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Abstract
Idiopathic inflammatory myopathies (IIMs), comprising polymyositis,
dermatomyositis, and inclusion-body myositis, are characterized by
inflammatory cell infiltrates in skeletal muscle tissue, muscle
weakness, and muscle fatigue. The cellular infiltrates often consist
of T lymphocytes and macrophages but also, in some cases,
B lymphocytes. Emerging data have led to improved phenotypic
characterization of the inflammatory cells, including their effector
molecules, in skeletal muscle, peripheral blood, and other organs
that are frequently involved, such as skin and lungs. In this review
we summarize the latest findings concerning the role of
T lymphocytes, B lymphocytes, dendritic cells, and other antigen-
presenting cells in the pathophysiology of IIMs.

Introduction
Idiopathic inflammatory myopathies (IIMs) are characterized
by mononuclear inflammatory cell infiltrates in skeletal muscle
tissue, by muscle weakness, and by muscle fatigue. They are
often subclassified into three major groups on the basis of
clinical and histopathological differences: polymyositis,
dermatomyositis, and inclusion-body myositis. The cellular
infiltrates in muscle tissue are mainly composed of T lympho-
cytes and macrophages but also, in some cases, B lympho-
cytes. This observation, together with frequently detected
autoantibodies particularly in polymyositis and dermato-
myositis, suggests that the inflammatory myopathies are
immune-mediated; they are believed to be triggered by
environmental factors in genetically susceptible individuals.
The varying clinical features and the different predominating
histopathological features such as localization and
phenotypes of inflammatory infiltrates, or rimmed vacuoles as
seen in inclusion-body myositis, suggest that there are
different pathophysiological mechanisms leading to myositis.
Despite these differences the inflammatory molecules
produced in muscle tissue are highly similar in chronic

inflammatory myopathies, suggesting that some molecular
pathways are shared between the subsets of inflammatory
myopathies.

In the inflammatory myopathies there are also signs of
microvascular involvement. The involvement of microvessels
was first reported in patients with dermatomyositis as
capillary loss and recognized by the presence of the
membrane attack complex (MAC) [1,2]. Later, activated
capillaries with increased expression of adhesion molecules
(intercellular cell-adhesion molecule-1 and/or vascular cell-
adhesion molecule-1) and IL-1α were also seen in patients
without skin rash, in polymyositis and inclusion-body myositis.
Damage or activation of blood vessels could indicate that the
microvessels are targets of the immune reaction in some
subsets of patients with IIM.

It has long been recognized that the inflammatory cell
infiltrates and muscle fiber damage are patchy and are
sometimes not detected in muscle biopsies. This is a clinical
problem in the diagnostic procedure. Moreover, the lack of
correlation between the degree of inflammatory infiltrates and
muscle weakness has led to a search for mechanisms other
than immune-mediated muscle fiber damage that could cause
muscle weakness. One such non-immune mechanism,
endoplasmic reticulum stress, has been proposed, on the
basis of observations both from human studies and from an
animal model for myositis, the major histocompatibility complex
(MHC) class I transgene [3]. These non-immune mechanisms
have been addressed in a recent review paper [4].

New data are constantly emerging, leading to improved
characterization of the phenotypes of the inflammatory cells
and their effector molecules that are expressed in IIMs, not
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only in the major target organ, the skeletal muscle, but also in
peripheral blood and in other organs that are frequently
involved, such as skin and lungs. This increasing knowledge
has a great potential to improve our understanding of the role
of these inflammatory cells in disease mechanisms in IIMs. In
this review we summarize the latest findings concerning the
role of T lymphocytes, B lymphocytes, dendritic cells, and
other antigen-presenting cells (APCs) in the pathophysiology
of IIMs.

T lymphocytes
T lymphocyte function
T lymphocytes recognize antigens on APCs through the
T-cell antigen receptor in a MHC-restricted fashion. Peptides
from intracellular pathogens proliferating in the cytoplasm are
carried to the cell surface by MHC class I molecules and
presented to cytotoxic (CD8+) T lymphocytes, which once
fully activated have the capacity to lyse infected target cells.
In contrast, peptide antigens from pathogens in intracellular
vesicles, and those derived from ingested extracellular
bacteria and toxins, are carried to the cell surface by MHC
class II molecules and presented to CD4+ T helper cells.
These can then differentiate into effector cells, such as TH1,
TH2, and TH17 cells [5]. Pathogens that accumulate inside
macrophages and dendritic cells (DCs) tend to stimulate the
differentiation of TH1 cells and the production of IgG
antibodies by B lymphocytes. Conversely, extracellular
antigens tend to stimulate the production of TH2, which can
subsequently stimulate the production of IgA and IgE. TH17 is
a recently described effector T lineage that has been
suggested to contribute to chronic inflammatory settings.
CD8+ T lymphocytes do not have as distinct sublineages and
are cytotoxic cells working in a perforin/granzyme-dependent
manner; interestingly, CD4+ lymphocytes can sometimes also
display cytotoxic effector functions.

