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Sport performance is influenced by several factors, including genetic susceptibility.
In the past years, specific single nucleotide polymorphisms have been associated
to sport performance; however, these effects should be considered in multivariable
prediction systems since they are related to a polygenic inheritance. The aim of
this study was to design a genetic endurance prediction score (GES) of endurance
performance and analyze its association with anthropometric, nutritional and sport
efficiency variables in a cross-sectional study within fifteen male cyclists. A statistically
significant positive relationship between GES and the VO2 maximum (P = 0.033),
VO2 VT1 (P = 0.049) and VO2 VT2 (P < 0.001) was observed. Moreover, additional
remarkable associations between genotype and the anthropometric, nutritional and
sport performance variables, were achieved. In addition, an interesting link between the
habit of consuming caffeinated beverages and the GES was observed. The outcomes
of the present study indicate a potential use of this genetic prediction algorithm in the
sports’ field, which may facilitate the finding of genetically talented athletes, improve
their training and food habits, as well as help in the improvement of physical conditions
of amateurs.

Keywords: SNP, genetics, exercise, functional validation, nutrition

INTRODUCTION

Athletic performance can be influenced by several factors. These can include extrinsic factors such
as the quality of training, the dietary habits, the technology used or the weather conditions (Sacha
and Quinn, 2011). Besides, intrinsic factors such as individual genetic profile also play an important
role (Peveler and Green, 2010). In fact, the study of the genetic influence on sports performance has
become a leading field of research.

Single nucleotide polymorphisms (SNPs) are among the genetic variants implicated in the
phenotypic differences that can influence individual physical abilities (Santos et al., 2016). To date,
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various links between several genetic variants and favorable
phenotypes for certain sports have been established (Santos et al.,
2016). This suggests that the presence of specific genotypes can
predispose an individual to competitive advantages in a particular
sport (Zilberman-Schapira et al., 2012).

For example, backed by a meta-analysis, the II genotype
of the angiotensin converting enzyme ACE insertion/deletion
(I/D) rs4340 has been significantly associated with endurance’s
discipline as compared with the ID and DD genotypes (Ma
et al., 2013). Specifically, it is suggested that the I allele implies
higher blood flow and sugar utilization by muscles, that facilitates
endurance performance (Woods et al., 2000). Additionally,
considering reported difficulties in genotyping ACE I/D, the
ACE rs4343 A and G alleles are admitted as equivalents to the
ACE rs4340 I and D alleles, respectively, and considered an
alternative method for genotyping of the ACE I/D polymorphism
(Glenn et al., 2009).

Moreover, the different genotypes of the peroxisome
proliferator activated receptor alpha PPARA rs4253778 have
also been associated with athlete’s performance. Concretely,
in a meta-analysis carried out by Lopez-Leon et al. (2016) the
GG genotype and G allele were significantly more common in
endurance athletes as compared to controls.

Besides, the α-actinin 3 (ACTN3) is a sarcomeric actin-
binding protein specifically expressed in fast twitch myofibers
of the skeletal muscle, required for explosive muscle contraction
(Wilson et al., 2012). But the gene encoding this protein also
seems to be associated with endurance capacities. In particular,
TT rs1815739 carriers were found to be more common in
endurance athletes as compared with sedentary individuals in
a sample of 395 Israeli (Eynon et al., 2009). They were also
described to obtain better results in an endurance test (Pasqua
et al., 2016), to exhibit a higher proportion of endurance-
associated type I myofibers and to prefer to skate long- than
short-distance races (Ahmetov et al., 2011).

Another gene with a potential association with endurance
capacities is the Aquaporin 1 AQP1 rs1049305 where C allele
carriers were faster in running performances than carriers of
the GG genotype (Martinez et al., 2009; Rivera et al., 2011;
Saunders et al., 2015).

Moreover, the CC genotype of the peroxisome proliferator
activated receptor gamma, coactivator 1 alpha PPARGC1A
rs8192678 has been described to be associated with high values of
aerobic performance (Akhmetov et al., 2007; Stefan et al., 2007;
Eynon et al., 2010b).

