
RESEARCH ARTICLE

Global risk of invasion by Bactrocera zonata:

Implications on horticultural crop production

under changing climatic conditions

Kumbirai M. Zingore1,2, George Sithole2, Elfatih M. Abdel-Rahman1,3, Samira

A. Mohamed1, Sunday Ekesi1, Chrysantus M. TangaID
1☯*, Mohammed E. E. Mahmoud1,4☯

1 International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya, 2 Geomatics Division,

School of Architecture, Planning and Geomatics, University of Cape Town, Rondebosch, South Africa,

3 Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan,

4 Agricultural Research Corporation, Wad Medan, Sudan

☯ These authors contributed equally to this work.

* ctanga@icipe.org

Abstract

The peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) is an important inva-

sive species causing substantial losses to the horticulture industry worldwide. Despite the

severe economic impact caused by this pest in its native and invaded range, information on

its potential range expansion under changing climate remains largely unknown. In this

study, we employed maximum entropy (MaxEnt) modeling approach to predict the global

potential climatic suitability of B. zonata under current climate and four Representative Con-

centration Pathways (RCPs) for the year 2050. Outputs from MaxEnt were merged with

Spatial Production Allocation Model. A natural dispersal model using Gaussian dispersal

kernel was developed. The Areas Under Curves generated by MaxEnt were greater than

0.92 for both current and future climate change scenarios, indicating satisfactory perfor-

mances of the models. Mean temperature of the coldest quarter, precipitation of driest

month and temperature seasonality significantly influenced the potential establishment of B.

zonata. The models indicated high climatic suitability in tropical and subtropical areas in

Asia and Africa, where the species has already been recorded. Suitable areas were pre-

dicted in West, East and Central Africa and to a lesser extent in Central and South America.

Future climatic scenarios models, RCP 4.5 and 8.5 show significant potential range expan-

sion of B. zonata in Western Sahara, while RCP 4.5 highlighted expansion in Southern

Africa. Contrarily, RCP 2.6 showed considerable decrease in B. zonata range expansion in

Central, East and West Africa. There was increased climatic suitability of B. zonata in Egypt

and Middle East under RCP 6.0. The dispersal model revealed that B. zonata could spread

widely within its vicinity with decreasing infestation rates away from the source points. Our

findings can help to guide biosecurity agencies in decision-making and serve as an early

warning tool to safeguard against the pest invasion into unaffected areas.
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Introduction

Global pest invasions promoted by numerous pathways availed by growing travel and world

trade have increased in the recent years impacting on ecosystems, economic activities and

human welfare [1–3]. Tephritid fruit flies of the genus Bactrocera have particularly caused

great concern due to the magnitude of damage they inflict. The mated female fruit flies lay

eggs in ripening fruit, followed by larvae and other opportunist secondary microorganisms

feeding on the fruit pulp leading to decomposition. The destruction caused by larvae range

from unattractive appearance due to egg laying punctures resulting in reduced marketability

and fruit drops leading to diminished yields [4,5]. The management costs in response to the

damage are high and in southern Pakistan production of a popular host (guava) was aban-

doned due to heavy infestations [6]. Regardless of quarantine measures aimed to reduce unin-

tentional introductions of the Bactrocera species, their invasions continue to increase [4,5].

Among the Bactrocera species that are currently of high interest is the invasive peach fruit

fly Bactrocera zonata (Saunders) (Diptera: Tephritidae). Bactrocera zonata’s invasive nature is

linked to it being a strong flier capable of dispersing 25 miles or greater in search of hosts [7],

short generation time, high polyphagy, and ability to adapt to different habitats [8]. Bactrocera
zonata feeds on more than 50 commercial and wild host plants; including peach, guava,

mango, apricot, citrus, prickly pear and fig [9,10]. Its host range recently expanded to include

some commercially important crops such as eggplant, tomato, apple, loquat, and potato [11].

In the tropical and subtropical regions where it thrives, the availability of its host plants

throughout the year favours its proliferation leading to high economic losses in most horticul-

tural regions. The annual financial losses associated with the fruit fly are estimated at USD 200

million in Pakistan [12], EUR 320 million in the Near East and EUR 190 million in Egypt [13].

The amount of fruit damage in Pakistan as a result of B. zonata infestation is reported to range

from 5 to 100% [14]. In addition, it is listed as A1 quarantine pest in the European and Medi-

terranean Plant Protection Organization (EPPO) countries, affecting availability of lucrative

export markets.

Bactrocera zonata is native to South and South-East Asia but it has invaded and become

established in a number of countries in the Arabian Peninsula, North Africa and some of the

Indian Ocean Islands (i.e. Mauritius and Réunion) [8,15,16]. The geographical distribution

and abundance of B. zonata has mainly been attributed to favourable climatic conditions and

host availability [4,5,16]. Although B. zonata is better adapted to tropical and subtropical

regions, it is also established in Northern Egypt where temperatures reach freezing point dur-

ing winter, demonstrating its ability to survive under the Mediterranean climatic conditions

[5]. The optimum temperature for adult B. zonata development is 25˚C-30˚C whilst egg, larval

and pupal survival is highest at 25˚C. The upper temperature limit recorded is close to 35˚C

and none of its stage survives at 12.6˚C or less [17]. However, climate change and its associated

uncertainties might impact the future global distribution ranges of B. zonata [18–20]. Globally

climate change has altered the 20th century temperatures and its effects are expected to persist

in the future [20,21].

