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Abstract
Purpose Concern is growing about long-term side effects of differentiated thyroid cancer treatment, most notably 
radioactive iodine (RAI) therapy. However, published studies on the subject have had heterogeneous cohorts and 
conflicting results. This review seeks to provide an updated evaluation of published evidence, and to elucidate the 
risk of second primary malignancies (SPMs), especially secondary hematologic malignancies (SHMs), attributable 
to RAI therapy.
Methods An extensive literature search was performed in Ovid MEDLINE, Ovid MEDLINE and In-Process & Other 
Non-Indexed Citations, Ovid MEDLINE Epub Ahead of Print, Cochrane Central Register of Controlled Trials (CEN-
TRAL) and PubMed. Studies regarding RAI-induced SPMs or a dose–response relationship between RAI therapy and 
SPMs were identified, 10 of which were eligible for the analysis. We evaluated risk of bias in each study and judged 
quality of evidence (QOE) across all studies using the Grading of Recommendations, Assessment, Development and 
Evaluations approach.
Results For the outcome “SPM”, the relative effect (relative risk, hazard ratio, or odds ratio) of RAI vs. no RAI 
ranged from 1.14 to 1.84 across studies, but most results were not statistically significant. For the outcome “SHM”, 
reported relative effects ranged from 1.30 to 2.50, with 2/3 of the studies presenting statistically significant results. In 
7/8 of the studies, increased risk for SPM was shown with increasing cumulative RAI activity. QOE was “very low” 
regarding SPM after RAI and regarding a dose–response relationship, and “low” for SHM after RAI.
Conclusion Based on low quality evidence, an excess risk for the development of SPM cannot be excluded but is expected 
to be small.

Keywords Differentiated thyroid carcinoma · Radioiodine therapy · Second primary malignancy · Hematologic 
malignancy · Dose–response relationship · Effect of dose on second primary malignancy risk
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Introduction

Thyroid cancer, estimated to be the sixth most common 
carcinoma in the USA in 2021 in women, is a malig-
nancy with increasing incidence in the last decades [1]. 
This trend has been driven by an increased incidence of 
differentiated thyroid cancer (DTC), most notably small 
papillary thyroid carcinoma [2–5]. As these histologi-
cal types of thyroid cancer have a generally favorable 
prognosis with 10-year survival above 90%, concern is 
growing about late adverse effects of DTC treatment that 
might impair survivors’ quality-of-life, or even them-
selves prove life-threatening [6, 7].

After surgery, radioactive iodine (RAI) for remnant 
ablation or adjuvant therapy is recommended for high-
risk DTC and, notwithstanding debate among experts 
[8, 9], is also recommended for substantial proportions 
of intermediate-risk and low-risk DTC cases, depend-
ing on national guidelines [10–12]. Side effects of RAI 
treatment may include nausea and vomiting, radiation 
thyroiditis, and in rare cases, sialadenitis and xerostomia, 
bone marrow suppression, gonadal dysfunction, second 
primary malignancies (SPMs), and in the presence of 
widespread lung disease, pulmonary fibrosis [13, 14]. 
As long-term adverse effects are a substantial component 
of patient-relevant outcomes, any risk–benefit ratio has 
to incorporate the potential for SPM occurrence. The 
relationship of RAI and SPM, if any, is the subject of 
ongoing discussion, and existing evidence is conflict-
ing. While some authors found an increased risk of SPM 
related to RAI therapy [15–18], others could not repro-
duce these findings, or even observed a lower risk of 
SPM in the exposed group compared with patients not 
undergoing adjuvant  [131I]NaI therapy [19–22]. Prior 
reviews and meta-analyses showed enormous heteroge-
neity between studies [23, 24]. We sought to perform an 
updated critical review of available data concerning the 
risk of SPM in patients with DTC undergoing post-oper-
ative RAI therapy, compared to the risk in their counter-
parts undergoing surgery alone. As part of this review, 
we sought to elucidate the quality of the published evi-
dence. Outcomes of interest were: (1) occurrence of 
any SPM or (2) any secondary hematologic malignancy 
(SHM), and (3) evidence of a dose–response relationship 
between the cumulative administered activity of RAI and 
the risk of SPM. Throughout this paper, we use the term 
“dose–response relationship” recognizing that it may 
be more accurate to refer to an “association” between 
administered 131I activity and occurrence of SPM, than 
to a “relationship”, since the latter term may imply a 
deterministic rather than a stochastic effect.