And finally, other SNPs such as the beta-3 adrenergic receptor
ADRB3 rs4994 (Santiago et al., 2011), the GA-binding protein
transcription factor, subunit beta 1 GABPB1 rs12594956 (Eynon
et al., 2010a, 2013), the collagen type V alpha 1 chain COL5A1
rs12722 (Brown et al., 2011; Posthumus et al., 2011) and the
hemochromatosis HFE rs1799945 (Grealy et al., 2015) have also
been associated with better endurance performance, although the
scientific evidence support for these associations is still scarce.

Thus, it is clear that there is a genetic influence, but there
is still a weak scientific evidence for most of the reported
associations. Besides, most studies that associate genetics with
physical capacities have focused on individual genes. However, as

a polygenic inheritance, various genes can make a contribution
to the overall outcome. For these reasons, we consider that
it is necessary to create more complex prediction algorithms,
including different genetic factors together. Therefore, in the
present study, we have developed a predictive algorithm of
endurance performance including 11 genes. In this report,
we present the associations of the predictive algorithm and
each of the SNPs with anthropometric, nutritional and sport
performance variables, in a group of 15 semi-professional cyclists.

MATERIALS AND METHODS

Subjects
Fifteen healthy male members of the Spanish Cycling Federation,
body mass index (BMI) 22.3 ± 2.5 aged 40.7 ± 7.0, with
at least 5 years of experience in national-level competitions
were recruited by the Sports Medicine University Center
(Complutense University of Madrid, Madrid, Spain) to
participate in the present study. All participants were non-
smokers. This research was conducted according to the
guidelines laid down in the Declaration of Helsinki and all
procedures involving human subjects were approved by the
Research Ethics Committee of the IMDEA Food Foundation
(PI-0031). Written informed consent to participate in the study
was obtained from all subjects.

Design
This was a cross-sectional clinical study where volunteers
attended two different centers to complete the study:

1) The Sports Medicine University Center to carry out a
maximal incremental treadmill test.

2) The Research Institute on Food and Health Sciences
“IMDEA Food” (Madrid, Spain) for anthropometric
measurements, body composition analysis, dietary records,
DNA collection and genotyping.

Methodology
Cardiopulmonary Exercise Test
All participants carried out an incremental (30 w/min) exercise
testing on a cycle ergometer (Cardgirus, Barcelona, Spain)
after 2 h of fasting. During the test, the heart rate (HR) was
measured using a 12-lead wireless electrocardiograph (Norav,
Wiesbaden, Germany).

Oxygen uptake (VO2), carbon dioxide output (VCO2) and
minute ventilation (VE) were assessed using the analyzer Jaeger
Oxycon-Pro (Hoechberg, Germany). The respiratory exchange
ratio (RER) was calculated as VCO2/VO2, while the VO2 pulse
as VO2/HR (Bergh et al., 2000). Every 2 min cyclists had to
estimate their feelings of exertion and pain using the Borg Rating
of Perceived Exertion (RPE) Scale (Borg et al., 1985).

All participants achieved maximal exercise criteria: VO2
plateau (considered as VO2 max) which was estimated as a VO2
increase lower than 150 mL/min for two consecutive periods
(Petot et al., 2012), RPE higher than 16 (Bergh et al., 2000), RER
above 1.10 and a HR upper 90% of the theoretical maximum
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HR (Howley et al., 1995). The maximum HR was calculated as
[(208.75−(0.73 × age)] (Tanaka et al., 2001).

The aerobic ventilatory threshold (VT1) was estimated using
the criteria of the ventilatory equivalent for VO2 (VE/VO2
ratio), corresponding to the rupture of the linearity in the
increment of VE. Finally, the anaerobic ventilatory threshold
(VT2) was calculated by the increase of the VCO2 equivalent
principles (VE/VCO2), as the second rupture of the linearity in
the increment of VE (Beaver et al., 1986).