T lymphocytes in idiopathic inflammatory myopathies
Although prominent T lymphocyte infiltrates are not always
found in muscle biopsies, two types of cellular infiltrate have
been recognized in IIMs, one being endomysial inflammatory
infiltrates consisting mainly of CD8+ T lymphocytes and
macrophages invading non-necrotic muscle fibers expressing
MHC class I antigens [6-8]. These are typically, but not
exclusively, found in inclusion-body myositis and polymyositis.
The other type of mononuclear cell infiltration is
perivascular/perimysial and has become a characteristic of
dermatomyositis; it consists predominantly of CD4+ T
lymphocytes, occasionally together with B lymphocytes and
macrophages [6,9]. The deposition of complement
components is also mainly localized to the perivascular
regions of muscular or cutaneous lesions. However, the
‘classical’ T lymphocyte picture in IIM is, as the authors say,
much more complex and an oversimplification of reality [6,9].
Independent of T lymphocyte localization, their presence
suggests an involvement of the adaptive immune system in
these disorders (Figures 1 and 2).

Cytotoxic CD8+ T lymphocytes can release three different
cytotoxic proteins: perforin, granzyme, and granulysin. It is
known from earlier studies that in polymyositis and inclusion-
body myositis, CD8+ T lymphocytes and macrophages
surrounding the non-necrotic muscle fibers expressing MHC
class I antigen do express perforin. Perforin may cause a leak
in the sarcolemmal surface through which granzymes could
invade the sarcoplasm to initiate muscle fiber necrosis [10-
12]. Recently, granulysin has also been demonstrated in both
polymyositis and inclusion-body myositis [13]. The presence
of granulysin-expressing CD8+ T lymphocytes tended to
correlate with steroid resistance in polymyositis [13].
Interestingly, perforin/granzyme-expressing CD4+ T lympho-
cytes have also been demonstrated [10,14]. A schematic
summary of the potential role of different immune cells in the
context of chronic muscle inflammation is presented in
Figure 3.

The T lymphocyte repertoire in blood seems to differ between
polymyositis and dermatomyositis [15]. In peripheral blood of
active dermatomyositis, a decreased percentage of CD3+

and CD8+ T lymphocytes and decreased IFN-γ expression by
CD4+ and CD8+ T lymphocytes but an increase in B lympho-
cytes and IL-4-producing CD4+ T lymphocyte frequencies
were found. These features were not seen in the inactive form
of the disease. In patients with polymyositis with relapsing
disease, markedly perturbed T cell repertoires were seen. The
expanded T lymphocytes clonally displayed a memory
phenotype, expressed intracellular perforin, and responded to
stimulation by IL-2, which indicates that they have the
potential for reactivation under appropriate conditions [16].
This suggests that a continuous autoantigen-driven process
might be prominent in this disease and that in patients with
polymyositis a relapse would more probably be associated
with the reactivation of clones, which are present at disease
onset, rather than with the emergence of new ones. The
concept that clonally expanded muscle-infiltrating CD8+

T lymphocytes could recirculate into the blood is true not only
for patients with polymyositis but also for those with
inclusion-body myositis [17]. Another possibility for the
recirculation of T lymphocytes seen in polymyositis and
inclusion-body myositis might be that the same antigen, for
example a virus, could independently induce the same
expansion in the blood and in the muscle tissue if the antigen
is present at both sites.