Given that B. zonata continues to invade new areas, there is a need for improved forecasting

of potential areas for its invasion and establishment as a mitigating measure. There is a huge

deficit in information regarding mapping the potential ecological niche of B. zonata under

current and future climatic conditions accounting for host availability and its likely dispersal

patterns. Dispersal is an important factor in insect invasions and plays an important role in

determining the potential distribution of B. zonata [22–24]. To our knowledge, two models of

potential geographical distribution of B. zonata using the CLIMEX model have been published

in literature [5,20]. Although they provide important insights into the potential invasive range
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of B. zonata, they do not report the impact of host availability and how the fruit fly will poten-

tially disperse in space over time [5,22]. These past attempts to estimating the potential geo-

graphical distribution of B. zonata also did not take into consideration the current invasive

location of the pest in Sudan.

In this study we opted to use ecological niche models (ENMs), spatial analysis and spread

modeling to determine the potential invasive range of B. zonata. We include additional occur-

rence records of B. zonata for Sudan in our ENM and merge the derived probability of occur-

rence with host availability data to map areas that are potentially vulnerable. A simple natural

dispersal model that mimics the classical spread modeling approaches is developed to deter-

mine the potential dispersal pattern of the fruit fly. Ecological niche models link species occur-

rence and abundance data at known locations with the spatial and environmental properties of

those sites to predict the potential distribution of the species across a landscape [25] and are

being used extensively [26–28]. One of the ENM algorithms which has been widely employed

in modeling potential species distributions in recent years is maximum entropy (MaxEnt)

[29,30]. The machine learning algorithm MaxEnt [31] offers a platform to determine areas

that are climatically suitable to invasive pests and many such applications are available in liter-

ature [32–35]. Coupling ENMs with spatial analysis methods to map areas that are potentially

vulnerable and spread modeling strengthens the ability to understand the potential invasive

range of B. zonata [3,36]. Several approaches have been developed to model the dispersal of

invasive species ranging from the classical reaction-diffusion models which address short dis-

tance dispersal [37–40] to those which focus on long distance and stratified dispersal and other

different aspects of dispersal [24,41,42]. The reaction-diffusion models which assume the

Gaussian dispersal kernel are used as reference against which other models with different dis-

persal kernels can be compared [43].

Therefore the objectives of the present study were: (1) To determine areas that are climati-

cally suitable for B. zonata’s potential establishment under current and future greenhouse gas

concentration scenarios in 2050 using the MaxEnt algorithm [44]; (2) To derive host availabil-

ity data for B. zonata from the harvested area layer of the Spatial Production Allocation Model

(MapSPAM 2005 v3.2) under rainfed and irrigated cropping systems [45]; (3) To combine the

MaxEnt output and host availability to generate overall habitat suitability maps for B. zonata,

and (4) To develop a simple spread model for the potential natural dispersal of B. zonata using

the Gaussian probability density function for dispersal kernel.

Materials and methods

Bactrocera zonata occurrence records

Native (n = 40) and invaded (n = 68) occurrence records of confirmed presences of B. zonata
were collected for different countries (Fig 1). The utilization of native occurrence records

when modeling the potential distribution of invasive species using ENMs significantly

improves the precision of the predictive models [20,46,47]. In the present study B. zonata
occurrence records were obtained from the Centre for Agriculture and Bioscience Interna-

tional (CABI) Invasive Species Compendium datasheet number 17694 (n = 37) [8], the Global

Biodiversity Information Facility (GBIF) (n = 7) [65] and published articles (n = 7) [20,49–51].

In Sudan, updated georeferenced occurrence records of B. zonata (n = 57) were obtained from

the Agricultural Research Corporation (ARC) of Sudan within a framework of a Department

for International Development (DFID) funded project. The presence of B. zonata in Sudan

was monitored during the period 14 January 2014 to 28 April 2016 using methyl eugenol-

baited traps to attract and kill fruit fly species in mango, guava, banana, date palm and citrus
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orchards. The confirmed presences of B. zonata occurrence with geographical coordinates col-

lected during this period in Sudan were incorporated in the present study.

In preparation for the MaxEnt modeling, duplicate occurrence records were removed, and

in instances where georeferenced occurrence points were not provided, but place names given

we geo-coded the points based on the place names using Google Earth Pro software version

7.3.2. Although these coordinate points were not the exact locations of the B. zonata’s records,

they provided representative conditions of the sampling sites. The occurrence records were

plotted on a map and visually inspected for obvious errors. To minimize spatial autocorrela-

tion, the location records were spatially filtered specifying a minimum distance of 10 km. A

similar method was employed in a study to determine the global potential distribution of

Fig 1. The updated distribution map of the native and invaded occurrence records for Bactrocera Zonata collected from the Centre for Agriculture and

Bioscience International (CABI) Invasive Species Compendium datasheet number 17694 (n = 37) [8], the Global Biodiversity Information Facility (GBIF) (n = 7)

[48] and published articles (n = 7) [20,49–51]. In Sudan, updated georeferenced occurrence records of B. zonata (n = 57) were obtained from the Agricultural Research

Corporation (ARC) of Sudan. “The figure was generated using the QGIS 3.10.2 software (https://qgis.org)”.

https://doi.org/10.1371/journal.pone.0243047.g001
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Bactrocera carambolae in Brazil [33]. In other previous studies, models fitted with filtered

occurrence records resulted in lower overfitting and had better performance [52,53]. In our

study spatial filtering yielded georeferenced occurrence records (n = 74) used in developing

the MaxEnt models as some (n = 34) were discarded for being autocorrelated with close by

records.

Bactrocera zonata host plant availability

The Centre For Agriculture and Biosciences International (CABI) Invasive Species Compen-

dium datasheet number 17694 [8] was used to extract information on the names of crops con-

sidered as important host plants for B. zonata. These host crop names were used in the

subsequent analysis to obtain the spatial extent of the important host plants for B. zonata, from

the Spatial Production Allocation Model (MapSPAM 2005 v3.2) database. MapSPAM 2005

datasets are global gridded maps of crop distribution estimations at 10km x 10km spatial reso-

lution. The maps were calculated according to four variables: actual area where crops are being

grown (physical area), harvested area, production and yield for 42 different crops under both

rainfed and irrigated production systems. In this study, important host plants for B. zonata
were categorized under four broad classes: tropical fruits, temperate fruits, vegetables, and

banana based on the MapSPAM model (S1 Table).

