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Abstract

Background: Streptococcus agalactiae (Group B Streptococcus) is a leading cause of sepsis and meningitis in newborns.
Most bacterial pathogens, including gram-positive bacteria, have long filamentous structures known as pili extending from
their surface. Although pili are described as adhesive organelles, they have been also implicated in many other functions
including thwarting the host immune responses. We previously characterized the pilus-encoding operon PI-2a (gbs1479-
1474) in strain NEM316. This pilus is composed of three structural subunit proteins: PilA (Gbs1478), PilB (Gbs1477), and PilC
(Gbs1474), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component
whereas PilA, the pilus associated adhesin, and PilC the pilus anchor are both accessory proteins incorporated into the pilus
backbone.

Methodology/Principal Findings: In this study, the role of the major pilin subunit PilB was tested in systemic virulence
using 6-weeks old and newborn mice. Notably, the non-piliated DpilB mutant was less virulent than its wild-type
counterpart in the newborn mice model. Next, we investigated the possible role(s) of PilB in resistance to innate immune
host defenses, i.e. resistance to macrophage killing and to antimicrobial peptides. Phagocytosis and survival of wild-type
NEM316 and its isogenic DpilB mutant in immortalized RAW 264.7 murine macrophages were not significantly different
whereas the isogenic DsodA mutant was more susceptible to killing. These results were confirmed using primary peritoneal
macrophages. We also tested the activities of five cationic antimicrobial peptides (AMP-1D, LL-37, colistin, polymyxin B, and
mCRAMP) and found no significant difference between WT and DpilB strains whereas the isogenic dltA mutant showed
increased sensitivity.

Conclusions/Significance: These results question the previously described role of PilB pilus in resistance to the host
immune defenses. Interestingly, PilB was found to be important for virulence in the neonatal context.
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Introduction

Streptococcus agalactiae (also referred to as Group B Streptococcus,

GBS) is a gram-positive encapsulated bacterium responsible for

life-threatening infections in newborns, elderly, and adults with

underlying diseases [1,2]. Two distinct clinical syndromes, early-

onset disease (EOD) or late-onset disease (LOD) have been

described in neonates and young infants [3]. For EOD, the main

route of infection is assumed to be a vertical transmission from

inhalation during parturition of S. agalactiae-contaminated vaginal

or amniotic fluid, resulting in subsequent systemic infection after

translocation across the respiratory epithelium. For LOD, the

mode of transmission and the infection route still remains unclear.

Once into the bloodstream, S. agalactiae can cause septicemia and

then cross the blood-brain barrier to cause meningitis.

Bacterial pili have recently been recognized in major human

pathogens such as S. agalactiae, Streptococcus pyogenes (GAS), and

Streptococcus pneumoniae (for reviews see [4,5,6,7,8,9]). Sortase-

mediated pilus assembly was first demonstrated in Corynebacterium

diphtheriae [10,11] and these pioneer studies revealed the existence

of three conserved motifs within the major pilin subunit that are

necessary for pilus formation: i) the pilin motif (WxxxVxVYPK); ii)

the E-box domain (YxLxETxAPxGY); and iii) the cell wall sorting

signal (LPxTG followed by a hydrophobic domain and a positively

charged tail). The current model for pilus assembly is as follows:

the major subunit is assembled to form a pilus by a cis-encoded

sortase that catalyzes the covalent attachment of the conserved

lysyl residue of the pilin motif of one subunit with the conserved

threonyl residue of the LPxTG motif of another subunit. In

addition, one or more accessory subunits are incorporated into the
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pilus by an as yet unknown mechanism that requires the pilus-

specific sortase. The crystallographic structures of two major pilins

have now shown that the E-box domain is involved in the

formation of intramolecular isopeptide bond conferring higher

stability to the pilin monomer [12,13]. Then, during the final step,

the pilus fiber is covalently linked to the peptidoglycan by either

the pilus-specific or the housekeeping sortase. This mechanism of

pilus assembly catalyzed by class C sortases has now been

characterized in several gram-positive pathogens using similar

genetic and biochemical analyses [14,15,16,17,18,19,20,21,22].