Methods

We prepared this paper in accordance with the PRISMA 
2020 statement for reporting systematic reviews. [25] We 
conducted an electronic literature search for studies examin-
ing the risk of SPM in thyroid cancer survivors treated with 
RAI therapy compared to survivors treated with surgery 
alone using the following databases: Ovid MEDLINE, Ovid 
MEDLINE and In-Process & Other Non-Indexed Citations, 
Ovid MEDLINE Epub Ahead of Print, Cochrane Central 
Register of Controlled Trials (CENTRAL) and PubMed. We 
performed an initial search on May  3rd, 2020 and updated 
the results on Dec  10th, 2020. The queries were “thyroid 
cancer” combined with “second primary cancer” and their 
synonyms (Online Resource 1). One author (M.R.) reviewed 
all citations (N = 5269) for relevance and abstracts were ana-
lyzed whenever suitable. Finally, 69 full-text articles were 
retrieved and assessed by two authors (M.R., M.L.) inde-
pendently. The following exclusion criteria were applied: 
(1) reviews or meta-analyses, (2) absence of adequate con-
trol group, (3) < 12-month latency between DTC diagnosis 
or treatment and SPM occurrence, (4) < 100 participants, 
(5) no outcome of interest assessed, (6) overlapping cohorts, 
and (7) language other than English (Fig. 1).

A control group was considered appropriate if it com-
prised patients treated without RAI. Whenever cohorts 
overlapped between studies, we included the article with 
the most up-to-date or most extensive data. Insufficient 
latency between DTC and SPM was an exclusion criterion 
because studies suggest that radiation-induced malignan-
cies take several years or even decades to develop [26–28]. 
It is noteworthy that solid cancers are expected to occur 
after 5 years or more, while for SHMs, a peak of excess 
cases within the first 5 years after radiation exposure was 
demonstrated [26, 29]. The paper of Rubino et al. [16] was 
not excluded despite featuring a meta-analysis, because the 
article also reported updated data regarding three included 
cohorts, therefore providing a larger, newer dataset than in 
corresponding original reports [30–32].

Three authors (M.R., G.A., M.L.) independently 
assessed the risk of bias (ROB) in each study with the 
Risk of Bias in Non-randomized Studies – of Interventions 
(ROBINS-I) tool and discussed results until achieving con-
sensus. In the same manner, these authors estimated the 
quality of evidence (QOE) regarding each outcome using 
the Grading of Recommendations, Assessment, Develop-
ment and Evaluations (GRADE) approach [33, 34]. Out-
comes of interest were (1) occurrence of SPM, (2) occur-
rence of SHM, and (3) dose–response relationship.

As its name implies, the ROBINS-I tool is recom-
mended by the Cochrane Collaboration in order to assess 
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ROB in non-randomized studies of interventions [33]. 
Evaluation using ROBINS-I starts by defining a target 
trial, which is a desirable hypothetical randomized trial 
unrestricted by ethical limitations or other factors. Any 
potential ROB is assumed to originate from the difference 
between the target trial and the analyzed study in seven 
domains: bias (1) due to confounding, (2) in selection of 
participants into the study, (3) in classification of interven-
tions, (4) due to deviations from intended interventions, 
(5) due to missing data, (6) in measurement of outcomes, 
and (7) in selection of reported results. Each domain can 
be classified as having either: a low ROB (the study was 
comparable to a randomized trial regarding the domain), a 
moderate ROB (the study was sound for a non-randomized 
study regarding this domain, but cannot be considered 
comparable to a well-performed randomized trial), a seri-
ous ROB (the study has some significant problems in this 
domain), a critical ROB (the study is too problematic in 
this domain to provide any useful evidence on the effects 
of intervention) or no information to judge ROB for this 
domain [33]. An overall ROB classification is obtained 
by summing the weighted results of the domain classifi-
cations. However, the ROBINS-I tool mandates that the 

overall ROB classification cannot be better than that of the 
worst domain. In contrast, several domain classifications 
can sum up to a worse overall judgment. For instance, 
a serious ROB in two or more domains can lead to the 
judgment of a critical overall ROB. Where different data 
were available for a cohort, we analyzed the data that we 
expected to have the lowest ROB (Online Resource 2).