Anthropometry and Lifestyle Parameters
Anthropometric measurements were determined while subjects
were wearing light clothing and no shoes. Height was assessed
to the nearest 0.1 cm using a stadiometer (Leicester-Biological
Medical Technology SL, Barcelona). Body weight, fat mass
and muscle mass percentages were evaluated using a BF511
Body Composition Monitor (BF511- OMRON Healthcare UK,
LT, Kyoto, Japan). Brachial, contracted arm, waist, hip and
leg circumferences were measured with an inextensible tape
(KaWe Kirchner & Wilhelm GmbH, Asperg, Germany; range
0–150 cm, 1 mm of precision). A caliper (Holtain Ltd.,
Crymych, United Kingdom; 10 g/mm2 constant pressure; range
0–39 mm and 0.1 mm of precision) was used for biceps, triceps,
subscapular, abdominal, supraspinal, front thigh and medial calf
skinfolds determinations. Moreover, the diameters of the femur
and humerus were also assessed using a small bone caliper (Nonio
sliding Bicondyleo, Holtain Ltd., United Kingdom). Systolic and
diastolic blood pressures were evaluated using an automatic
digital blood pressure monitor Model M3 (OMRON Healthcare
UK, LT, Kyoto, Japan) in the right arm, with the patient seated
and relaxed. Measurements were taken three times after a 5-min
resting period, following World Health Organization (WHO)
criteria (Whitworth and Chalmers, 2004). Finally, with the
different anthropometric data, the BMI was calculated as the body
weight divided by the squared height (kg/m2) and somatotype
values (endomorphic, mesomorphic, and ectomorphic values)
accordingly to Heath-Carter method (Carter and Heath, 1990).

The food habits of each participant were recorded using
a validated 3-day dietary food record and a food frequency
questionnaire (Aguirre-Jaime et al., 2008). Subsequently, the
composition of the different dietary records was analyzed using
the DIAL software (2.16 version Alce Ingeniería, Madrid, Spain).
For the calculation of the Healthy Eating Index score (Guenther
et al., 2013), the DIAL program gives different values ranging
from 0 to 100 considering the daily servings of cereals, vegetables,
fruits, dairy products, and meat; the percentage of energy
provided by total and saturated fats; the amount of cholesterol
and sodium per day and the number of different foods consumed.
The final score is classified into five categories: an “excellent
diet” (>80 points), a “very good diet” (71–80 points), a “good
diet” (61–70 points), an “acceptable diet” (51–60 points), or an
“inadequate diet” (0–50 points).

Genotyping of the Population
A sample of 500 µl of peripheral capillary blood of each volunteer
was drawn for DNA extraction. To perform the subsequent
analysis of the samples, genomic DNA was extracted from the

cellular fraction collected by the Genomic QIAamp DNA Blood
Kit Mini Kit (QIAGEN, Spain). The samples were genotyped
with TaqMan Assays by the high-performance QuantStudio Real-
Time PCR (Applied Biosystem, United States).

Statistical Analysis
Data were analyzed using the R Statistical Software Version 3.4.11.
The description of the qualitative data was made in the form of
absolute frequencies and percentages and the quantitative data
by mean and standard deviation. The Mann–Whitney U test
was used to check for significant differences in the continuous
variables (not always normally distributed) for the different
genotypes. The Spearman correlation coefficient was used for the
association between the algorithm and the other variables. The
Bonferroni correction was also applied to control against type-I
errors for multiple tests. All the statistical tests were two-tailed.
Statistical significance was assumed when P < 0.05.

Selection of SNPs and Design of the GES
An exhaustive literature review of the scientific databases
(Pubmed, Medline, Web of Sciences) was carried out to
identify all studies that analyzed the relationship between
one or more SNP and sports performance. A selection of
11 SNPs was made considering the European frequencies
of each SNP according to Ensembl database, the scientific
evidence of each association and its availability for TaqMan SNP
Genotyping Assay. Among them, nine SNPs were associated
with endurance capacities and two SNPs were mainly related to
power abilities.