Three genomic loci (PI-1, PI-2a, and PI-2b) have been described

in GBS strains [23], the latter two being mutually exclusive as they

are located at the same chromosomal location. In a survey of 289

GBS clinical isolates, PI-1, PI-2a, and PI-2b were detected in 72%,

73%, and 27% of the strains, the combination of PI-1 + PI-2a being

the most frequent [24]. We and others previously carried out a

detailed structural and functional analysis of the pilus locus PI-2a

(gbs1479–1474) in GBS strain NEM316 [16,23]. This locus encodes

the three structural pilus subunits PilA (Gbs1478), PilB (Gbs1477),

and PilC (Gbs1474) whose assembly involves two class C sortases

(SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component;

PilC is a minor associated component mainly localized at the base of

the pilus [25]; and PilA is the adhesin located at intervals along the

pilus backbone [16]. The PI-2a GBS pili have also been implicated

in mediating attachment to human epithelial cells [16,26,27], in

biofilm formation [26,28], in the adhesion and invasion of brain

microvascular endothelial cells [29], and in promoting transepithe-

lial migration [30].

Intriguingly, the pilin subunit PilB of PI-2a was also reported to

mediate resistance to cathelicidin antimicrobial peptide and

phagocyte killing, to increase bloodstream survival, and to confer

virulence in a mouse challenge model [31].

Here, we re-investigate the contribution of PilB in the virulence

of strain NEM316 using two different mice models and in

resistance to innate host immune defenses by testing GBS survival

to killing by macrophages or antimicrobial peptides.

Results

PilB mutant is attenuated for virulence in a neonatal
mouse infection model

To investigate the role of the pilus in invasive disease, we made

use of the previously described in-frame deletion mutant of

gbs1477, encoding the backbone protein PilB in GBS strain

NEM316 [16] in combination with the heterologous expression of

PilB under the constitutive lactococcal p23 promoter in the non-

pathogenic host Lactococcus lactis strain NZ9000. As shown by

Western blotting using anti-PilB polyclonal antibody, expression of

pilB in L. lactis strain NZ9000 was associated with the presence in

the cell wall extracts of a band of 75 kDa corresponding to PilB

monomer that was missing in the control strain L. lactis harboring

the cloning vector without DNA insert (Fig. 1). As previously

shown [16], PilB appears mainly as a polymer in GBS strain

NEM316 (Fig. 1) whereas PilB monomers are directly anchored to

the cell wall in L. lactis.

S. agalactiae and lactococcal strains were then tested in parallel

for 6-weeks old CD1 mice were challenged intravenously with two

doses (107 or 56107 CFU) of GBS NEM316 and DpilB mutant,

and with a higher dose (56108 CFU) of L. lactis strains NZ9000

expressing or not pilB, and blood was collected 24 h later to

enumerate viable bacterial CFUs. As shown in Fig. 2A and 2B, no

significant differences were found between strains expressing or

not pilB in these conditions. It is worth noting that the inter-animal

variability is quite important in these experiments.

We then tested the role of PilB in a neonatal sepsis model.

BALB/c mice (#24 h-old) were infected subcutaneously with low

(17 to 30 CFU) and high (30 to 60 CFU) GBS challenge inoculum

(Fig. 2C and 2D, respectively). At low dose, only 60% of the mice

infected with 17 CFU of WT strain survived whereas 100% of

mice infected with 30 CFU of DpilB mutant survived (Fig 2C).

More strikingly, only 40% of the mice infected with 30 CFU of

WT strain survived whereas all the mice survived when infected

with 60 CFU of DpilB mutant (Fig. 2D). Thus in both experiments,

we consistently observed that a higher number of mice survived

when challenged with DpilB mutant as compared to WT strain

after 24 h post-infection demonstrating the importance of PilB

pilus of S. agalactiae NEM316 in the neonatal context.