In patients with IIMs, T lymphocytes are found not only in
inflammatory muscle tissues or blood but also in lungs in
patients with interstitial lung disease (ILD), which is a
frequent manifestation in patients with polymyositis and
dermatomyositis; this was found in up to 60 to 70% of such
patients when sensitive techniques such as high-resolution
computed tomography and pulmonary function tests were
employed [18]. ILD seems to be less common in patients
with inclusion-body myositis, although no reports are available
in which newly diagnosed patients have been investigated for
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lung involvement with these techniques. In the lungs CD8+ T
lymphocytes were distributed both in and around lymphoid
follicles and in the walls of normal-appearing alveoli, whereas
CD4+ T lymphocytes and B lymphocytes were seen in
association with lymphoid follicles. CD4+ T lymphocytes have
also been demonstrated in reconstructed thick alveolar walls
[19]. The CD4+/CD8+ ratio in bronchoalveolar lavage fluid
was low [20,21]; most of the CD8+ T lymphocytes were of
HLA-DR+ [21] and CD25+ [22] types, suggesting that they
were activated. In a small study [23], a low CD4+/CD8+ ratio
was seen in bronchoalveolar lavage fluids in all patients with
radiographic signs of ILD early in the disease course of
patients with polymyositis or dermatomyositis. The function of
these T lymphocytes is not known. It can only be speculated
that they might interact with antigens (from viruses or other
sources) expressed in various pulmonary cells (Figure 3). It is
interesting in this context that there is a reported tissue
variation of histidyl-tRNA synthetases with a higher
expression in normal lungs than in other organs, and that
patients with autoantibodies against histidyl-tRNA synthetase
– anti-Jo-1 antibodies – have ILD in close to 100% of cases.

Furthermore, a restricted accumulation of T lymphocytes
expressing selected T-cell antigen receptor V-gene segments
was recorded in skeletal muscle and lung but not in peripheral
blood, which suggests a common target antigen in these
organs [23]. Moreover, a role for histidyl-tRNA synthetase in
the disease mechanism is supported by the observation that
this antigen can serve as a chemokine for DCs and T
lymphocytes when cleaved by certain proteases [24].

Even though the histopathological picture in polymyositis and
dermatomyositis is often different, a similar clonal expansion
of T lymphocytes is seen in bronchoalveolar lavage fluid [25].
In addition, T lymphocytes have been extracted from muscle
tissue of these patients. The established T cell lines showed a
variable proportion of CD4+ and CD8+ T lymphocytes, which
did not correlate with diagnosis [26]. Examples of CD4+ and
CD8+ T lymphocyte localization in polymyositis, dermato-
myositis, and inclusion-body myositis are shown in Figures 1
and 2. As demonstrated here, a similar pattern with a mixture
of cell populations and both endomysial and perimysial
localization may be found despite the diagnosis of myositis.

Available online http://arthritis-research.com/content/9/2/208

Figure 1

Endomysial localization of CD4+ and CD8+ T lymphocytes. Immunohistochemical staining of samples from patients with polymyositis (PM) (a–c),
dermatomyositis (DM) (d–f), and inclusion-body myositis (IBM) (g–i). (a) Hematoxylin and eosin (H&E) staining to localize inflammatory cell
infiltrates in a patient with polymyositis. (b) CD4+ T lymphocytes stained with a monoclonal SK3 mouse IgG1 antibody (Becton Dickinson, San
Jose, CA, USA) in the same area as in (a) but further down in the biopsy. (c) CD8+ T lymphocytes stained with a monoclonal SK1 mouse IgG1
antibody (Becton Dickinson) in a consecutive section to that in (b). (d) H&E staining to localize inflammatory cell infiltrates in a patient with
dermatomyositis. (e) CD4+ T lymphocytes stained with a monoclonal SK3 mouse IgG1 antibody in the same area as in (d) but further down in the
biopsy. (f) CD8+ T lymphocytes stained with a monoclonal SK1 mouse IgG1 antibody in a consecutive section to that in (e). (g) H&E staining to
localize inflammatory cell infiltrates in a patient with inclusion-body myositis. (h) CD4+ T lymphocytes stained with a monoclonal SK3 mouse IgG1
antibody in the same area as in (g) but further down in the biopsy. (i) CD8+ T lymphocytes stained with a monoclonal SK1 mouse IgG1 antibody in
a consecutive section to that in (h). Original magnifications: ×250 (a–f) and ×312.5 (g–i).



When evaluating the presence of CD8+ T lymphocytes in
biopsies it is important to consider which reagents have been
used. Although the CD8 molecule is the classic lineage
marker for cytotoxic T lymphocytes, this is only true if the CD8
molecule consists of an α and a β subunit (CD8αβ) and not if
it is a CD8αα homodimer. The homodimer can sometimes be
found on activated CD4+ T lymphocytes [27], especially in
the gastrointestinal tract. Thus if the reagent used to detect
CD8+ T lymphocytes is an antibody against the α subunit it
could detect both classical CD8+ T lymphocytes but also
activated CD4+ T lymphocytes. This information was not
always available when immunophenotyping of lymphocytes in
muscle tissue was presented. However, if the analysis
includes the detection of a cytotoxic agent this caveat is
partly avoided. A summary of selected T lymphocyte studies
in IIMs is presented in Table 1.

