less

misassemblies (Supplemental Table S9). Thus, the assembly im-
provement brought by k-mer validation seems to be a general
phenomenon.

Throughout this work we have used MHAP assemblies as a
baseline, and one may argue that this is somewhat unfair, since
k-mer validation makes use of additional data (the Illumina reads,
which provide the valid k-mer lists); under this view, a hybrid
assembly would be a more appropriate baseline. The “model ge-
nome” used before is ideal for such comparisons because it is at
the same time computationally tractable and a challenging assem-
bly problem. As shown in Supplemental Results (see “Hybrid
Assemblies of the Model Genome”), k-mer validation outperforms
hybrid assemblies in terms of both assembly breaks (i.e., number
of contigs produced) and sequence duplications (Supplemental
Table S10). Indeed, LH k-mer validation has zero misassemblies
of both types, whereas the best hybrid assembly introduces three
assembly breaks and duplicates 7.2% of the sequence of themodel
genome. The above results show that LH k-mer validation uses
more efficiently the information provided by the short reads; using
the valid k-mers (extracted from the short reads) to guide the
alignment of the long reads in the self-correction is most benefi-
cial compared with direct correction of the long reads with the
short reads.

It seems reasonable to conclude from the results presented
in this section, and also from the genomes of model organisms
(Fig. 4), that k-mer validation with LH masking robustly produce
better assemblies.

Sampling bias in the Drosophila PacBio data

Given previous work that showed that PacBio sequencing solved
two difficult repetitive regions of the Drosophila Y Chromosome
(Carvalho et al. 2015; Krsticevic et al. 2015), we were surprised to
find that Y-linked single-copy genes were lacking on average
∼50% of their sequence in the assemblies (Fig. 6; Supplemental
Table S11).We initially thought that thiswas due to a combination
of the lower coverage of the Y (about 45×; the Drosophila reads
came from male DNA, and hence coverage of the sex-chromo-
somes should be half of the autosomes) and assembly parameters
optimized for the approximately 95× coverage of the autosomes.
However, the coding regions of 20 X-linked genes are complete
(Supplemental Table S11), which excludes the above explanation.

Figure 6. Sampling bias in the Drosophila PacBio data. (Top) BlastN
search using the Y-linked kl-3 gene CDS as the query against a database
of the MHAP-assembled Drosophila genome (Berlin et al. 2015). Note
the large assembly gaps. (Bottom) Coverage depth of the same gene in
the raw PacBio reads. Note that most of assembly gaps in the kl-3 gene ac-
tually were caused by low or absent coverage in the PacBio reads. The ex-
pected coverage depth is 45×. The Illumina coverage of the same region is
fairly homogeneous (Supplemental Fig. S12).
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When we examined the raw PacBio reads, we found that sequenc-
ing depth was very irregular in several Y-linked genes, reaching
nearly zero in large parts of kl-3, kl-5, and other genes, whereas
the sequencing depth of X-linked genes is fairly constant and cen-
tered around 45×, as expected (Supplemental Fig. S12). This find-
ing is important and may have general significance because it
violates one of the conditions of Gene Myers’ “140 char theorem”

(“sampling is Poisson”); such violations of random samplingmaybe
an obstacle to perfect assemblies using PacBio technology.

The strong sequencing bias described above is surprising, giv-
en the success of PacBio data in assembling AT-rich or GC-rich
genomes (Shin et al. 2013; Paredes et al. 2015) and previous reports
of fairly uniform coverage across genomes (Ross et al. 2013). We
hypothesize that this bias is related to the peculiar organization
of some Drosophila Y-linked genes, which have mega base pair–
sized introns composed of simple satellite DNA (e.g., (AT)n; the lo-
cation of these satellite blocks is not precisely known) (Bonaccorsi
and Lohe 1991; Kurek et al. 2000; Reugels et al. 2000). This will not
cause problems in the assembly of exons with Sanger or short-read
technologies, because the DNA is sheared in short pieces before se-
quencing. Indeed, the Illumina coverage is fairly constant across
all Y-linked genes (except for occasional exon duplications)
(Supplemental Fig. S12). However, DNA used for PacBio sequenc-
ing has a high molecular weight, in the ∼100-kb range when ex-
tracted and then sheared to ∼20 kb–40 kb; this means that some
Y-linked exons will always be surrounded by a large chunk of sim-
ple repeats. Indeed, when we looked at the exon with the lowest
coverage in the kl-5 gene, we found that it is surrounded by at least
∼10 kb of nearly pure (AT)n sequence on one side and a very AT-
rich sequence on the other side (Supplemental Fig. S13).