PilB does not promote bacterial survival in murine
macrophages

The survival of GBS strain NEM316 and its isogenic non-

piliated mutant DpilB was compared in the widely used murine

macrophage cell line RAW 264.7. We also included as control the

NEM316DsodA mutant which was previously shown to display

increased susceptibility to bacterial killing by macrophages [32].

As shown in Fig. 3A, the wild-type strain NEM316 (WT) and the

DpilB mutant displayed a similar survival kinetic in this phagocytic

cell line. In contrast, survival of the isogenic DsodA mutant was

significantly reduced compared to the wild-type strain.

Since phagocytic cell lines are considered to be less harmful for

bacteria than primary macrophages, we performed similar

Figure 1. Surface expression of pilB in S. agalactiae and in
recombinant L. lactis strains. Immunoblots of cell-wall protein
extracts of GBS and recombinant L. lactis strains with the antiserum
against PilB. Numbers indicate the size of molecular weight marker in
kDa. The positions of the monomeric (m) and polymeric (p) form of PilB
are marked by arrowheads.
doi:10.1371/journal.pone.0018747.g001
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experiments using thioglycolate-elicitated murine peritoneal mac-

rophages. S. agalactiae and lactococcal strains were tested in parallel

for survival in murine peritoneal macrophages (Fig. 3B). Whereas

piliated S. agalactiae NEM316 WT and non-piliated DpilB mutant

survived similarly, a dramatic phagocytic killing of both lacto-

coccal strains was observed (20-fold decreased as compared to

GBS strains). No gain of function was noticed for the L. lactis strain

expressing pilB when compared to the L. lactis strain expressing the

vector alone.

Altogether these results indicate that NEM316 PilB is not

involved in resistance to bacterial killing by macrophages.

PilB does not confer resistance to antimicrobial peptides
It has been shown by others that GBS NCTC10/84DpilB

exhibited enhanced susceptibility to various cationic antimicrobial

peptides CAMPs (mCRAMP, polymyxin B, and LL-37). We thus

tested the activities of four cationic molecules having similar net

charges such as AMP-1D (+6), LL-37 (+6), colistin (+5) and

polymyxin B (+5) by determining the minimal inhibitory

concentration required to inhibit the growth of 90% of the

bacteria (MIC90). As shown in Table 1, no difference was found

between GBS WT and the isogenic DpilB mutant. In contrast, the

dltA mutant showed increased sensitivity to these CAMPs, as

shown previously [33]. For consistency with our animal models,

we also tested the effect of various concentrations of the murine

cathelicidin mCRAMP (+6) on the growth curve of WT, DpilB,

and DdltA in TH medium (Fig. 4). Again, no significant difference

was found between WT and the DpilB mutant. Similar results were

obtained using this experimental condition for the three other

tested CAMPs: colistine, AMP-1D, and polymyxin B (data not

shown). We also observed that expression of pilB in L. lactis

NZ9000 did not modify the MIC90 towards these antibiotics

(Table 1), nor the bacterial growth (Fig. S1). Collectively, our

results do not support a role for the pilus in resistance to cationic

antimicrobial peptides.

Discussion

The goal of the present work was to evaluate the contribution of

the pilin subunit PilB of the GBS pilus-encoding operon PI-2a to

bacterial virulence. This was done either by deleting the

corresponding gene pilB in the WT serotype III strain NEM316

or by expressing it in the food grade bacterium L. lactis NZ9000. In

a 6 weeks old CD1 septicemic mouse model, we observed that PilB

was dispensable for bacterial virulence in both genetic back-

grounds. These results conflict with those of Maisey et al. (2008)

who reported that PilB of GBS NCTC10/84, a highly hemolytic

serotype V strain [34], conferred virulence to the parental GBS

strain and to L. lactis, as assessed in a similar animal model.