Once the SNPs selection was completed, an algorithm
to predict endurance capacities based on the nine SNPs
associated with endurance performance was established
(Table 1). Depending on the scientific evidence, each SNP
was given a different weight to the total GES. Therefore,
the two SNPs with the highest scientific evidence based
on meta-analysis, ACE and PPARα, were given the highest
normalized weight of the GES, contributing 22.2% each of
the total value of the algorithm. On the other hand, those
SNPs whose evidence was based on at least three studies
with positive and conclusive results (ACTN3, AQP1, and
PPARGC1A) were given a weight of 11.1% each, of the total
value of the algorithm. Besides, to the remaining 4 SNPs, with
less scientific evidence and some contradictory results, each one
was given a weight of 5.6% to the final GES. Finally, based on
the literature, the three possible genotypes of each SNP were
classified into three categories: “favorable genotypes” (GES
weight × 1), which were those associated with better endurance
performance; “intermediate genotypes” (GES weight × 0.5),
which were those with a neutral effect on endurance abilities,
and “unfavorable genotypes” (GES weight × 0), which were
those with a negative effect. For example, an individual with
all favorable SNPs, would have a GES value of 100: 22.2 × 1
(ACE) + 22.2 × 1 (PPARα) + 11.1 × 1 (ACTN3) + 11.1 × 1
(AQP1) + 11.1 × 1 (PPARGC1A) + 5.6 × 1 (ADRB3) + 5.6 × 1
(GABPB1) + 5.6 × 1 (COL5A1) + 5.6 × 1 (HFE) = 100.

1www.r-project.org
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TABLE 1 | Genes included in the genetic endurance prediction score (GES).

Gene (Complete name) Gene (Acronym)
SNP

Specific
association

Genotypes
classification

Frequency (%) Contribution (%) References

Angiotensin converting
enzyme

ACE rs4343 Blood pressure
regulation

AA favorable 19.1 22.2 Metanalysis (Ma et al., 2013)

AG intermediate 48.9

GG unfavorable 32.0

Alpha-actinin-3 ACTN3 rs1815739 Muscle contraction TT favorable 17.9 11.1 Eynon et al., 2009; Ahmetov et al.,
2011; Pasqua et al., 2016

CT intermediate 51.1

CC intermediate 31.0

Beta-3 adrenergic receptor ADRB3 rs4994 Lipolysis and
thermogenesis
stimulation

GG favorable 0.8 5.6 Santiago et al., 2011

AG favorable 14.7

AA unfavorable 84.5

Aquaporin 1 AQP1 rs1049305 Osmotic balance
by water transport

CC favorable 15.5 11.1 Martinez et al., 2009; Rivera et al.,
2011; Saunders et al., 2015

CG favorable 46.9

GG unfavorable 37.6

GA-binding protein
transcription factor, β

subunit 1

GABPB1
rs12594956

Energy synthesis in
mitochondria

AA favorable 38.0 5.6 Eynon et al., 2010a, 2013

AC intermediate 44.9

CC intermediate 17.1

Collagen type V alpha 1
chain

COL5A1 rs12722 Fibrillogenesis in
ligaments and
tendons

TT favorable 35.6 5.6 Brown et al., 2011; Posthumus
et al., 2011

CT intermediate 45.9

CC intermediate 18.5

Hemochromatosis HFE rs1799945 Iron absorption CG favorable 27.2 5.6 Grealy et al., 2015

GG intermediate 3.6

CC intermediate 69.2

Peroxisome proliferator
activated receptor alpha

PPARα rs4253778 Metabolism of
energy, lipids and
carbohydrates

GG favorable 65.6 22.2 Metanalysis (Lopez-Leon et al.,
2016)

CG intermediate 30.4

CC unfavorable 4.0

Peroxisome proliferator
activated receptor, gamma,
coactivator 1, alpha

PPARGC1A
rs8192678

Glucose
transportation and
lipid and glucose
oxidation

CC favorable 41.2 11.1 Akhmetov et al., 2007; Stefan et al.,
2007; Eynon et al., 2010b

CT unfavorable 45.5

TT unfavorable 13.3

Genetic endurance prediction score (GES): 2.22 ACE + 2.22 PPARα + 1.11 ACTN3 + 1.11 AQP1 + 1.11 PPARGC1A + 5.6 ADRB3 + 5.6 GABPB1 + 5.6
COL5A1 + 5.6 HFE.