Our decision to use MapSPAM products was motivated by an earlier study to determine

cropping distributions of the spotted stemborer Chilo partellus (Swinhoe) popular host plants

in order to assess its potential to invade the areas where they are grown [54]. In the present

study, areas where the different B. zonata host crops are currently grown were aggregated at

global level and were used as a proxy for host availability. This involved accessing the harvested

area layer (in hectares) of the MapSPAM database to download maps of areas where B. zonata
host crops are being grown. A total of four maps for the different classes of B. zonata host

crops (tropical fruits, temperate fruits, vegetables, and banana) were downloaded. A raster

overlay analysis was implemented using ArcGIS version 10.3.1 to combine the maps into an

aggregate map which represented areas where hosts are available. The MapSPAM datasets

were resampled to 1km x 1km grid cell size using a bilinear interpolation technique in ArcGIS

10.3.1 to match the resolution of the bioclimatic variables for subsequent analysis [55]. The

bilinear interpolation method is highly suitable for continuous data like the MapSPAM har-

vested area dataset.

Climatic data and variable selection

A set of 19 bioclimatic variables at a spatial resolution of 1 km x 1km freely downloadable

from the Worldclim platform (www.worldclim.org) [56], were used as potential predictor vari-

ables for modeling the climatic suitability of B. zonata (Table 1) in MaxEnt under current

(1950–2000) and future (2041–2060) climatic scenarios. The Worldclim bioclimatic variables

were derived by interpolating using a splining technique monthly temperature and precipita-

tion data collected from weather stations across the world. These variables reflect various

aspects of temperature, precipitation and seasonality and are important for modeling potential

species ecological niches [57,58].

To assess the expected multicollinearity between the 19 bioclimatic predictor variables we

performed a Pearson’ correlation test between all the potential predictor variables in (Table 1).

Further, we identified and eliminated variables that were highly correlated using the “Find cor-

relation” function in the Caret package in R using the mean absolute error score [37]. A corre-

lation threshold of |r|> 0.7 was set for variables that could potentially affect our model, and

variables that met this criterion were removed from the analysis. The uncorrelated bioclimatic
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variables were used in MaxEnt to determine the areas climatically suitable for B. zonata poten-

tial establishment. The Pearson correlation graph (Fig 2) was generated using the corrplot tool

in R software [59,60].

Possible future climatic scenarios

The Hadley Centre Global Environmental Model version 2-Earth System (HADGEM2-ES)

models [62] for four Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5 were

implemented to investigate the impact of climate change on the pest’s distribution in the year

2050. The bioclimatic variables for the different RCPs at a spatial resolution of 1km x 1km

were downloaded from the Worldclim platform (www.worldclim.org). The list of the down-

loaded bioclimatic variables matched the 8 uncorrelated bioclimatic variables determined in

the previous section (Table 1). The RCPs quantitatively describe concentrations of the green-

house gases in the atmosphere over time as well as their radiative forcing in the year 2100 [63].

The RCPs are labelled according to their associated radiative forcing in the year 2100 (i.e. 2.6,

4.5, 6.0 and 8.5 Watts per square meter (W/m2) and have carbon dioxide (CO2) concentration

levels reaching 421, 538, 670 and 936 ppm, respectively. The projected global mean surface

temperature warming for the mid-21st century (2046–2065) compared to the late-20th century

(1986–2005) for RCPs 2.6, 4.5, 6.0, 8.5 are 1.0˚C, 1.4˚C, 1.3˚C and 2.0˚C respectively [64]. RCP

2.6 represents hard-line mitigation scenarios in literature that limit greenhouse gas concentra-

tions and reduce global radiative forcing by the year 2100 [65]. On the other hand, RCP4.5 and

RCP6.0 are intermediate emission scenarios which stabilize after 2100, by applying different

strategies and technologies that minimize greenhouse gas emissions [66,67]. Finally, RCP8.5 is

considered a high emission scenario with increasing greenhouse gas emissions overtime and

the associated increases in global temperatures [65,68]. To review a wide range of possibilities

of predicted changes in the potential climatic suitability of the fruit fly we used all four RCPs.

Table 1. Worldclim bioclimatic variables used as potential predictor variables in the MaxEnt models [56]. The

variables in bold were used in the final models of Bactrocera zonata’ climatic suitability after eliminating the highly cor-

related ones.

Bioclimatic variables Description Units

Bio 1 Annual mean temperature ˚C

Bio 2 Mean diurnal range (mean of monthly (max temp—min temp)) ˚C

Bio 3 Isothermality (Bio2/Bio7) (� 100) ˚C

Bio 4 Temperature seasonality (standard deviation �100) ˚C

Bio 5 Max temperature of warmest month ˚C

Bio 6 Min temperature of coldest month ˚C

Bio 7 Temperature annual range (Bio5-Bio6) ˚C

Bio 8 Mean temperature of wettest quarter ˚C

Bio 9 Mean temperature of driest quarter ˚C

Bio 10 Mean temperature of warmest quarter ˚C

Bio 11 Mean temperature of coldest quarter ˚C

Bio 12 Annual precipitation mm

Bio 13 Precipitation of wettest month mm

Bio 14 Precipitation of driest month mm

Bio 15 Precipitation seasonality (coefficient of variation) mm

Bio 16 Precipitation of wettest quarter mm

Bio 17 Precipitation of driest quarter mm

Bio 18 Precipitation of warmest quarter mm

Bio 19 Precipitation of coldest quarter mm

https://doi.org/10.1371/journal.pone.0243047.t001

PLOS ONE Invasion risk assessment of Bactrocera zonata

PLOS ONE | https://doi.org/10.1371/journal.pone.0243047 December 23, 2020 6 / 24

http://www.worldclim.org/
https://doi.org/10.1371/journal.pone.0243047.t001
https://doi.org/10.1371/journal.pone.0243047