Moreover, over-expression of the pilB gene alone in the non-

pathogenic L. lactis was found to enhance resistance to phagocyte

killing, increased bloodstream survival, and conferred virulence in

a mouse model [31]. The latter observation was intriguing as it

suggested that PilB is an essential GBS virulence factor, being

sufficient to turn the unencapsulated and non-pathogenic

bacterium L. lactis into an invasive extracellular bacteria.

The molecular basis of PilB-associated virulence is thought to

reside in its ability to confer resistance to CAMP and phagocytosis,

Figure 2. Role of PilB in virulence. A- Bacterial loads in blood of 6-weeks CD1 mice collected 24 h post-intravenous injection with GBS or
recombinant L. lactis strains (4 mice per strain). B- Similar experiment than in A with higher GBS inoculum (6 mice per strain). C- Survival index of
newborn mice infected intraperitoneally with lower inoculum (7 pups per strain). D- Same experiment as in C with higher inoculum (9 pups per
strain).
doi:10.1371/journal.pone.0018747.g002
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and in consequence to bloodstream survival. To exert antimicro-

bial activity, CAMPs must bind to the bacterial surface, whether

they act by the inhibition of biosynthetic processes on the bacterial

surface, pore formation in the cytoplasmic membrane, or yet other

mechanisms. The bacterial surface is negatively charged owing to

the production of anionic polymers. Moreover, the outer and

inner leaflets of the bacterial cytoplasmic membrane are also

negatively charged. In Gram-positive bacteria, resistance to

CAMPs is mainly due to an increase of the positive surface

charge through increase in D-alanylation of the LTAs or

incorporation of L-lysine into membrane phosphatidylglycerol,

more rarely to specific proteolytic degradation [35]. PilB from

GBS strains NEM316 and NCTC10/84 display 84.5% of

sequence identity but the pilin subunit from NEM316 is positively

charged (+2; pKi 8.44) at neutral pH whereas that from

NCTC10/84 is slightly electronegative (22; pKi 6.57). These

observations, combined with the fact that GBS pili are not evenly

distributed along the bacterial surface, strongly argue against their

involvement in CAMP resistance by electrostatic repulsion and it is

worth noting that neither proteins contain any known proteolytic

Figure 3. Bacterial survival in cultured and primary murine macrophages. A- Immortalized RAW264.7 were cultured in vitro and exposed to
S. agalactiae NEM316 (WT), the non-piliated mutant (DpilB), and the sodA mutant (NEM1640) at an m.o.i. of 10 bacteria per cell in 24-wells plate. Error
bars represent the standard deviation of three independent experiments done in duplicate for each strain studied. B- Survival of S. agalactiae and L.
lactis strains in thioglycolate-elicitated primary murine peritoneal macrophages. Bacteria in exponential phase (OD600 of about 0.6) were added to
macrophages (m.o.i. of 10) for 30 min and then survival was measured after 2 h30 at 37uC. Error bars represent the standard deviation of a
representative experiment done in triplicate for each strain studied.
doi:10.1371/journal.pone.0018747.g003

Table 1. Minimal Inhibitory Concentrations (MIC90) of various
antimicrobial peptides towards GBS strain NEM316 (WT) and
its derivatives and L. lactis NZ9000 expressing or not the pilus
backbone subunit encoding gene pilB from the multicopy
vector pOri23.

S. agalactiae L. lactis

WT DpilB DdltA vec vecVpilB

AMP-1D 8 8 4 4 4

LL-37 .64 .64 16 16 16

Colistin .256 .256 16 .256 .256

Polymyxin B 128 128 8 .256 .256

Values are expressed in mg/ml.
doi:10.1371/journal.pone.0018747.t001
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domain. Consistently, we observed that NEM316 PilB did not

modulate the susceptibility of the piliated original host nor that of

L. lactis towards 5 CAMPs including mCRAMP, whereas the

NEM316 DdltA mutant displayed increased susceptibility towards

all tested molecules.