The GRADE approach [34] facilitates the process of 
rating the quality of the best available evidence, and there-
fore comprises information from all studies included in a 
critical or systematic review or meta-analysis. The QOE 
is rated as high, moderate, low, or very low. A priori, 
the QOE provided by randomized trials is assumed to be 
high, whereas the QOE provided by observational stud-
ies is assumed to be low. Proceeding from these assump-
tions, overall QOE is determined by factors that cause an 
increase or decrease. Factors increasing the QOE are (1) 
a large magnitude of effect (i.e., relative risk [RR] > 2.0 
or < 0.5), (2) all plausible confounding would reduce the 
demonstrated effect or increase the effect, if no effect 
was observed, and (3) a dose–response gradient. Factors 
reducing the QOE are (1) limitations in study design or 
execution (ROB – assessed by the ROBINS-I tool), (2) 

Fig. 1  Research process and 
inclusion of studies. Regarding 
the exclusion criteria, every 
paper was counted only once, 
since the exclusion criteria were 
applied stepwise. Abbreviations: 
RAI, radioactive iodine; SPM, 
second primary malignancy
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inconsistency of results, (3) indirectness of evidence, (4) 
imprecision, and (5) publication bias.

Our primary endpoint was relative effect, defined as 
any of RR, hazard ratio (HR), or odds ratio (OR), depend-
ing on the particular study’s endpoints. The extracted data 
were calculated and analyzed with different methods. Nev-
ertheless, RRs and HRs can be interpreted as being similar 
[35]. Additionally, ORs can be interpreted in the same 
way as RRs, when the incidence of the observed outcomes 
(e.g., SPM, SHM) is rather small. A crude incidence of 
5–20% is considered sufficiently low to interpret an OR 
as approximating an RR [36, 37]. The crude incidence 
rates of SPM in all included studies ranged from 1.1 to 
12.0% [22, 38]. The crude incidence rates of the included 
studies using OR ranged from 1.1 to 2.5% [20, 38]. There-
fore, we assumed that these ORs could be interpreted as 
RRs. A p-value < 0.05 was considered to be statistically 
significant.

Where possible, we used forest-plots to visualize the 
relative effect results of each study. Nonetheless, data from 
some included studies could not be presented in this man-
ner, because the data were not comparable with the rela-
tive effects of the other studies. That was the case whenever 
the papers provided only data for an indirect comparison of 
irradiated versus non-irradiated patients, or whenever data 
were provided as relative effect per administered RAI activ-
ity [18, 21, 22, 39]. Excluding these studies would establish 
an unacceptable loss of information and might cause bias. 
We therefore decided to include the data using “vote count-
ing”, a method recommended by the Cochrane Collaboration 
for summarizing data in systematic reviews, whenever only 
the direction of effect is presented and no further effect esti-
mate is calculable [40]. This method summarizes the results 
of the studies by counting how many results show harm and 
how many show benefits from the intervention based on the 
direction of effect. That is, in this case, how many studies 
show increased or decreased risk after RAI administration. 
Confidence intervals (CIs) or p-values cannot be calculated 
when using vote counting. Therefore, it is crucial to empha-
size that this method has serious limitations, because it does 
not consider the magnitude of the effect or the statistical 
precision of the effect estimate.

Results

Ten articles were included in our analysis. The number of 
participants per study ranged from 895 to 148,215, the mean 
or median length of follow-up, from 5.9 to 16.2 years, and 
the mean or median age at DTC diagnosis, from 39.8 to 
49.0 years. Overall, patient ages at diagnosis ranged from 
2 to 100 years.

Summary of individual studies

Rubino et al. [16] compiled data of 6841 participants from 
10 hospitals in three countries and assessed the occurrence 
of SPM, of SHM, and of a dose–response relationship. They 
observed an elevated RR for SPM (1.2 [95% CI: 1.0–1.4]) 
and SHM (RR: 2.5 [95% CI: 1.0–7.4]) after RAI treatment, 
but no statistical significance was found. The RR increased 
with a cumulative administered 131I activity over 7.4 GBq, 
but again, no statistical significance was found. The ROB for 
all three outcomes of interest was judged to be serious due 
to missing data: it is noteworthy that approximately 20% of 
participants were lost to follow-up.