A role of T lymphocytes in polymyositis and dermatomyositis
is further supported by the clinical improvement after
treatment with immunosuppressive drugs that are known to
affect T lymphocytes. In contrast, patients with inclusion-body
myositis rarely display improved muscle function after

treatment with immunosuppressive drugs, which is why the
role of T lymphocytes in disease mechanisms is more
questionable in this form of myositis. Therapeutic agents that
do not solely target T lymphocytes, but in all mentioned
examples affect T lymphocyte populations, have been shown
to be effective in polymyositis and dermatomyositis; these are
methotrexate, cyclosporin A, tacrolimus, and anti-thymocyte
globulin. Methotrexate is one of the most commonly used
second-line immunosuppressive drugs given to patients with
IIM. It is known to be well tolerated and effective in
polymyositis and dermatomyositis, although no placebo-
controlled trials have yet been performed [28]. There are also
case series showing beneficial effects of tacrolimus and anti-
thymocyte globulin [29,30]. In addition, topical cutaneous
tacrolimus therapy has also effectively been applied to skin
lesions in patients with dermatomyositis [31]. Although the
clinical improvement with these drugs could indicate that T
lymphocytes have a role in polymyositis and dermatomyositis,
there are no data available to show that these therapies have
effects on inflammatory cell infiltrates or molecular expression
in muscle tissue that correlate with the clinical effects, which
would strengthen such a hypothesis.
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Figure 2

Perivascular localization of CD4+ and CD8+ T lymphocytes. Immunohistochemical staining of samples from patients with polymyositis (PM) (a–c),
dermatomyositis (DM) (d–f), and inclusion-body myositis (IBM) (g–i). (a) Hematoxylin and eosin (H&E) staining to localize inflammatory cell
infiltrates in a patient with polymyositis. (b) CD4+ T lymphocytes stained with a monoclonal SK3 mouse IgG1 antibody in the same area as in (a)
but further down in the biopsy. (c) CD8+ T lymphocytes stained with a monoclonal SK1 mouse IgG1 antibody in a consecutive section to that in
(b). (d) H&E staining to localize inflammatory cell infiltrates in a patient with dermatomyositis. (e) CD4+ T lymphocytes stained with a monoclonal
SK3 mouse IgG1 antibody in the same area as in (d) but further down in the biopsy. (f) CD8+ T lymphocytes stained with a monoclonal SK1 mouse
IgG1 antibody in a consecutive section to that in (e). (g) H&E staining to localize inflammatory cell infiltrates in a patient with inclusion-body
myositis. (h) CD4+ T lymphocytes stained with a monoclonal SK3 mouse IgG1 antibody in the same area as in (g) but further down in the biopsy.
(i) CD8+ T lymphocytes stained with a monoclonal SK1 mouse IgG1 antibody in a consecutive section to that in (h). Original magnifications:
×312.5 (a–c, g–i) and ×250 (d–f).



B lymphocytes
B lymphocyte function
B lymphocytes have a major role in the immunological patho-
genesis of autoimmune diseases. Not only can their
differentiated progeny, plasma cells [32,33], synthesize and
secret large quantities of immunoglobulins, they could also
regulate other cell types, secrete cytokines, and present
antigens. B lymphocyte activation requires both binding of an
antigen by surface immunoglobulin – the B-cell receptor –
and an interaction with antigen-specific T lymphocytes
(CD4+). CD4+ T lymphocytes then can induce vigorous B
lymphocyte proliferation and direct the differentiation of the
clonally expanded progeny of naïve B lymphocytes into either
plasma cells or memory B lymphocytes. Both cytokines

released by CD4+ T lymphocytes and somatic hypermutation
of V-region genes can influence antibody isotype switching or
the antigen-binding properties of the antibody, respectively,
resulting in the production of antibodies of various isotypes
that can be distributed to various body compartments.

B lymphocytes in idiopathic inflammatory myopathies
In 1984 and 1990, Arahata and Engel showed that B lympho-
cytes were more frequent in perivascular sites than in endo-
mysial sites [6,9]. Furthermore, B lymphocytes were more
common in muscle tissue from patients with dermatomyositis
than from those with polymyositis or inclusion-body myositis.
This observation was further supported by another study in
which perivascular B lymphocytes were only found in patients
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Figure 3