However, an individual with unfavorable ACE and PPARα

SNPs and all the other SNPs favorable, would have a score
of 56: 22.2 × 0 (ACE) + 22.2 × 0 (PPARα) + 11.1 × 1
(ACTN3) + 11.1 × 1 (AQP1) + 11.1 × 1 (PPARGC1A) + 5.6 × 1
(ADRB3) + 5.6 × 1 (GABPB1) + 5.6 × 1 (COL5A1) + 5.6 × 1
(HFE) = 56.

The selected power-related genotypes were:

• Hypoxia inducible factor 1 alpha subunit HIF1A
rs11549465: CC (81.1%) unfavorable, CT (17.7%)
intermediate, TT (1.2%) favorable.

• Muscle-specific creatine kinase CKM rs8111989: TT
(48.3%) unfavorable, CT (43.3%) intermediate, CC (8.3%)
favorable.

RESULTS

Descriptive Analysis
Mean values of anthropometric, body composition, somatotype
and blood pressure of all cyclists are shown in Table 2.
As expected, the mean BMI and fat mass percentage values
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were in the range of “normal weight” [18.5–24.9 BMI, 12–
20% fat mass percentage according to the Spanish Society for
the Study of Obesity (Salas-Salvado et al., 2007)]. The three
somatotype components were around the moderate 3–5 rate
(Carter and Heath, 1990).

Moreover, the results of the analysis of the 3-day dietary
records can be observed in Table 3. Here, it can be appreciated
how the energy requirements of the cyclists were slightly higher
than the energy intakes, these lasts with a high variability between
the participants. Moreover, the mean Healthy Eating Index
resulted in a “good diet” which, as explained in the methodology,
is considered an intermediate value (61–70 points). This table
also shows the average of servings per group of food consumed
according to the Validated Food Frequency Questionnaire, where
we can observe that vegetables and fruits are the most consumed.

Finally, Table 4 describes the mean results of the
cardiopulmonary exercise test carried out at the Sports Medicine
University Center.

Association Analyses
The GES Correlates With the Cardiovascular Exercise
Test
Once established the prediction algorithm (Table 1), it was
related to the results obtained from the functional cardiovascular
exercise test (Table 2). The association analysis of the GES

TABLE 2 | Anthropometric, body composition, somatotype and blood
pressure variables.

Variables Mean (SD)

Age (years) 40.67 (6.97)

Body weight (kg) 70.49 (8.09)

Height (cm) 177.99 (4.71)

Body mass index 22.27 (2.47)

Fat mass (%) 14.43 (5.27)

Muscle mass (%) 40.61 (3.63)

Visceral fat classification 4.43 (2.59)

Waist circumference (cm) 78.95 (5.28)

Waist to hip ratio 0.82 (0.04)

Relaxed arm circumference (cm) 29.73 (2.23)

Flexed and tensed arm circumference (cm) 31.58 (2.21)

Biepicondylar humerus diameter (cm) 7.25 (0.29)

Biepicondylar femur diameter (cm) 9.92 (0.40)

Biceps skinfold (mm) 3.43 (0.90)

Triceps skinfold (mm) 7.55 (4.09)

Subscapular skinfold (mm) 9.05 (2.36)

Supraspinal skinfold (mm) 9.4 (6.03)

Abdominal skinfold (mm) 14.61 (9.24)

Front thigh skinfold (mm) 9.42 (4.98)