Khang et al. [20] included 2468 patients from one Korean 
hospital and investigated the occurrence of SPM and of a 
dose–response relationship. The authors found no significant 
effect of RAI treatment overall on SPM occurrence (OR: 
1.14 [95% CI: 0.67–1.92]), but a significantly elevated OR 
with cumulative activities of 37 GBq 131I or more. Most 
patients received < 22.3 GBq cumulatively, and only a small 
group (N = 69) were treated with ≥ 37 GBq. ROBs for both 
outcomes were judged to be critical, as no information was 
reported about adjustment for important confounders like 
personal history of cancer or co-interventions, most notably, 
external radiotherapy. Furthermore, adjustment for gender 
and age at diagnosis remained unclear.

Hirsch et al. [19] examined the occurrence of SPM and 
of a dose–response relationship in 1792 patients from one 
Israeli institution and found no significantly increased risk 
for SPM after RAI treatment (HR: 1.27 [95% CI: 0.88–1.82]) 
and no sign of a dose–response relationship. The authors 
cross-matched their data with data from the Israel National 
Cancer Registry (INCR) to detect as many SPMs as possible. 
The ROB for both outcomes was rated as critical because 
antecedent malignancies and other cancer treatments, such 
as external radiotherapy, were not controlled for. Occurrence 
of SHM may have been underestimated because blood can-
cers are not reported to the INCR.

Silva-Vieira et al. [15] conducted a single-center study 
including 2031 participants from Portugal and detected a 
significantly elevated risk for SPM after RAI treatment (RR: 
1.84 [95% CI: 1.02–3.31]) and a dose–response relation-
ship, with significantly increased HRs from a cumulative 131I 
activity of 7.4 GBq onwards. The ROB for both outcomes 
was judged as moderate because we identified only minor 
sources of ROB.

Brown et al. [18] extracted data of 31,278 participants 
from the U.S. Surveillance, Epidemiology and End Results 
(SEER) database. From this study, we selected data of 9661 
patients who had a minimum 3-year interval between RAI 
administration and SPM occurrence, contrary to the mini-
mum 2-month latency time of the larger cohort. In our analy-
sis, only cases between 1988 and 2002 were included, as 
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before 1988, RAI exposure was not encoded as “radioisotope 
therapy” but as “other radiation”. Brown et al. presented 
standardized incidence ratios (SIRs) with the general popu-
lation as the control cohort. The results showed an elevated 
SIR for participants treated with RAI (SIR: 1.23 [95% CI: 
1.04–1.45]) but found no effect in participants not treated 
with RAI (SIR: 1.04 [95% CI: 0.9–1.2]). We included these 
data in our analysis using vote counting, because no direct 
comparison between these two groups was feasible. We 
judged the ROB in this study to be serious, because there 
was no information about controlling for external radiother-
apy as a co-intervention.

Lang et al. [39] collected data from 895 patients from 
one institution in Hong Kong and calculated SIRs with 
the general population as controls. This analysis revealed 
an increased risk for SPM after RAI (SIR: 1.51 [95% CI: 
1.14–1.96]), but not in the patients without exposure (SIR: 
0.84 [95% CI: 0.36–1.66]). We also included these data 
using vote counting for the same reasons as enumerated 
for the Brown et al. study [18]. Furthermore, no significant 
dose–response relationship could be demonstrated. The 
ROB for both outcomes was rated as moderate.

Hakala et al. [22] analyzed data from 910 participants 
from two Finnish hospitals and controls matched for gender, 
age, and place of residence. The authors found no increased 
risk for SPM in irradiated (RR: 1.04 [95% CI: 0.83–1.32]) 
or non-irradiated patients (RR: 1.49 [95% CI: 0.96–2.30]). 
We included these data using vote counting for the above-
mentioned reasons. Again, no evidence of a significant 
dose–response relationship was found. The ROB for both 
outcomes was judged as critical because personal history of 
cancer was not controlled for, and because approximately 
30% of participants were lost to follow-up.

Teng et al. [21] extracted data of 20,235 participants from 
the Taiwanese National Health Insurance database and ana-
lyzed the occurrence of SPM and SHM and a dose–response 
relationship. All hazard ratios were calculated per 1.1 GBq. 
The authors found no significantly increased risk for SPM 
after RAI (HR: 1.01 [95% CI: 1.00–1.02]) but reported an 

elevated risk for leukemia after RAI (HR: 1.03 [95% CI: 
1.02–1.04]). Furthermore, the data showed a dose–response 
relationship with increasing risk for SPM in subgroups with 
higher cumulative RAI activities. The ROB for all three out-
comes was judged to be serious, most notably because all 
histological types of thyroid carcinoma were included.