Hypothetical involvement of T lymphocytes, B lymphocytes, and dendritic cells (DCs) in idiopathic inflammatory myopathies. (1) An unknown trigger
(for example viral infection or ultraviolet radiation) in the respiratory tract or through the skin leads to the cleavage of histidyl-tRNA synthetase by
granzyme B through antiviral CD8+ T lymphocytes in the lungs. (2) Immature DCs carry receptors on its surface that recognize common features of
many pathogens. When a DC takes up a pathogen in infected tissue it becomes activated and migrates to the lymph node. (3) Upon activation, the
DC matures into a highly effective antigen-presenting cell (APC) and undergoes changes that enable it to activate pathogen-specific lymphocytes
in the lymph node. T lymphocytes become activated and B lymphocytes, with active help from CD4+ T lymphocytes, proliferate and differentiate
into plasma cells. (4) Activated DCs, T lymphocytes, and B lymphocytes could release cytokines into the bloodstream. (5) The activated T
lymphocyte, on which the DC-MHC–antigen complex is bound, itself binds to specialized endothelial cells called high endothelial venules (HEV).
For this purpose it uses the VLA-4 (very late activation antigen-4) and LFA-1 (lymphocyte function associated antigen-1) molecules on its surface to
interact with adhesion molecules (vascular cell-adhesion molecule-1 (VCAM-1) and intercellular cell-adhesion molecule-1 (ICAM-1)) on HEVs,
where they can penetrate into peripheral lymphoid tissues. (6,7) Naïve T lymphocytes and B lymphocytes that have not yet encountered their
specific antigen circulate continuously from the blood into the peripheral lymphoid tissues. (8,9) Various cytokines from the bloodstream or
produced locally could affect the muscle tissue or cell in many different ways. However, it is not clear whether the muscle cell itself could produce
and release cytokines. (10-12) DCs, macrophages (Mφ), and B lymphocytes can interact with T lymphocytes in various ways. T lymphocytes could
possibly also bind to muscle cells through inducible co-stimulators (ICOS), CD40 ligand (CD40-L), CD28, and CTLA-4 (CD152) on T lymphocytes
to ICOS ligand (ICOS-L), CD40, and BB-1 antigen on the muscle cell. In that fashion, the muscle cell would function as an APC. (13) Plasma cells
(CD138+) can be found in the muscle tissue of certain subgroups of patients with idiopathic inflammatory myopathy, but whether these cells could
produce autoantibodies locally is not yet known. (14) T lymphocytes have been shown to bind in close contact with muscle cells and to release
perforin, granzyme A, and granulysin, which may cause necrosis of muscle tissue or cells.
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with dermatomyositis but not in patients with polymyositis or
inclusion-body myositis [8]. In contrast, a recent study by
Greenberg and colleagues [34] demonstrated the presence
of differentiated B lymphocytes in the form of CD138+ plasma
cells predominantly in the endomysium of muscle tissue of
patients with polymyositis and inclusion-body myositis (no
patients with dermatomyositis were included in this study). A
local antigen-driven response has been shown to be present in
inflammatory myopathies. Clonal expansion, class-switched
significant somatic mutation, and variation of local B
lymphocyte and plasma cell maturation could occur within the
skeletal muscle [35]. These characteristics are hallmarks of an
antigen-driven response, which would mean that T lympho-
cytes are not the only cell that could drive an intramuscular
antigen-specific autoimmunity in inflammatory myopathies.

In peripheral blood, activated B lymphocytes (RP105-
negative B cells) were distinctly increased in patients with
dermatomyositis in comparison with those with polymyositis
[36]. In another study, peripheral blood mononuclear cells
from patients with dermatomyositis, but not from those with
with polymyositis, produced significant amounts of
immunoglobulins in vitro [37].

Thus, earlier studies based on cellular expression in muscle
tissue and, to some extent, the investigations of peripheral
blood suggest that B lymphocytes are important in
dermatomyositis but may have a less important role in
polymyositis. However, more recent data using staining
markers to detect plasma cells indicated a role of B
lymphocytes in polymyositis and inclusion-body myositis as
well [34]. Autoantibodies are present in 60 to 70% of
patients with polymyositis or dermatomyositis, supporting a
role for B lymphocytes in these disease entities, but less
often in patients with inclusion-body myositis. Some
autoantibodies found in patients with myositis, such as anti-
Ro/SSA, anti-La/SSB, anti-Scl-70, and anti-U1 ribonucleo-
protein, are also found in other autoimmune diseases,
whereas others, especially anti-synthetase antibodies (for
example anti-histidyl-tRNA synthetase or anti-Jo-1), anti-Mi2,
and anti-signal-recognition particle are more specific for
myositis. The myositis-specific autoantibodies are often
associated with distinct clinical manifestations, such as the
anti-synthetase syndrome characterized by myositis, ILD,
arthritis, Raynaud’s phenomenon, and skin changes called
‘mechanic’s hands’. The most frequent myositis-specific
autoantibody is anti-Jo-1, which is more common in patients
with polymyositis but may also be present in patients with
dermatomyositis [38,39]. The newly discovered autoantibody
anti-p155 seems to be associated more often with
dermatomyositis and para-neoplastic dermatomyositis, and its
frequency is similarly high in children (29%) and adults (21%)
(with para-neoplasy the frequency is 75%) [40].