Bactrocera zonata climatic suitability modeling approach

The machine learning algorithm MaxEnt version 3.4.1 [31] was used to predict the areas suit-

able for B. zonata invasion based on the selected bioclimatic variables and spatially filtered

occurrence records. We chose MaxEnt because it has been widely applied to model potential

Fig 2. The collinearity matrix for the candidate predictor variables for Bactrocera zonata. The collinearity threshold was set at |r|>0.7 according

to [61]. Darker shades of blue and red indicate high variable collinearity while lighter shades indicate low collinearity. Similarly, the smaller the circle

the lower the correlation value.

https://doi.org/10.1371/journal.pone.0243047.g002
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species distributions with small number of presence-only occurrence data [30,69]. It also

resulted in better predictions when its performance was compared with other presence-only

methods [70,71]. Evidence from previous studies indicate that using MaxEnt default set-

tings especially with small sample sizes compromises the quality of the predictive model,

often resulting in overfitting [72–74]. In order to reduce overfitting in our models, parame-

ter settings were tuned or smoothed as opposed to implementing the default settings in

MaxEnt as suggested by earlier studies [72,73]. The performance of MaxEnt largely depends

on the choice of feature types and regularization, it was important to modify these parame-

ters for optimal models. Feature types which are allowed shapes of the response curves for

the different model covariates allow complex relationships. In our study we tested different

combinations of feature classes and regularization to determine the most suitable for

modeling B. zonata and opted to use the linear, quadratic and hinge feature types. These

parameter settings allowed for more complex relationships to be modeled as opposed to

using “auto features” (a default setting) which are based on the number of occurrence rec-

ords. Thereafter, a regularization coefficient of 2 was employed as a penalty to the model to

prevent overfitting by limiting the strength of the feature classes selected [75]. This is con-

sistent with previous studies which demonstrated that increasing the regularization by two

to four times higher than the default settings would result in models with significantly low

overfitting [73].

To test the effect of each of the predictor variables on the climatic suitability models, jack-

knife tests were performed, and a logistic output format which provides an estimate of the

probability of presence was selected. The outlier observations were removed from the final

model by implementing a 10% percentile training presence threshold rule.

The occurrence records were randomly divided into 75% training and 25% test datasets

using an inbuilt option in MaxEnt. The 25% independent test dataset were used to assess B.

zonata climatic suitability model performance. The Area Under the curve of the Receiver

Operating Characteristic (ROC) [76] was used to assess the performance of the MaxEnt mod-

els. The use of AUC as a statistic to assess the discriminatory capacity of ENMs has been widely

accepted [20,76]. By default, MaxEnt calculates the AUC which determines how the models

distinguished between presence and absence observations, but with presence only data as in

our case, the AUC compared presence observation with the pseudoabsence background

points. The AUC values range from 0 to 1 where values of 0.5–0.7 indicate low accuracy, values

of 0.7–0.9 are usually interpreted as useful for applications and those greater than 0.9 imply

high accuracy [77].

For consistency, we used the same modeling approach for both current and future climatic

scenarios. The outputs of MaxEnt modeling were imported in a geographical information sys-

tem (GIS) for further analysis. We reclassified our probability of occurrence maps of B. zonata
into 4 classes based on a suggestion by Abdelaal et al. (2019) [78]. The classes were: (i) not suit-

able (� 0.15), (ii) low suitability (0.16–0.30), (iii) medium suitability (0.31–0.60) and (iv) high

suitability (� 0.61).

Determining the overall habitat suitability of Bactrocera zonata
In order to map areas that are potentially more vulnerable to B. zonata invasion, climatic suit-

ability derived from the MaxEnt models was merged with host availability extracted from the

MapSPAM database using Eq 1. This complemented the results of MaxEnt to get potential cli-

matically suitable areas where B. zonata could potentially thrive due to hosts being available.

The necessity to define areas of potential establishment of invasive species defined by favour-

able climate and host availability before applying spread models was emphasized before [24].
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The datasets were normalized to a common scale of 0 to 1 for easy comparison.

S ¼
nðcsÞ þ nðhÞ

2
ð1Þ

Where:

S is the overall habitat suitability of an area to B. zonata, cs is the climatic suitability score

raster, h the host availability raster and n is the normalization function. The normalized sum

of cs and h was divided by 2 to ensure that S remains in the range of 0 to 1. The normalization

was of the form:

n ¼
ðx � minðxÞÞ

maxðxÞ � minðxÞ
ð2Þ

Where:

n is the normalized output raster, x denotes the numerical values in the original raster, min

(x) and max(x) are the minimum and maximum numerical values in the original raster.

Numerical values in the range min(x) and max(x) were rescaled to the range of 0 to 1 in the

output raster. The overall habitat suitability of B. zonata was calculated under current and four

future climatic scenarios (RCP2.6, 4.5, 6.0 and 8.5) for the year 2050 to review the potential

impact of climate change on the pest’s distribution and to generate relevant maps for potential

risk assessment.

The spatial analysis was done in a GIS environment using ArcGIS 10.3.1 and the adminis-

trative boundary shapefiles used were acquired from the Natural Earth datasets (http://www.

naturalearthdata.com/).