We also demonstrated that NEM316 PilB is dispensable for

entry and survival within two different mouse-derived macro-

phage-like cell lines, RAW 264.7 (Fig. 3A) and MH-S of alveolar

origin (data not shown), in non-opsonic conditions. Macro-

phages respond to infection or injury by changing from a

« resting » cellular phenotype to an « activated » state defined

by the expression of various cytotoxic effector molecules.

Regulation of the transition from a resting to an activated state

is effected by cytokines and/or pathogenic signals. Thioglycolate

is often used to induce peritonitis in mice to recover primary

peritoneal macrophages. We thus tested survival of wild-type

GBS strain NEM316 and its isogenic DpilB mutant in this

cellular model mimicking in vivo situation and, again, did not

found any significant differences between WT and mutant

strains (Fig. 3). Heterologous expression of pilB from NEM316

in L. lactis did not confer any significant advantage for survival

in primary activated macrophages, as compared to the control

strain (Fig. 3). In conclusion, our results do not substantiate the

proposal that PilB is a major player in resistance to innate

immune host defenses, i.e. resistance to macrophage killing and

to antimicrobial peptides. However, we cannot exclude that

phenotypic differences are not due to sequence variations in the

PilB proteins.

As natural GBS infections primarily occur in the neonatal

context, we compared the virulence of NEM316 WT and DpilB

strains in newborn BALB/c mice and found that the DpilB was

significantly less virulent than the wild-type NEM316 strain (Fig.

1CD). Thus, NEM316 PilB appears to contribute to virulence in

neonate but not in adult mice. In this work, it is worth

mentioning that newborn and adult mice were infected

subcutaneously and intravenously, respectively. However, we

consider unlikely that the observed difference in virulence reflects

the use of different modes of injection as, in our experience, adult

mice are highly sensitive to a GBS challenge administered i.v.

Indeed, we have infected subcutaneously two- and three- months

old adult mice (groups of 12 mice) with high doses of GBS

NEM316, ranging from 2.56108 to 109 cfu, and no mortality was

observed (data not shown).

Besides having an immature immune system, newborn are also

more permissive to infections than adult mice due to increased

bacterial translocation through the epithelia of their major organs,

such as intestine, lung, kidney, liver, and brain [36,37]. The GBS

PI-2a pilus operon was reported to promote biofilm formation,

adherence to human epithelial cells and transepithelial migration,

and adhesion and invasion of brain microvascular endothelial

cells. These phenotypic traits may therefore strongly impact GBS

virulence in neonate mice but not in adult mice, as observed in this

study. Our results also illustrate the fact that the definition of a

virulence factor primarily depends on the animal model used.

Hence, GBS pilus can be considered as a virulence factor in the

neonatal context.

Materials and Methods

Ethics statement
All of the animal experiments described in the present study were

conducted at the Metchnikoff Department of the University of

Messina according to the European Union guidelines for the

handling of laboratory animals (http://ec.europa.eu/environment/

chemicals/lab_animals/home_en.html) and were approved by the

relevant national authority (Istituto Superiore di Sanità of Italy).

Bacterial strains, media, and growth conditions
Streptococcus agalactiae NEM316 was responsible for a fatal

septicaemia and belongs to the capsular serotype III. The

complete genome sequence of this strain has been determined

[38]. S. agalactiae were grown in Todd-Hewitt (TH) medium

(Difco-BD). Lactococcus lactis strain NZ9000 [39] was grown in M17

medium supplemented with 1% glucose (GM17). For antibiotic

selection in L. lactis, 5 mg/ml erythromycin was added to GM17.