How might these repeats have adversely affected PacBio se-
quencing? A benign hypothesis would be at the sample prepara-
tion step: Kim et al. (2014) reported the use of cesium chloride
centrifugation for theDrosophila sample, whichmay have selected
against AT-rich regions such as exons flanked by massive AT-rich
satellite blocks (they will have a smaller buoyant density). A
more worrisome possibility is that PacBio sequencing has some in-
trinsic, strong bias (e.g., against regions with very strong AT-bias or
with contrasting AT-rich and GC-rich blocks). One way to solve
the question would be to sequence again D. melanogaster, without
the use of cesiumchloride centrifugation for sample preparation. It
is ironic that we failed to improve the assembly of single-copy Y-
linked genes from Drosophila, since this was the original motiva-
tion of the present work.

Discussion

Single-molecule sequencing is revolutionizing genome assembly:
The long reads can yield mega base pair–sized contigs that span
complete chromosomes (or nearly so) of prokaryotes and simple
eukaryotes, as well as the euchromatic parts of more complex ge-
nomes such as Drosophila (Berlin et al. 2015; Koren and Phillippy
2015). Their major limitation is the low accuracy. Specifically,
the high error rate generates a huge number of k-mers that are
not present in the original genome, and the aligners (e.g., MHAP)
must sift through them in order to find shared, real k-mers that in-
dicate true read overlaps. These problems currently are addressed
by sequencing at high depth (ideally 100×), aligning the reads
with improved, fast software (Myers 2014; Berlin et al. 2015) and
implementing a consensus algorithm to correct the reads prior to
normal assembly (Chin et al. 2013). These procedures in principle
are straightforward, although the computational cost is high in the

case of large genomes (e.g., mammals). A less appreciated problem
is the risk of miscorrection of the reads from repetitive regions: As
the initial alignment must be loose in order to detect real overlaps
among the noisy reads, reads from paralogous regions (e.g., differ-
ent copies of tandem rDNA genes, long transposons, or segmental
duplications) will easily be lumped together (Supplemental Fig.
S8); once this happens, the error correction algorithmmiscorrects
the reads at the “Sequence Family Variant” sites (Fig. 5), which in
later assembly steps tend to cause assembly breaks.

In this article, we propose a simple and inexpensive proce-
dure that addresses both problems: to enforce that only correct,
single-copy k-mers are used as seeds for the read alignment. The
enforcing of “correct k-mers” solves the “needle in a haystack
problem” by making the aligner ignore the error k-mers, which
are the vast majority. This by itself dramatically increases the sen-
sitivity in overlap detection of the MHAP aligner (Fig. 2). The en-
forcing of k-mers that are single copy in the genome increases
the specificity in read overlapping (Fig. 3; Supplemental Fig. S8)
and essentially abolishes read miscorrection at “Sequence Family
Variant” sites (Fig. 5). This procedure requires a list of all k-mers
from the genome. Whereas a perfect list can only be obtained
from a completely finished genome (i.e., when a new assembly is
nonsensical), we showed that k-mers from Illumina reads provide
a very good approximation to it. In contrast to the direct correction
of PacBio reads with Illumina reads (“hybrid assemblies”), we used
them only as a source of the list of correct single-copy k-mers. This
list is used to inform the aligner of which k-mers should be ig-
nored, thus guiding the alignment of PacBio reads for their self-
correction; all sequence information came from the PacBio reads
themselves. We showed that this k-mer validation procedure
outperforms hybrid assemblies (Supplemental Table S10). Its use
significantly improves overlap detection (Fig. 2), the accuracy of
read correction (Table 1; Fig. 5; Supplemental Fig. S9), and the con-
tiguity and accuracy of genome assembly (Fig. 4; Table 2). Gains in
contiguity asmeasured byNG50 ranged from28% (inC. elegans) to
91% (i.e., almost doubled, in D. melanogaster). We believe that
these gains justify by themselves the use of k-mer validation, and
larger gains are possible (see Supplemental Discussion). Finally,
note that the additional cost of Illumina sequencing is negligible
or even absent, since in nearly all cases in which a PacBio data
set is available, there is also an Illumina data set from the same
strain. In cases where one needs to do the Illumina sequencing,
Supplemental Figure S5 suggests that an approximately 100× cov-
erage is enough for a good separation between single-copy and re-
petitive k-mers, although higher coverages are beneficial.