Simple natural spread model

We developed a simple model to hypothetically model the short distance dispersal of B. zonata
by natural means using the Gaussian probability density function to estimate infestation proba-

bility. The following assumptions were considered in building the model: (1) that the host plants

of B. zonata were available throughout the year; (2) the current occurrence records of B. zonata
were the potential source of infestations to its surrounding areas; (3) there were no major barri-

ers limiting the spread of the pest, and that its probability of spread occurred equally in all direc-

tions from the source locations; (4) the pest spreads naturally by flying from one location to

another in search of suitable host plants; and (5) the pest spreads from its source location with

infestation probability decreasing as a function of distance following a normal curve. The fol-

lowing equation for the Gaussian probability density function (3) was used.

f xð Þ ¼
1
ffiffiffiffiffiffi
2p
p

s
e�
ðx� mÞ2

2s2 ð3Þ

Where:

μ is the mean of the distribution and σ is its standard deviation. The variance of the distri-

bution is σ2.

Dispersal is an important factor in insect invasions and plays an important role in deter-

mining their potential distribution including that of B. zonata [22–24]. Bactrocera zonata has

the capability of dispersing locally reaching distances of up to 25 miles (40.2 km) [7,8]. Our

model uses the known occurrence records of B. zonata as basis to develop several Gaussian

functions centred on each location. Each Gaussian function has a height of 1, a mean of 0 and

value (density of fruit fly) decreasing with distance in relation to the width or standard

deviation.
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In general, the Gaussian probability density functions depict the potential natural dispersal

of the fruit fly from one occurrence record site to surrounding locations and the decreased

trends mimic inertia to reach far locations. Finally, Gaussian probability density functions

were multiplied with the overall habitat suitability distribution raster generated in the previous

section to determine the potential natural spread of B. zonata. The values of the current overall

habitat suitability were multiplied by the distance values of the Gaussian functions of closest

record locations. A similar method was applied to determine the geographical reachability of

the invasive pufferfish in the Mediterranean Sea [36]. This yielded a model which gives the

potential natural dispersal of B. zonata represented by Eq 4

l ¼
ðk1nðcsÞ þ k2nðhÞÞ

k1 þ k2

c1e
� c2x2

ð4Þ

Where:

l is the likelihood of natural dispersal of B. zonata, x is the distance from the source loca-

tions, k1 and k2 are weighting constants, cs is the climatic suitability score raster, h the host

availability raster (in hectares) and n is the normalization function. Dividing with weighting

constants k1 and k2 ensures the normalized sums remain in the range of 0 to 1. Constants c1
and c2 are the controlling parameters for the applied Gaussian probability density function

and these were to be estimated.

In our natural dispersal model, n(cs) and n(h) were given equal weights because they carried

equally important information, hence the values of k1 and k2 were estimated at 0.5 each. Since

the dispersal distances of B. zonata were assumed to be approximately normally distributed,

the values of parameters c1 and c2 were estimated as follows: the 3σ for B. zonata spread was

considered as its maximum natural dispersal capacity recorded in literature (40.2 km), giving a

σ value of 13.4. Accordingly, the value of c2 was estimated at 0.003 and c1 value was 0.03 based

on the Gaussian probability density function. Hence the final model yielded was given by Eq

(5)

l ¼
ðk1nðcsÞ þ k2nðhÞÞ

k1 þ k2

0:03e� 0:003x2

ð5Þ

Where l is the potential natural dispersal, x is the distance from the B. zonata source loca-

tions, n(cs) is the normalized climatic suitability of B. zonata, n(h) is the normalized host avail-

ability, k1 and k2 are the weighting constants. Gaussian dispersal kernels have been used for

more than half a century [37,38] and they adequately represent the results of short-distance

dispersal (diffusion) [43]. They capture the fundamental distance-decay principle of ecology

and geography hence their use in developing classical biogeography and spatial dynamics theo-

ries. They have been used to model the dispersal of horse-chestnut leaf miner Cameraria ohri-
della in Germany and recently to determine the invasion pattern of a Lagocephalus sceleratus
(Gmelin) in the Mediterranean Sea [36,79].

The minimum and maximum values from the host availability raster were extracted and

used for normalizing the dataset on a scale of 0 to 1. The minimum area under which B.

zonata’ host plants are being grown in hectares according to the MapSPAM dataset was 0 and

the maximum was 13579.3 hectares. The minimum and maximum values for the climatic suit-

ability models extracted from the MaxEnt model outputs were used to normalize the dataset as

shown in Table 2.

The model was run under current climatic conditions for one generations of B. zonata
(approx. 46 days), it is known to have between 7 and 9 generations in a year [20].
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The methods used in the present study are summarized in a flowchart (Fig 3), that shows

the datasets and processes employed in building the simple natural dispersal model.

Results

Bactrocera zonata host availability spatial extent

The spatial extent of areas growing crops considered as important host plants for B. zonata in

hectares in both tropical, Sub-tropical and temperate regions are presented in Fig 4. It can be

Table 2. The minimum and maximum values of the probability of an area being climatically suitable for Bactro-
cera zonata predicted by the five models under different climatic scenarios ran in MaxEnt.

Climate scenario Minimum value Maximum value

Current 0.000000037 0.99964601

RCP2.6 0.000000000 0.97142601

RCP4.5 0.000000051 0.99967700

RCP6.0 0.000000061 0.99944902

RCP8.5 0.000000040 0.99965697

https://doi.org/10.1371/journal.pone.0243047.t002

Fig 3. A complete flowchart depicting the datasets and processes employed in the present study.

https://doi.org/10.1371/journal.pone.0243047.g003
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visually recognised that countries with high B. zonata host plant cultivation included: North

America, Central America, South America, Asia, Europe and much of Africa. These areas with

higher harvested areas for the host plants are potentially at higher risk of establishment of the

fruit fly.