Fallahi et al. [38] investigated a dose–response relation-
ship in 973 patients from one Iranian institution. The results 
showed such a relationship, with a significantly elevated OR 
from a 40 GBq cumulative 131I activity onwards. The ROB 
was judged as serious because there was no adjustment for 
important confounders, most notably gender.

Molenaar et  al. [41] extracted data from the SEER 
database and included 148,215 participants to analyze the 
occurrence of SHM after RAI treatment. Compared to the 
cohort presented by Brown et al. [18], this study is more 
up-to-date, but only SHMs after RAI were addressed. The 
results showed an increased risk for SHM (SIR: 1.30 [95% 
CI: 1.12–1.51]) after RAI treatment compared to surgery 
alone. The ROB was rated as moderate, as any source of 
ROB was minor.

Further detailed information is presented in Online 
Resource 3. Relative effects for occurrence of SPM and 
SHM are presented in Figs. 2 and 3

Quality of evidence

The ROB data were used to apply the GRADE approach 
for evaluating QOE (Table 1, full information in Online 
Resource 4). For the risk of SPM, we acknowledged the 
ROB and the imprecision to be severe enough to downrate 
the QOE for both factors. We also found conclusive evidence 
indicating a dose–response relationship between RAI admin-
istration and SPM occurrence to uprate the evidence one 
level (Fig. 4). As the evidence from observational studies is 
preliminarily rated as low, the overall QOE for the outcome 
of SPM was rated as very low.

For the risk of SHM, we downrated the QOE by one level 
for imprecision, but then one level back up, as we found 

Fig. 2  Relative effects for 
occurrence of SPM after RAI 
treatment vs. no RAI treatment 
in patients with DTC. Abbrevia-
tions: CI, confidence interval; 
DTC, differentiated thyroid can-
cer; HR, hazard ratio; OR, odds 
ratio; RAI, radioactive iodine; 
RR, relative risk; SPM, second 
primary malignancy
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Fig. 3  Relative effects for 
occurrence of SHM after RAI 
treatment vs. no RAI treatment 
in patients with DTC. Abbrevia-
tions: CI, confidence interval; 
DTC, differentiated thyroid 
cancer; RAI, radioactive iodine; 
RR, relative risk; SHM, second-
ary hematological malignancy

Table 1  Summary of findings table presenting the results of the 
GRADE synthesis and rating process. Table created with the GRA-
DEpro Guideline Development Tool: GRADEpro GDT: GRADEpro 

Guideline Development Tool [Software]. McMaster University, 2020 
(developed by Evidence Prime, Inc.). Available from  gradepro.org. 
Table modified. Full information presented in Online Resource 4

Certainty assessment Certainty

No of studies Study design Risk of bias Inconsistency Indirectness Imprecision Other considerations

Second primary malignancies
 8 Observational studies Serious Not serious Not serious Serious Dose–response gradient ⨁◯◯◯

VERY LOW
Secondary hematologic malignancies
 3 Observational studies Not serious Not serious Not serious Serious Dose–response gradient ⨁⨁◯◯

LOW
Dose response gradient
 8 Observational studies Serious Not serious Not serious Serious Dose–response gradient ⨁◯◯◯

VERY LOW

Fig. 4  Relative effects (RR, HR) for occurrence of SPM after RAI 
treatment in patients with DTC according to cumulative RAI activ-
ity. Data from Fallahi et al. [38] and Khang et al. [20] are not shown, 
because there were only few participants in subgroups with high 
cumulative RAI activities, and we do not consider the given OR as 

comparable to the relative effects of the other studies. More com-
prehensive data are presented in Online Resource 3. Abbreviations: 
DTC, differentiated thyroid cancer; HR, hazard ratio; OR, odds ratio; 
RAI, radioactive iodine; RR, relative risk
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evidence indicating a dose–response relationship for SHM, 
as well [16, 21]. The overall QOE for the risk of SHM was 
judged as low.

For a dose–response relationship, we rated the ROB and 
the imprecision as substantial and downgraded one level 
for each factor. As the data indicated that a dose–response 
relationship was likely, we uprated the QOE one level. Over-
all, the QOE for a dose–response relationship between RAI 
treatment and SPM or SHM was judged as very low.