Heterologous expression of pilB in L. lactis strain was realized as

follows: The full-lengh pilB gene was amplified from genomic

DNA of strain NEM316 and subcloned in the lactococcal vector

pIL253::P23 [40], a high copy number erythromycin resistance

plasmid expressing the cloned gene from the strong constitutive

promoter P23 [41]. The primers used for pilB amplification were:

1477a (59-ATG GGC CCA TGA AAA AAA TCA ACA AAT

GTC TTA CAG T – 39) and 1477b (59 - ATA CTG CAG CCT

AAA TAA TGG CTC TTG CTT ATG – 39). The 2.1-kb PCR

product was then cut by ApaI and PstI (New England Biolabs),

purified, and cloned into pIL253::P23 cut with the same enzymes

resulting in pIL253::P23Vgbs1477 (pVE5616). This ligation

mixture was transformed to electrocompetent L. lactis IL1403.

After verification by DNA sequencing, pVE5616 was transferred

into L. lactis NZ9000.

General DNA techniques
Standard recombinant techniques were used for nucleic acid

cloning and restriction analysis [42]. Plasmid DNA from E. coli was

prepared by rapid alkaline lysis using the Nucleospin Plasmid kit

(Macherey-Nagel). Genomic DNA from S. agalactiae was prepared

using the DNeasy Blood and Tissue kit (Qiagen). PCR was carried

out with the High-Fidelity Phusion DNA polymerase as recom-

mended by the manufacturer (Finnzymes).

Immunoblotting
Cell wall protein extracts were prepared by harvesting 50 ml of

bacteria in early stationary phase (0D600 = 1). The bacterial pellet

was washed once in Tris-HCl buffer (50 mM, pH 7.3) and once in

the mutanolysin digestion buffer (Tris-HCl 50 mM pH 7.3

supplemented with 20% sucrose and a complete protease inhibitor

cocktail (Roche)). Mutanolysin (Sigma) dissolved to 5,000 U ml21

in potassium phosphate buffer (pH 6.2) was then added to the

bacterial suspension to give a final concentration of 100 U ml21

and samples were rotated for 2 h at 37uC. After centrifuging at

13,000 g for 15 min at 4uC, supernatants corresponding to the cell

wall extracts were analyzed on SDS-PAGE or kept frozen at

220uC. For western blotting, proteins were boiled in Laemmli

Figure 4. Effect of the murine cathelicidin mCRAMP on bacterial growth. Prewarmed TH broth buffered with HEPES (100 mM) and
containing or not mCRAMP was inoculated with overnight NEM316 (A), NEM316DpilB (B), and NEM316DdltA (C) to give approximately 107 cfu/ml. The
inoculated broth was distributed (150 ml) in 96 wells plate incubated at 37uC with constant shaking in a plate reader and the OD600 nm was recorded
every 20 minutes for 12 hours. Blank values (TH-HEPES) were subtracted from experimental values to eliminate background readings. m TH-HEPES
medium without peptide (sterile water was added instead); % and TH-Hepes medium containing 100 and 200 mg/ml of mCRAMP respectively.
These results are representative of three independent experiments.
doi:10.1371/journal.pone.0018747.g004
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sample buffer, resolved on Tris-Acetate Criterion XT gradient gels

4–12% SDS-PAGE gels (BioRad) and transferred to nitrocellulose

membrane (Hybond-C, Amersham). PilB was detected using

polyclonal antibodies and horseradish peroxydase (HRP)-coupled

anti-rabbit secondary antibodies (Zymed) and the Western pico

chemiluminescence kit (Thermo scientific).

Adult mouse infection model
Two groups of male CD-1 mice (6- weeks old) were injected

intravenously (i.v.) via the tail vein with the indicated amounts of

early logarithmic-phase of GBS or L. lactis strains. Mice were

monitored daily for survival. Bacteremia was assessed at 24 h by

blood collection and enumeration of CFUs on TH or M17 agar

plates.

Neonatal mouse model of GBS sepsis
Neonatal BALB/c mice were used for virulence studies.