Climatic variables importance

The results of the Pearson’ multicollinearity test suggested eight uncorrelated predictor vari-

ables (Table 1) which were used in the MaxEnt models. Of the eight, three were observed to

significantly influence the climatic suitability of B. zonata under current and future climatic

conditions The bioclimatic variables that were regarded as very relevant were “mean tempera-

ture of coldest quarter” (Bio11), “precipitation of driest month” (Bio14) and “temperature sea-

sonality (standard deviation �100)” (Bio4). In contrast, precipitation of wettest month (Bio13)

Fig 4. The global distribution of Bactrocera zonata host plants under rainfed and irrigated cropping systems in hectares obtained from the Spatial Production

Allocation Model (MapSPAM 2005 v3.2) database [45]. “The figure was generated using the QGIS 3.10.2 software (https://qgis.org)”.

https://doi.org/10.1371/journal.pone.0243047.g004
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had the least contribution. The respective variable contributions in the different models are

summarized in the table below (Table 3).

Climatic suitability of Bactrocera zonata under current and future climate

change

The 5 MaxEnt models using 8 bioclimatic variables exhibited varied results for predicting the

areas climatically suitable to B. zonata establishment under current and future climate scenar-

ios. The results revealed that countries in the Arabian Peninsula (Saudi Arabia, Yemen and

Oman), North Africa (Western Sahara, Libya and Egypt), West Africa (Nigeria, Niger, Burkina

Faso, Mali, Senegal, Guinea Bissau and Mauritania), Central Africa (Northern Cameroon and

Chad), the Horn of Africa (Sudan, Eritrea and to a lesser extent part of Somalia and Ethiopia),

Iran, Asia (India, Myanmar, Bangladesh and Bhutan) and South America (Chile and Ecuador)

were highly suitable for the potential establishment of B. zonata (Fig 5A–5E). Beside the

above-mentioned countries, all the models predicted Madagascar and several countries in

Southern Africa and Northern Australia to have medium suitability for the establishment of B.

zonata. However, the model under RCP 6.0 and RCP 8.5 climatic scenarios revealed a signifi-

cant reduction in areas of high suitability for B. zonata in Libya compared to the other coun-

tries (Fig 5D and 5E). Considerable reduction in areas of high suitability was also observed in

Yemen and Oman under RCP 6.0 climatic scenario (Fig 5D). All the MaxEnt models showed

relatively high levels of accuracy in predicting the climatic suitability of B. zonata as demon-

strated by the acceptable accuracies (AUC > 0.9). The AUC values ranged between 0.916 to

0.930 under current and future climatic conditions, respectively (Table 4). The models predic-

tive performance indicated that the RCP2.6 MaxEnt model had the highest value of AUC

(0.930) and the RCP4.5 model produced the lowest AUC value (0.916) (Table 4).

Overall habitat suitability based on aggregated climatic suitability and host

availability

The overall habitat suitability of B. zonata merged climatic suitability and areas growing

important host plants for the fruit fly and estimated the areas that were vulnerable to its inva-

sion, the results are presented in Fig 6A–6E. We noted some variability in the overall habitat

suitability of B. zonata globally. The merged distribution indicated highly vulnerable areas in

Asia (India, Bangladesh, Burma, Thailand, and Laos under future climatic conditions

(RCP2.6, RCP 4.5, RCP6.0 and RCP8.5). In Madagascar, Angola, Mozambique, and Zambia

suitable habitats were detected under RCP4.5. In Libya, Egypt, Sudan, Chad, Niger, Mali, Mau-

ritania, Western Sahara we predicted areas less vulnerable to the potential establishment of B.

zonata.

Table 3. Contribution (%) of the eight bioclimatic variables [56] to the climatic suitability models.

Variable Current Climate RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

Mean temperature of coldest quarter (Bio11) 35.7 38.9 31.4 31.6 25.9

Precipitation of driest month (Bio14) 31.6 36.5 40.3 39.2 38.3

Temperature seasonality (Bio4) 13.8 0.0 16.6 13.0 17.0

Precipitation of warmest quarter (Bio18) 7.0 13.6 6.4 10.5 7.4

Precipitation seasonality (Bio15) 6.0 0.0 0.9 2.0 4.0

Mean temperature of driest quarter (Bio9) 4.3 7.0 3.1 0.1 6.3

Precipitation of coldest quarter (Bio19) 1.1 2.2 1.9 1.9 1.0

Precipitation of wettest month (Bio13) 0.5 1.8 0.1 1.6 0.1

https://doi.org/10.1371/journal.pone.0243047.t003
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Potential natural dispersal of Bactrocera zonata
The potential spread model developed for B. zonata demonstrated a pattern of dispersal more

restricted to areas surrounding the source locations (Fig 7). The probability of infestation

decreased as a function of distance from the source locations. The model revealed that B.

zonata would spread with high likelihood within Sudan, Egypt, Saudi Arabia, southern parts

of Iran, India, Nepal, Bhutan, Bangladesh, Burma, Thailand, Myanmar, and Laos (Fig 7).

Discussion

In this study we used MaxEnt to estimate the ecological niche of B. zonata under current and

four future greenhouse gas concentration scenarios in 2050 to review predictive changes in the

potential climatic pest suitability. Climatic suitability derived from MaxEnt was integrated

with host availability data to map areas that are potentially vulnerable to invasion by B. zonata.

Further we developed a simple model for B. zonata dispersal assuming a Gaussian dispersal

kernel. The simple dispersal model provides an easy way to map the potential local dispersal of

B. zonata by natural means over time. The resulting potential spread map presents compli-

mentary aspects with respect to short- distance natural spread of the pest. In general, our find-

ings provide information to guide biosecurity agencies at a local level in decision-making and

serve as an early warning tool to safeguard against the invasion of B. zonata into unaffected

areas.