How far can we go?

Assembly quality is a function of coverage, error rate, and read
length (Phillippy et al. 2008; Nagarajan and Pop 2009; Myers
2016). Second-generation technology (e.g., Illumina) provided a
good solution for this equation when fragmentation (and correct
repeat reconstruction) is not a concern, for example, for sequenc-
ing genes or to identify SNP variants by comparison to a reference
genome (The 1000Genomes Project Consortium2010). Long read
sequencing provided a different solution: It yields unfragmented,
nearly finished assemblies of regions with moderate repeat con-
tent, such as prokaryotic genomes and (to a large extent) the eu-
chromatic portion of complex eukaryotic genomes, at a higher
cost. Sequencing costs of new technologies tend to drop quickly,
and the maturation of other long read technologies (e.g., Oxford
Nanopore) brings the promise of further cost reductions. Hence,
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the major challenge that remains is how to correctly assemble
repetitive DNA, which currently cause large assembly gaps (e.g.,
the histone and rDNA clusters of Drosophila; nearly all centro-
meres), massive fragmentation in the heterochromatin, and
scattered breaks in the euchromatin (e.g., human segmental dupli-
cations). As Myers (2016) stressed, this is an open question: “…
work on the assembly problem has failed to really address the issue
of how to resolve repetitive sequences except in fairly superficial
ways.” In a sense, technology development is pushing forward
what is a repeat in assembly terms (“reads long enough 2 solve
repeats”): Retrotransposons (∼7 kb long) are a major obstacle for
contig building with Sanger and Illumina sequencing and are al-
most harmless to PacBio. So brute force, in the form of very long
reads (say, average length in the 100 kb range), would solve thema-
jority of the currently intractable regions mentioned above: Once
the “golden threshold” of reads-longer-than-repeats is crossed, ge-
nome assembly becamemuch simpler (see Fig. 1 in work by Koren
and Phillippy 2015).

But “perfect assembly” is possible even when reads are not
long enough to cross a repeat, as SFVs may provide a unique tiling
path across it. For example, no read used in the assembly of our
“model genome” spans the 44-kb segmental duplication, and
yet we could assemble it in an essentially perfect form; the same
happened with the 100- and 130-kb segmental duplications
(Supplemental Tables S7, S8). As the results from our “model ge-
nome” show, the key is to preserve the SFV sites by notmiscorrect-
ing them, which is achieved by not swamping the overlap
detection with the flood of repetitive (i.e., non-single-copy) k-
mers. The k-mer validation procedure we presented here seems
to be an effective implementation of this principle. Ultimately
the ability to cross a repeat longer than the read lengthwill depend
on the number of SFVs per read. A tiling path requires an absolute
minimum of two SFVs per read, and our model genome data had
roughly 141 SFVs per read (450 SFV sites in a 44-kb segmental
duplication; average length of corrected reads: 13,767 bp). It
remains to be seen which read length will provide enough SFVs
to cross large regions such as the histone or rDNA clusters in
Drosophila (500 kb and 2 Mbp, respectively), which currently are
inaccessible (both are severely fragmented even in our best
Drosophila assembly). Another limit, admittedly secondary, is the
assembly of simple repeats such as the intronic (AT)n blocks of
Drosophila Y-inked genes, because the repeat periodicity (2–10
bp) overlaps with the error frequency of the uncorrected long
reads. Finally, k-mer validation (with LH-masking) is useful even
when repeats are smaller than the read length for it protects the
reads from miscorrection at repeats and, hence, reduces assembly
errors in these regions.

As sequencing technology and assembly software move for-
ward, the question posed by the title of this section keeps returning
(Weber andMyers 1997; Carvalho et al. 2003; Koren and Phillippy
2015; Myers 2016). But as clearly stated by Myers (https://
dazzlerblog.wordpress.com/2014/05/15/on-perfect-assembly/) and
Koren and Phillippy (2015) (“one chromosome, one contig”), perfect
assemblies are on the verge of becoming reality, and we may now
be close to the final answer.