Calf circumference (cm) 36.89 (2.08)

Medial calf skinfold (mm) 4.98 (1.81)

Systolic blood pressure (mmHg) 126.8 (7.04)

Diastolic blood pressure (mmHg) 76.4 (6.38)

Endomorphic value 3.98 (1.24)

Mesomorphic value 2.79 (1.07)

Ectomorphic value 3.06 (1.03)

and the variables obtained in the cardiovascular exercise test,
revealed a statistically significant positive relationship between
the GES results and the VO2 max (P = 0.033, Figure 1), VO2
in VT1 (P = 0.049, ρ = 0.516) and VO2 in VT2 (P < 0.001,
ρ = 0.813) values.

As expected, SNPs included in the GES were also individually
associated with specific parameters related to individual

TABLE 3 | Dietary data.

Variables Mean (SD) Variables Mean (SD)

Energy requirements
(kcal)

3370 (348) Energy intake (kcal) 3192 (1123)

Proteins (% TCV) 16.35 (3.67) Carbohydrates (% TCV) 43.5 (10.62)

Sugars (% TCV) 19.62 (7.40) Lipids (% TCV) 36.91 (9.22)

Saturated fatty acids
(% TCV)

11.39 (3.31) Healthy Eating Index 65.19 (14.06)

Glycemic index 48.96 (11.58) Vegetables (s/d) 2.66 (1.32)

Fish and seafood (s/d) 0.92 (0.56) Fruits (s/d) 2.98 (2.10)

Legumes (s/d) 0.39 (0.28) Nuts (s/d) 0.68 (1.26)

Dairy (s/d) 2.53 (1.20) Eggs (s/d) 0.53 (0.25)

Red meat (s/d) 0.45 (0.21) White meat (s/d) 0.48 (0.21)

Processed meat (s/d) 1.09 (0.94) Animal fats (s/d) 0.26 (0.40)

Viscera (s/d) 0.02 (0.04) Ready to eat foods (s/d) 0.19 (0.13)

Salty snacks (s/d) 0.38 (0.34) Sauces (s/d) 0.23 (0.15)

Alcohol (s/d) 0.32 (0.28) Coffee and tea (s/d) 1.28 (1.33)

Garlic and spices (s/d) 0.57 (0.52) Pastries and sweets (s/d) 2.00 (0.98)

s/d, servings per day; TCV, total caloric value.

TABLE 4 | Cardiopulmonary exercise test output.

Variables Mean (SD)

Maximal heart rate (bpm) 176.20 (15.23)

Resting heart rate (bpm) 51.40 (7.03)

Heart rate in VT1 (bpm) 131.67 (15.25)

Heart rate in VT2 (bpm) 157.67 (14.07)

VO2 max (mL/min) 4116 (565)

VO2 max (mL/kg/min) 59.16 (6.50)

VO2 in VT1 (mL/kg/min) 39.59 (8.08)

VO2 in VT2 (mL/kg/min) 50.61 (6.19)

VCO2 max (mL/min) 5136 (777)

VCO2 max (mL/kg/min) 73.85 (10.41)

Maximum minute ventilation (L/min) 169.80 (23.99)

Minute ventilation in VT1 (L/min) 58.21 (13.78)

% VO2 in VT1 in relation to VO2 max 66.94 (9.13)

% VO2 in VT2 in relation to VO2 max 85.95 (5.53)

Minute ventilation in VT2 (L/min) 93.07 (16.13)

O2 pulse max 23.53 (3.36)

O2 pulse in VT1 20.87 (3.28)

O2 pulse in VT2 22.47 (3.41)

Highest workload achieved 329.00 (42.74)

Workload in VT1 186.27 (35.20)

Workload in VT2 261.67 (38.94)

VCO2 max, maximal carbon dioxide output; O2 pulse, VO2/heart rate; VO2 max,
maximal oxygen consumption; VT1, aerobic ventilatory threshold; VT2, anaerobic
ventilatory threshold.
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FIGURE 1 | Levels of VO2 max (mL/kg/min) during the cardiopulmonary exercise test according to the genetic endurance prediction score (GES).