Discussion

To our knowledge, this is the most up-to-date published 
systematic review investigating the attributable risk for 
SPM and SHM associated with RAI, and the first review of 
this topic to analyze the ROB and QOE regarding relative 
effects. The evidence suggests an increased risk for SPM 
and SHM after RAI administration, with a high probability 
of a dose–response relationship; however, due to substantial 
ROB and low QOE in the included studies, further research 
is required to substantiate these findings.

Using the ROBINS-I tool revealed many limitations in 
study design or execution. In most cases, adjustment for age 
at DTC diagnosis and sex was documented, and a personal 
history of cancer was often an exclusion criterion. Nonethe-
less, data concerning these and other potential confound-
ers such as treatment of prior cancer or familial history of 
cancer were not always acquired or used to adjust the rela-
tive effect. For example, in the study of Fallahi et al., ORs 
lacked adjustment for gender, while in the study of Khang 
et al., factors for which the OR had been adjusted were not 
described [20, 38]. The omission of adjustments for treat-
ments of antecedent malignancies may have represented a 
material baseline confounder, as those interventions might 
have had a carcinogenic effect.

Two papers revealed that approximately 20% or 30% of 
the participants were lost to follow-up, whereas only 8% and 
12% of the participants had an SPM. This disparity led us to 
acknowledge a ROB due to missing data [16, 22].

The ROB due to selection of participants into a study 
was judged as moderate in every case, since only studies 
with a minimum latency of 1 year between DTC diagno-
sis and SPM occurrence were included in our analysis. 
The ROB due to measurement of outcomes was con-
sidered to be serious for the outcome “SHM” when the 
median or mean follow-up was < 3 years and for the out-
come “SPM” when the follow-up was < 5 years. The ROB 
was judged to be moderate for the outcome “SHM” when 
the median or mean follow-up was < 5 years, and for the 
outcome “SPM” when the follow-up was < 8 years. To 
grade the ROB in this way was considered plausible 
because the carcinogenic effect of radiation only unfolds 

over years or even decades [26–28]. Therefore, we did 
not expect to miss a considerable number of SPMs dur-
ing the first year of follow-up, while on the other hand, 
we were confident to minimize a screening bias in this 
way. Nevertheless, we may have overestimated the risk 
of SPM occurrence due to RAI therapy by using the 
conservative approach of a 12-month minimum latency 
period as an inclusion criterion. It is noteworthy that 
SHM seem to develop after a shorter latency period than 
do solid cancers [29]. External radiotherapy or chemo-
therapy for DTC were considered co-interventions, and 
resulted in a ROB due to deviation from intended inter-
vention, if adjustment was missing.

The extracted data showed an effect of RAI plus surgery 
relative to surgery alone of 1.14 to 1.84 for the occurrence 
of SPM. Seven of 8 studies presented a higher risk in the 
exposed group compared with the non-exposed participants, 
but only one study presented a direct comparison between 
these groups that had statistically significant results [15]. 
Rubino et al. calculated an excess of 1.14 solid cancers and 
0.08 leukemias per 10,000 person-years and GBq of admin-
istered 131I [16]. Overall, the absolute excess risk seems 
rather small, and this observation might, to some extent, 
explain why results are conflicting and this issue is still con-
sidered controversial.

Given the distinct thresholds or calculations of risk used 
by studies examining a dose–response relationship, we could 
not find a particular threshold of cumulative administered 
131I activity leading to a significantly elevated risk of SPM. 
However, 7 of 8 studies presented higher relative effects 
for patients with higher cumulative activity compared with 
those receiving lower 131I activities. These results strongly 
suggest a dose–response relationship.

Only one included study [16] specifically analyzed SPM 
in patients given RAI as children or young adults. Recent 
studies found a high prevalence of cancer predisposition 
syndromes in childhood cancer survivors developing SPM 
[42, 43]. Further research is needed to investigate the impact 
of genetic susceptibility on the one hand, and of radiation 
exposure or chemotherapy in relation to age on the other. As 
randomization was lacking in every study, we cannot exclude 
genetic susceptibility affecting our overall results as well.