Methods

Sequence reads

The sources of PacBio and Illumina reads for all six organisms are
shown in Supplemental Table S12. All nonhuman PacBio reads

came from Kim et al. (2014) and PacBio DevNet (http://www.
pacb.com/); we downloaded them from the Amazon S3 repo-
sitories (listed in the Supplemental Information of Kim et al.
2014) or from the Amazon Elastic Block Storage (EBS) snapshot
described by Berlin et al. (2015). These data have also been depos-
ited at NCBI Short Read Archive (except for C. elegans), but the
reads there are unfiltered (Kim et al. 2014). The sorted PacBio reads
from human chromosomes 15 and 17 were kindly provided
by an anonymous reviewer and came from Zook et al. (2016).
The sources of Illumina reads follows: E. coli, Illumina BaseSpace
(https://basespace.illumina.com); S. cerevisae, Saccharomyces
Genome Database (http://www.yeastgenome.org/); A. thaliana
(Cao et al. 2011; Gan et al. 2011); C. elegans (van Schendel et al.
2015); D. melanogaster (Gutzwiller et al. 2015); and H. sapiens
(Zook et al. 2016).

Implementation of k-mer validation

We implemented the k-mer validation in the MHAP overlapper as
follows. The standard MHAP algorithm converts each k-mer to a
number (using a hash function) and saves from each read only
the lowest value (called “min-mer”). The process is repeated, say,
500 times with different hash functions to generate a “sketch” of
size 500, which is stored in the memory; overlapping reads were
detected because their sketches share min-mers above a user-spec-
ified cut-off (for details, see Berlin et al. 2015). We implemented
the k-mer validation by adding a simple step in the MHAP code:
If the read k-mer is present in the valid k-mer list, it is converted
to a number as described above. If it is not there (and hence
probably is an error k-mer), it is converted to a very large number
(technically, to Long.MAX_VALUE), effectively forcing the pro-
gram to ignore it. The list of valid k-mers was previously obtained
from Illumina reads with the jellyfish program (Marçais and
Kingsford 2011), saved as a text file, and read by the modified
MHAP code, which efficiently stores it as an array of bits (called
BitSet in java language) before reading the PacBio reads. Note
that these procedures implement a whitelist, whereas most align-
ers and overlappers use a blacklist of undesirable k-mers (either
supplied by the user or produced by the program itself), which
is used to remove highly repetitive k-mers, in order to reduce
the computational load (e.g., the “filter-threshold” parameter in
MHAP). Furthermore, their identification of repetitive k-mers is
much less precise because k-mer counts are obtained from the
raw PacBio reads. Illumina reads allow a much finer k-mer classifi-
cation; given enough coverage, even two-copy k-mers (e.g., from a
segmental duplication) can be well separated from single-copy
ones (Supplemental Fig. S5). The frequency cut-off values used to
build the valid k-mer lists are presented in Supplemental Table
S2 and Supplemental Figure S1 and are further discussed in the
Supplemental Results. When run without a valid k-mer list, the
modifiedMHAPproduces an output that is identical to the original
MHAP code. The same thing happens if we use a “valid k-mer list”
containing all k-mers of the PacBio reads.

The same Illumina-derived list of valid k-mers mentioned
above was also used to sort “correct” and “error” k-mers in reads.
For example, in Figure 1 we used a custom script that loaded the
list in the memory (as an associative array) and used it to classify
each read k-mer as correct (match) or error (not match).

Genome assemblies

All work was performed in three Linux servers (24 cores/64 Gb
RAM, 24 cores/144 Gb RAM, and 128 cores/1 Tb RAM); assemblies
used the Celera Assembler version 8.3 (PBcR pipeline). Unless oth-
erwise noted, default PBcR parameters were used for all assemblies,
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including the falconsense read correction algorithm. We used
the same MHAP memory parameter (ovlMemory; set to 96 Gb)
in all assemblies because we found that it has a fairly strong
effect on the result, including the introduction of gross misassem-
blies (Supplemental Results, see “PBcR Assemblies with Different
Memory Parameters”; Supplemental Table S13; Supplemental
Fig. S7; Supplemental Table S14). Our main purpose was to com-
pare the Standard MHAP overlapper with the modified version
(i.e., with k-mer validation) and to save timeweopted to not polish
the assemblies with Quiver (Chin et al. 2013).

Data access

The modified MHAP (source and compiled jar file) and the modi-
fied PBcR script from this study are available at the Supplemental_
Data_S1.zip file and also at https://github.com/bernardo1963/
kmer_validation. The same links provide a README file, with in-
structions on how to install and run the modified files. The result-
ing genome assemblies of C. elegans, Arabidopsis, and Drosophila
are available at Supplemental_Data_S2.zip.
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