According to our knowledge, two studies have investigated the potential climatic suitability

of B. zonata [5,20]. Delrio and Cocco [5] developed the first model of the potential distribution

of the peach fruit fly in the Mediterranean basin using CLIMEX (Hearne Scientific, Australia).

In their CLIMEX model a set of parameters to describe B. zonata’s response to moisture and

temperature were used to deduce the potential geographical distribution of the fruit fly. Their

results suggested the potential establishment of B. zonata in coastal areas of the Mediterranean

region (North Africa) and Near East. In the present study, the predicted potential climatic suit-

ability for B. zonata was also limited to southern areas of Portugal, Spain, Greece and all the

main Mediterranean islands (Balearic Islands, Sardinia, Corsica, Sicily and Crete) similar to

that reported by Delrio and Cocco [5].

Furthermore, studies conducted by Ni et al. [20] also using CLIMEX revealed that B. zonata
is expected to potentially establish throughout much of the tropics and subtropics, including

some parts of the USA, southern China, south eastern Australia and northern New Zealand

under current climatic conditions. Possibilities for expansion of B. zonata potential ecological

Fig 5. Maps of the climatic suitability of Bactrocera zonata under current (A) and four future climate change scenarios

[i.e. four representative concentration pathways (RCPs)]–RCPs 2.6 (B), RCPs 4.5 (C), RCPs 6.0 (D) and RCPs 8.0 (E).

The climatic suitability classes were: (i) not suitable (� 0.15), (ii) low suitability (0.16–0.30), (iii) medium suitability

(0.31–0.60) and (iv) high suitability (� 0.61). “The figure was generated using the QGIS 3.10.2 software (https://qgis.

org)”.

https://doi.org/10.1371/journal.pone.0243047.g005

Table 4. The AUC values for the five Bactrocera zonata climatic suitability models run in MaxEnt.

Climatic Scenario AUC Value

Current Climate 0.925

RCP 2.6 0.930

RCP 4.5 0.916

RCP 6.0 0.929

RCP 8.5 0.919

https://doi.org/10.1371/journal.pone.0243047.t004
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niche poleward or northward into colder areas was observed for US, China, New Zealand, and

Mediterranean regions under climate change scenarios for the year 2070s [20]. However, our

findings indicate a southward spread and potential risk for Sub-Saharan region. Our results

are consistent with the recent report from Gezira region in Sudan [11] which indicates a south-

ward spread of B. zonata.

Contrary to previous studies, the current research work has MaxEnt to predict the potential

global climatic suitability of B. zonata under current and four RCPs for the year 2050 using

occurrence data of B. zonata, and eight bioclimatic variables. MaxEnt was selected because sev-

eral studies have recommended its use in predicting potential distribution of invasive species

[32–35]. The present study took into consideration the recommendations raised by Ni et al.

[20] emphasizing the need to incorporate other factors such as host availability and dispersal

capacity of B. zonata in future modeling exercises. These suggestions by Ni et al. [20] have

been previously supported by other authors [24], but this has rarely been implemented. In the

present study, these factors were considered to gain better understanding of a more precise

overall habitat suitability that would allow for the continual survival and proliferation of B.

zonata. In this regard, the Spatial Production Allocation Model (MapSPAM) dataset was used

Fig 6. The overall habitat suitability of Bactrocera zonata under current (A) and four future climate change scenarios

[i.e. four representative concentration pathways (RCPs)]–RCPs 2.6 (B), RCPs 4.5 (C), RCPs 6.0 (D) and RCPs 8.0 (E).

These were obtained by merging the normalised climatic suitability with normalised host availability. The overall

habitat suitability classes were: (i) not suitable (� 0.15), (ii) low suitability (0.16–0.30), (iii) medium suitability (0.31–

0.60) and (iv) high suitability (� 0.61). “The figure was generated using the QGIS 3.10.2 software (https://qgis.org)”.

https://doi.org/10.1371/journal.pone.0243047.g006

Fig 7. Predictions of the potential natural dispersal of Bactrocera zonata based on the simple spread model developed. The model was run for current climatic

conditions for one generation of Bactrocera zonata (about 46 days), it is known to have between 7 and 9 generations in a year [20]. “The figure was generated using the

QGIS 3.10.2 software (https://qgis.org)”.

https://doi.org/10.1371/journal.pone.0243047.g007
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to determine areas where B. zonata popular host plants are being grown to understand its

potential to invade them [45]. These areas where the host plants are being grown were aggre-

gated at global level and merged with the output of MaxEnt using spatial analysis tools. Fur-

ther, a simple spread model to predict the potential natural dispersal of B. zonata from source

points using the Gaussian dispersal kernel was developed. To improve on the precision of the

potential climatic suitability of B. zonata in MaxEnt, we ensured that our models combined

both exotic and native occurrence records of the fruit fly.

Our MaxEnt models were generally more restrictive in predicting the climatic suitability of

B. zonata compared to the results of the previous CLIMEX models, except for north Africa

where areas predicted to be optimally suitable were larger than that reported by Ni et al. [20].

Indeed, the model by Ni et al. [20] revealed much larger areas of high climatic suitability, espe-

cially across central, eastern, and southern Africa and to a lesser extent the coastal belt of west

Africa than in our study. Also, southern and eastern parts of Australia, southern Asia, parts of

the Mediterranean areas, China, New Zealand, Spain, Portugal, France, Italy, Madagascar,

Central America, South America, and the south-eastern United States were shown to be opti-

mally suitable for possible establishment of B. zonata, which is contrary to the present study.

This could be partially attributed to the differences in the climatic datasets and modeling algo-

rithms used in the studies. There was a strong fit between climatic suitability and known

occurrences of the pest. We demonstrated that B. zonata can potentially establish and become

widespread under tropical and subtropical conditions, which agrees with the report by Ni et al.