There are also reports on autoantibodies in patients with
inclusion-body myositis. In one of these, an increased

frequency of serum monoclonal antibodies reactive to a
muscle constituent was demonstrated [41].

The functional role of plasma cells in muscle in polymyositis and
inclusion-body myositis is not yet fully elucidated. B lymphocytes
and plasma cells could, beside antibody secretion or their role
as APCs, function as stimulatory cells for other immune cells. In
dermatomyositis, CD4+ T lymphocytes could release IL-17 and
IFN-γ after both polyclonal and oligoclonal activation to acquire
a plasma cell-like morphology that is associated with a high
secretory activity, similar to that of plasma cells secreting
immunoglobulins [42]. The different role of immune cells in the
context of muscle inflammation is presented in Figure 3.

More recent support for a role of B lymphocytes is the good
clinical effect seen with B cell depletion. This was first
reported in a pilot study that included patients with
corticosteroid-refractory dermatomyositis who were treated
with rituximab (Rituxan®), an anti-CD20 monoclonal antibody
that is approved for treatment of some rheumatic diseases
[43]. Later short-term beneficial effects with rituximab were
also demonstrated in a case report of two patients with
refractory polymyositis and one with dermatomyositis [44].

So far, only few studies have investigated and further
addressed the roles of B lymphocytes and plasma cells in
myositis. It is, however, certain that further research focusing
on the functional role of B lymphocytes and specific
autoantibodies in IIMs is warranted; this could provide pivotal
insights in the disease mechanisms for a possible future
specific targeted treatment strategy. A comparison of
expression in B lymphocytes in IIMs is presented in Table 1.

Dendritic cells and other antigen-presenting cells
Dendritic cell function
Tissue DCs that have internalized particulate and soluble
antigens at the site of inflammation are induced to mature,
and an innate immune response is triggered. These cells are
activated through receptors that signal the presence of
pathogen components or cytokines. DCs are also respon-
sible for T lymphocyte activation by migrating to the lymph
node and providing both antigen presentation and co-
stimulation. After maturation, DCs lose their ability to capture
new antigens and thus there is a continuous flow of DCs from
tissue to draining secondary lymphoid organs after challenge
with antigen. In their mature activated form, DCs are the most
potent APCs for naïve T lymphocytes. Both macrophages
and B lymphocytes also have the capacity to function as
APCs, but the ability of DCs to take up, process, and present
a variety of pathogens and antigens makes them the most
important activators of naïve T lymphocytes.

Dendritic cells and other antigen-presenting cells in
idiopathic inflammatory myopathies
The presence of T lymphocytes in all subsets of IIMs
indicates a permanent immune response that requires the
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presence of APCs. DCs are central to the development of
innate and adaptive immune responses. Two main classes of
DC have been classified, myeloid and plasmacytoid DCs.
Myeloid DCs are potent APCs and have a function in the
adaptive immune system. They are capable of capturing,
processing, and presenting antigens and thereby stimulating
lymphocytes to a specific immune response. In contrast,
plasmacytoid DCs are important in the innate immune system
and can produce large amounts of IFN-α and IFN-β, both of
which have several functions including the stimulation of cells
to produce specialized protein as a defense against
pathogens. IFN-α can transform healthy monocytes into cells
with properties of DCs; this was shown in sera from patients
with active systemic lupus erythematosus [45]. IFN-α can
also contribute to plasma cell differentiation and could
therefore be important in the generation and sustenance of
antibody responses [46].