Randomized groups of 7 to 10 mice pups were inoculated

subcutaneously with a dilution of mild-log-phase strain NEM316

or DpilB (0.03 ml of each strain in 0.9% NaCl). Under these

condition (from 17 to 60 CFU/mouse), GBS are contained at the

inoculation site or spread systematically, depending on the

bacterial intrinsic virulence factor and the ability of the host

immune system to prevent bacterial grow. Mice were observed

daily for up 8 days post-infection. In this model, deaths are rarely

observed after Day 5.

Assay for GBS intracellular survival in macrophages
Cells were infected at a multiplicity of infection (m.o.i.) of 10

bacteria per cell for 1 h at 37uC in 10% of CO2. The monolayers

were then washed four times with PBS and fresh medium

containing gentamicin (100 mg/ml) was added to kill extracellular

bacteria (time zero of the assay). To quantify intracellular GBS at

different times of post-infection, the supernatants were removed

and the cells were disrupted by the addition of 1 ml sterile

deionized ice-cold water and repeated pipetting. Serial dilutions of

the lysate were plated on TH agar for counting of viable bacteria.

Survival index was calculated as follows: (CFU on plate count/

CFU in original inoculum)6100. Assays were performed in

duplicate and were repeated at least three times.

Determination of the Minimal Inhibitory Concentration
(MIC)

The MICs (mg/ml) of S. agalactiae towards antimicrobial peptides

(AMP-1D, LL-37, colistin, and polymyxin B) were performed by a

dilution method in 96 wells polypropylene microplates (Costar,

Cambridge, MA) containing Todd-Hewitt (TH) broth buffered

with 100 mM HEPES using two biological replicates in duplicate.

Polymyxin B and colistin were purchased from Sigma whereas LL-

37 and AMP-1D were synthesized in the Department of Biological

Chemistry (Rehovot, Israel). Bacteria (approx. 105 CFU) were

added to wells containing increasing concentrations of the

antimicrobial peptides. Plates were incubated overnight at 37uC
and were then read at OD600 nm with a microplate reader BioTek

Synergy for bacterial growth. The MIC90 was considered and

expressed as the lowest peptide concentration inhibiting growth of

90% of the bacterial cells. The same experimental procedure was

used for L. lactis except that bacteria were grown at 30uC in M17

broth supplemented with glucose (1%) and erythromycin (5 mg/

ml).

Growth curves in the presence of mCRAMP
Overnight cultures of GBS in TH broth buffered with HEPES

(100 mM) were diluted in fresh media to give approximately

107 cfu/ml and 150 ml were distributed in 96 wells plate without

(control wells) or with mCRAMP at selected concentrations (test

wells). The microplate was incubated at 37uC with constant

shaking in the BioTek Synergy plate reader and the OD600 nm was

recorded every 20 min for 12 h. The same experimental

procedure was used for L. lactis except that bacteria were grown

at 30uC in M17 broth supplemented with glucose (1%) and

erythromycin (5 mg/ml). mCRAMP was purchased from TEBU.

Supporting Information

Figure S1 Effect of the murine cathelicidin mCRAMP on
bacterial growth. Overnight culture of the control strain L. lactis

NZ9000/vec (A) or the L. lactis NZ9000/vecVpilB strain

expressing the GBS PilB protein (B) were diluted in M17 broth

supplemented with glucose (1%) and erythromycin (5 mg/ml) to

give approximately 106 cfu/ml. The inoculated broths were

distributed (150 ml) in 96 wells plate incubated at 30uC with

constant shaking in a plate reader and the OD600 nm was recorded

every 20 minutes for 12 hours. Blank values (M17-glucose-

erythromycin) were subtracted from experimental values to

eliminate background readings. m, M17-glucose-erythromycin

medium without peptide (sterile water was added instead); &,

presence of the mCRAMP drug at 5 (light blue), 10 (violet), 20

(green), and 40 (red) mg/ml, respectively. These results are

representative of three independent experiments.
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