[20]. For all the MaxEnt models we fitted, mean temperature of coldest quarter, precipitation

of driest month and temperature seasonality were the most important bioclimatic variables

significantly influencing the potential establishment of B. zonata. Under current and future cli-

mate scenarios, optimal suitable areas in Africa were predicted in north (Libya and Egypt),

West (Nigeria, Niger, Burkina Faso, Mali, Mauritania, Senegal and Guinea Bissau), East

(Sudan), Central Africa (Cameroon, Tchad and Central Africa republic), Arabian Peninsula

(Yemen, Oman, United Arab Emirates and Saudi Arabia), Iran, Southern Asia (India, Burma,

Bangladesh and Bhutan) and to a lesser extent in South America (Chile). Our model further

suggested that under future climatic scenarios, RCP 4.5 and 8.5, there was a significant range

expansion of B. zonata in Western Sahara, and in Southern Africa but with medium climatic

suitability. On the contrary, RCP 2.6 showed considerable decrease in B. zonata range expan-

sion in Central, East and West Africa. All the models under current and future climate change

scenarios revealed medium climatic suitability for B. zonata in Madagascar. However, when

the area under production of B. zonata host plants were taken into consideration the resultant

overall habitat suitability map demonstrated less invasion risk for areas that do not currently

grow B. zonata’s host plants. In general, all agricultural areas where B. zonata host crops are

currently grown, and the climatic suitability score is high are considered at higher risk of inva-

sion by the pest.

Furthermore, our models demonstrated that B. zonata will potentially disperse naturally

with decreasing geographical reachability following the normal curve from the present occur-

rence point locations. Similar use of the Gaussian probability density functions to model the

dispersal pattern of an invasive fish species [Lagocephalus sceleratus (Gmelin)] to uninvaded

areas in the Mediterranean sea from its known locations has been reported [36]. Given the

invasive traits of L. sceleratus its natural spread pattern is likely to be closely related to that of

B. zonata. Gilbert et al. [79] also developed a diffusion model to forecast the potential spread of

the horse-chestnut leaf miner Cameraria ohridella which was used as a reference against which

he compared other leptokurtic models for the pest. Similarly, our simple natural spread model

could be used as reference for other leptokurtic models of B. zonata. Our findings add to the

pool of knowledge of previous studies on the potential distribution of invasive species and how
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they interact with their overall habitat suitability with special emphasis on B. zonata’ natural

dispersal.

The simple natural dispersal model developed here complements baseline ENM algorithms

which do not support explicit dispersal mechanisms. It supports the concept of short-distance

dispersal as an important modeling framework to understand the spread of invasive fruit flies

locally. While existing studies acknowledge the limitations of the Gaussian dispersal kernel in

realistically modeling human- mediated dispersal through long distance dispersal [43], it ade-

quately represents dispersal by diffusion. While we acknowledge the limitation in our study to

model long-distance and stratified dispersal, our model can be used as a reference against

which leptokurtic dispersal of B. zonata can be compared in future. It adequately models

short- distance dispersal like the classical spread models and can be applied in local contexts

[37,38]. The invasion of B. zonata will likely involve short and long distance dispersal or a

combination of the two which is known as stratified dispersal [1,3,40] resulting in higher rates

of spread. This is a complex stochastic spatiotemporal process which involves individual fruit

flies dispersing and interacting in a nonlinear matter, and this is better modeled by other

approaches like individual based models [3,40].

The predictions for B. zonata suggest that it could be one of the most serious pests globally

due to its ability to tolerate harsh environmental conditions, especially in the northern parts of

Africa [5,20], where it is more competitive than several other tephritid species. Libya, Egypt,

and Sudan have the highest risk of further invasion and recurrent spread into new areas due to

the heterogeneous agricultural landscape of the Mediterranean region, characterized by

mixed-fruit and vegetable orchards and therefore deserves special attention. Therefore, the

suggestion that cold and dry stress were among the factors that limits B. zonata’s distributional

range in these areas might no longer be applicable. Although to date there are no records of B.

zonata being captured from nationwide monitoring programs in neighbouring countries to

Sudan, the potential invasion risk of these countries in the region remains high.

While dispersal is affected by several factors presumably important to B. zonata’s spread

our simple dispersal model did not take into account spatial heterogeneity, dispersal barriers

(such as deserts, oceans, mountains) that limit the distances the fruit fly covers in certain direc-

tions, natural enemies and human activities such as movement of commodities. While we

assume a homogeneous environment, habitat variability plays a key role in the spatial spread

of insect pests. In real-world ecosystems the environment is mostly heterogeneous and can

greatly affect the rate and pattern of invasive spread. Spreading invasive insects are affected by

several natural and human-made obstacles. In addition habitat fragmentation and other spatial

arrangements of the favourable habitats have been noted to alter spread patterns of invasive

species [2,3].

However, there is scope for improving the delineation of areas that are likely to be invaded

as more datasets on B. zonata become available. Therefore, in future studies and models it will

be important to consider some of these factors to improve understanding of their potential

role in the distribution of an invasive species such as B. zonata.

Our findings provide important information to significantly help reformulation of policy

decisions, assist government extension officers and farmers to make adaptive agricultural

management strategies. This allows for enhanced monitoring and surveillance, and designing

of local, regional and national-level phytosanitary and integrated pest management options to

limit the spread and reduce impact of B. zonata in the invaded range. The integration of B.

zonata distribution maps generated under the various climate change scenarios into agricul-

tural landscape management decisions would help to increase crop productivity, secure food

production and livelihoods of farmers in affected areas where B. zonata is likely to expand its

ecological niche under climate change. Our modeling results under different future climate
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change scenarios further enhances awareness on the potential threats of spatial expansion of B.

zonata by the year 2050 and serve as a decision-support tool for early warning signals to guide

preparedness for possible invasions.
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