Until recently, only few data were available on DCs in IIMs, but
the results of some very recent studies have partly revealed
important insights on this issue. Physiologically, DCs do not
appear in normal muscle tissue, whereas the use of new
markers for immature and mature DCs (CD1a and DC-
LAMP/CD83, respectively) enabled the immature DCs to be
detected in lymphocytic infiltrates in both polymyositis and
dermatomyositis muscle tissue samples [47]. Local DCs have
recently been demonstrated in all subsets of IIMs [48]: in
muscle specimens from patients with inclusion-body myositis
and patients with polymyositis, myeloid DCs were present in
substantial numbers, frequently surrounding and sometimes
invading intact myofibers. They were part of a dense collection
of cells that also included T lymphocytes. In dermatomyositis
muscles, an increased number of plasmacytoid DCs was
found in comparison with the amount of myeloid DCs [48].
The importance of the plasmacytoid DCs in activating the type
I interferon system in dermatomyositis was suggested by its
association with the transcriptional response of the IFN-α and
IFN-β inducible genes and by the fact that the interferon-
induced MxA protein was expressed in muscle tissue of these
patients [49]. MxA expression was demonstrated in capillaries
and in perifascicular myofibers, which are characteristic sites
of dermatomyositis pathology [49].

We have also found MxA expression in muscle tissue in
dermatomyositis, but also in polymyositis and inclusion-body
myositis, supporting a role of the type 1 interferon in all
subsets of myositis. We therefore could not confirm a
specific MxA staining pattern able to be used as a diagnostic
tool that then could distinguish dermatomyositis from the
other subsets of myositides, as suggested by Greenberg and
colleagues [34]; this therefore needs to be pursued further. A
comparison between expression patterns of DCs in IIMs is
presented in Table 1.

However, the detailed function of both myeloid and
plasmacytoid DCs in IIMs has still not been fully clarified.

Greenberg and colleagues [34] proposed two hypotheses:
first, the presence of myeloid DCs invading the non-necrotic-
seeming myofiber regions suggests the occurrence of active
phagocytosis, endocytosis, pinocytosis, or receptor-mediated
uptake of antigen, activities for which these cells are
specialized; and second, that some of these cells are actively
presenting antigen and activating T lymphocytes locally within
muscle tissue rather than in the lymph node [48].

In addition, there is some evidence that chemokine receptors
on DCs can promote autoimmune reactions. This is
supported by the observation mentioned above that some
autoantigens, such as aminoacyl tRNA synthetases, may
exhibit chemotactic properties for activated monocytes,
T lymphocytes, and immature DCs (not mature DCs). They
could therefore have a capacity to attract inflammatory cells,
including immature DCs, to infiltrate affected muscle cells.
Taken together, these results suggest that antigens delivered
to receptors on immature DCs are potent immunogens
capable of breaking self-tolerance and able to induce
autoimmune diseases [24,50].

As mentioned above, macrophages and B lymphocytes can
also function as APCs. In addition to those, other cell types
can acquire this function, although usually without reaching
the same efficacy as a ‘professional’ APC [51]. Emerging
evidence from experiments in vitro and in vivo suggests that
muscle fibers could function as antigen-specific cells [52-54].
A schematic summary of the different roles of immune cells in
the context of muscle inflammation is presented in Figure 3.

Whether muscle cells actually do function as APCs still
remains uncertain. Muscle fibers are incapable of expressing
the ‘classical’ co-stimulatory molecules B7-1 and B7-2, but
some studies indicate that skeletal muscle cells and human
myoblasts still have the possibility of acting as APCs with a
cell-to-cell contact between BB-1 antigen on the one hand,
and CD28 and CTLA-4 on CD4+ or CD8+ T lymphocytes on
the other [53-55]. However, whether muscle cells that express
BB-1 simultaneously could express MHC class I and/or class
II antigens is still not clarified. Furthermore, cDNA for the BB-1
antigen has not been isolated. BB-1 is selectively induced by
treatment of myoblasts with pro-inflammatory cytokines such
as IFN-γ or tumor necrosis factor [55]. As both these
cytokines have been detected in muscle tissue from patients
with IIM [56-58], the muscle environment in the inflamed
muscle could possibly provide the necessary signals on
muscle fibers for an antigen presentation to T lymphocytes.

Once a naïve T lymphocyte has been activated, it expresses
several proteins to sustain or modify the co-stimulatory signal
for the clonal expansion and differentiation of T lymphocytes.
Several co-stimulatory signal systems have been identified in
muscle tissue from patients with IIM, such as CD40–CD40
ligand (CD40-L), inducible co-stimulator (ICOS)–ICOS ligand
(ICOS-L), B7RP-1, B7h, and B7-H2. When a co-stimulatory
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receptor is bound by its ligand, an activating signal is
transmitted to the T lymphocyte. This also activates the APC
to express B7 molecules, which further stimulate T
lymphocyte proliferation. Interestingly, muscle cells and
myofibers have been shown to express some of these co-
stimulatory signals, namely CD40-L and ICOS-L (ICOS-L
both expressed and functional [59]) during pathological
conditions [59,60]. Schmidt and colleagues [61] demon-
strated that muscle fibers expressing MHC class I, taken from
patients with inclusion-body myositis, caused an upregulation
of ICOS–ICOS-L molecules in association with enhanced
perforin expression by autoinvasive CD8+ T lymphocytes,
which could exert a cytotoxic effect. This further supports the
hypothesis that muscle fibers could work as APCs.