The most recent meta-analysis published before our 
critical review presented unadjusted RR (0.98 [95% CI: 
0.76–1.27]; N = 10 studies) and adjusted RR (1.16 [95% 
CI: 0.97–1.39]; N = 6 studies) of a pooled random-effects 
analysis for the outcome of SPM [23]. Heterogeneity was 
statistically evaluated using the  I2 measure and was found 
to be relevant  (I2 = 85.99 for the unadjusted RR,  I2 = 56.26 
for the adjusted RR). These findings are in accordance with 
our results. Furthermore, the authors utilized a funnel-plot 
to reveal indications of a publication bias. We could not 
evaluate publication bias, as we did not analyze pooled data 
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of included studies. As a result, we may have overestimated 
QOE, since that form of bias is grounds for downgrading 
QOE when using the ROBINS-I tool.

Another review [13], published in 2015, included 6 
studies, of which 5 were included in our analysis, but 
we could not reproduce that review’s findings regarding 
ROB and QOE. Whereas Clement et al. judged the QOE 
for SPM after RAI and for a dose–response relationship 
as “moderate”, we rated the QOE as “very low” for both 
outcomes. These differences might, to some extent, be 
explained by the use of different ROB rating tools. Fur-
thermore, Clement et al. did not investigate the ROB 
regarding relative effect measures, but that regarding 
SPM incidence after RAI administration.

The main limitations concerning any kind of synthe-
sis of results originate from the lack of comparability 
between studies. Cohorts may present vast heterogeneity 
internally and comparatively based on exposure to life-
style factors (e.g., diet, overweight) or carcinogens (e.g., 
alcohol, tobacco), ethnicity, or different screening prac-
tices. These confounders were not routinely recorded in 
most studies. As the baseline incidence of cancers in gen-
eral and cancers of specific sites differ widely between 
countries and regions, those confounders also need to be 
considered to achieve better comparability between stud-
ies. This heterogeneity between cohorts is also reflected 
by a substantial variation of the crude incidence of SPM 
occurrence (1.1–12.0%) [22, 38] and can only, to some 
extent, be explained by different sample size and length 
of follow-up. Additionally, it is crucial to include appro-
priate control groups; 32 of 59 papers ineligible for our 
analysis were excluded due to their comparing only RAI-
treated patients, and not their counterparts receiving sur-
gery alone, with the general population.

ROBINS-I has limitations that must be considered 
when interpreting our results. First, the tool is not 
designed to present distinct results regarding the mag-
nitude or likelihood of particular potential biases. The 
magnitude of bias is reflected only in the overall ROB 
judgment. Raters must elaborate a judgment for each 
ROBINS-I domain, and then sum those ratings into an 
overall ROB judgment. For example, if the rater is rather 
confident that a serious bias exists in two or more ROB 
domains, the overall ROB judgment might be “criti-
cal”, while one would refrain from downrating the over-
all ROB in case of lesser certainty. Unfortunately, this 
aspect of the ROBINS-I assessment is less transparent.

In summary, most included studies suggest increased 
risk for SPM and SHM after RAI administration, and 
an association between increased cumulative adminis-
tered activities of RAI and the risk of SPM. Nonetheless, 
given the high ROB and low QOE of reports to date, 

further research is required to substantiate these findings. 
Our analysis revealed three problems that future studies 
should address: (1) ROB due to a variety of limitations, 
(2) imprecision of reported results, and (3) inappropriate 
control groups. To mitigate these shortcomings, research-
ers should perform adequate statistical adjustment, i.e., 
control more comprehensively for relevant factors. Addi-
tionally, investigators should ensure extensive follow-up 
duration, and reduce proportions of participants who are 
lost to follow-up. Moreover, future studies should include 
larger cohorts and appropriate control groups comprising 
patients with DTC without RAI exposure. Lastly, future 
studies should investigate which patients profit from RAI 
treatment and which 131I activities should be used. For 
example, mounting evidence suggests that patients with 
clonal hematopoiesis of indeterminate potential have, per 
se, a multiple times higher risk of secondary myeloid 
malignancy or leukemia [44, 45], which increases further 
after cytotoxic therapies [46]. Patient risk stratification 
based on histology and clinical factors may be augmented 
by “molecular theragnostics” [47]. Additionally, pre-
therapeutic dosimetry may be useful for 131I dose adjust-
ment [48, 49]. Both approaches facilitate individualized 
therapy and may reduce adverse effects, while simultane-
ously ensuring patient-relevant outcomes.

Meanwhile, in view of the low or very low QOE and 
the apparently small relative effect of RAI on SPM occur-
rence, we suggest that use of RAI, in which much stronger 
evidence has demonstrated to be effective treatment for 
DTC [50–52], not be restricted based on SPM or SHM 
risk.
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