Conclusion
The molecular basis of IIMs in humans, as in many other
autoimmune rheumatic diseases, is heterogeneous, involving
several complex cellular components that probably contribute
to differences in disease susceptibility, clinical and histopatho-
logical phenotype, and severity. Although this heterogeneity
makes the study of the pathogenesis of IIMs extraordinarily
complex, it might also provide distinct avenues for novel
therapeutic interventions. Controlling the immune response is
as complex as its launching. An essential feature of
physiological immune response is its self-limitation, by which it
is attenuated by several mechanisms. We have only just
started to understand the orchestrated life of T lymphocytes, B
lymphocytes, and DCs in IIMs, but there are still many
unanswered questions about how this usually effective system
can go awry and result in false immune-mediated reactions.

On the basis of detailed immunohistochemical studies on
muscle biopsies, two major types of inflammatory infiltrate
were observed: endomysial and perivascular/perimysial. In
endomysial infiltrates there was a striking dominance of CD8+

T lymphocytes, which could even be the predominating
infiltrating cell type, followed by macrophages and CD4+

T lymphocytes. These infiltrates often surrounded non-
necrotic fibers and sometimes seemed to invade the fibers
(Figure 1). This observation suggests an immune reaction
that targets muscle fibers. The perivascular infiltrates, in
contrast, were dominated by CD4+ T lymphocytes and
macrophages, and sometimes the presence of B lympho-
cytes suggested an immune reaction that targets micro-
vessels (Figure 2). A role for B lymphocytes as well as one for
CD4+ T lymphocytes in the pathogenesis of IIMs is supported
by frequently detected autoantibodies in polymyositis and
dermatomyositis but less often in inclusion-body myositis.
These autoantibodies are both non-specific (frequently also
being found in other autoimmune disease) and myositis-
specific [38,39]. A role for CD4+ T lymphocytes in the
disease mechanism is further supported by the genetic
association with HLA-DRB1*0301, DQA1*0501, and
DQB1*0201, which was particularly seen for subgroups of
patients with autoantibodies.

The endomysial infiltrates were reported to be characteristic
features of polymyositis and inclusion-body myositis, whereas
the perivascular infiltrates were associated with patients with
dermatomyositis. However, there are cases with a less distinct
localization of infiltrates or with combined endomysial and
perivascular cellular infiltrates [3,6]. Moreover, in some cases
the inflammatory cell infiltrates are diffusely spread in the
tissue, whereas in other cases the infiltrates are very small or
are not found at all. In addition, the perivascular changes may
be seen in patients without a skin rash, whereas endomysial
infiltrates are occasionally seen in cases with a skin rash.

Taken together, these results indicate that there may be two
major pathways: one leading to cellular infiltrates with
predominating endomysial localization, and another with a
predominantly perivascular localization often with microvessel
involvement and capillary loss. The latter is more often seen in
patients with a skin rash and dermatomyositis, but there
seems to be an overlap between clinical phenotypes, histo-
pathology, and immunotypes. These observations suggest
that there might be more than just one factor that determines
the histopathological and clinical phenotypes, for example
genes and environment.

During the past few years, the results of several advanced
histopathological, molecular, functional, and medical studies
have provided new data that could be of importance in
understanding the immune mechanisms in IIMs. Taken
together, they demonstrate the complexity of involvement of
the immune system in these diseases and suggest that both
the innate and adaptive immune systems are involved in
dermatomyositis, polymyositis, and inclusion-body myositis.
This complexity of T lymphocyte populations in muscle tissue
in clinical subsets of myositis was demonstrated in the original
observations of different cellular subsets in muscle tissue by
Arahata and Engel [6,7,9] and is exemplified in Figures 1 and
2. These observations make it necessary to revise the ‘old
historical’ hypothesis on the pathogenesis of IIMs. Recently a
dispute over the most appropriate and accurate diagnostic
criteria has erupted, including the importance of the
histopathological picture and the localization of immune cells
[62]. Other phenotypes such as autoantibody may also be
important for the classification of disease subsets that will help
to enhance our understanding of disease mechanisms and
thereby improve the treatment and prognosis for these
patients. A revision of classification criteria has recently been
started in an international interdisciplinary collaboration that
we believe will facilitate these efforts.
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