FIGURE 2 | SNPs included in the prediction algorithm GES individually associated to specific parameters related to individual performance. (A,B) Levels of VO2

and% VO2 in VT1 during the cardiopulmonary exercise test according to AQP1 rs1049305. (C) Levels of VO2 in VT2 during the cardiopulmonary exercise test
according to PPARα rs4253778. (D) Maximal heart rate during the cardiopulmonary exercise test according GABPB1 rs12594956. (E) Maximum minute ventilation
(VE) during the cardiopulmonary exercise test according ACE rs4343.

performance. The analysis of the association of the different
genotypes individually and the cardiopulmonary exercise test
showed that GG genotypes for AQP1 showed lower levels of
VO2 in VT1 (32.1 ± 4.6 mL/kg/min vs 42.3 ± 7.4 mL/kg/min)
and fewer values of% VO2 in VT1 in relation to VO2 max
(58.2 ± 7.0% vs 70.1 ± 7.7%) than CC + CG (P = 0.020 and
P = 0.030, respectively) (Figures 2A,B). On the other hand, GG
genotypes for the PPARα presented higher values of VO2 in VT2

than CC + CG (52.6 ± 4.6 mL/kg/min vs 42.8 ± 5.9 mL/kg/min,
P = 0.030), as shown in Figure 2C.

Regarding the GABPB1, AA genotypes had significantly lower
maximal HR (Figure 2D) and minor HR in VT1 and VT2
than AC genotypes (167.8 ± 16.5 bpm vs 185.9 ± 4.5 bpm,
120.8 ± 11.0 bpm vs 144.1 ± 7.8 bpm and 149.0 ± 13.3 bpm vs
167.6 ± 6.3 bpm; P < 0.001, P-adjusted for Bonferroni = 0.040
and P = 0.001, respectively). There were no CC genotypes in
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the studied sample. Moreover, a statistically significant difference
was found between AA genotypes for the ACE gene and the
AG + GG with respect to the maximum VE (200 ± 16 L/min vs
162 ± 19 L/min, P = 0.040, Figure 2E).

HIF1A Genetic Variant Is Associated With
Somatotype
When we studied the relationship between the different SNPs and
the results of the somatotype, we found a statistically significant
association between HIF1A genotypes and the mesomorphic
component. Precisely, among the CC cyclists, 8.33% presented
a low mesomorphic value, 91.7% a moderate value and 0% a
high value; while amongst the CT individuals, 33.33% presented a
moderate result and the rest 66.7% a high value (P = 0.029). There
were no TT individuals in the studied sample.

Genes Associated With Dietary Records
When analyzing the association of the different genotypes of each
SNP and the results of the dietary variables, we found different
interesting associations.

• Subjects GG for the AQP1 presented a lower intake of
carbohydrates [% total caloric value (TCV)] than CG + CC
individuals (34.2 ± 11.4% vs 46.9 ± 8.5%, P = 0.040), as
shown in Figure 3A.

• Participants TT for the CKM had a higher consumption of
sugars (% TCV) than CC + CT individuals (25.9 ± 9.2% vs
16.5 ± 3.9%, P = 0.010, Figure 3B).

• Cyclists AA for the ACE presented a higher mean glycemic
index consumption than AG + GG (58.9 ± 1.1 vs
46.5 ± 11.7, P = 0.010, Figure 3C).

On the other hand, with regard to the food frequency
questionnaire, and inverse correlation between the number of
coffee and tea rations consumed per day and the result of the GES
was observed (P = 0.004), so that the higher the consumption the
lower the GES (Figure 4).

DISCUSSION

The present research provides new information regarding the link
between genetics and sport performance from different angles.

The most important result was the potential validation of
an algorithm prediction of genetic susceptibility to endurance
abilities. At present, cardiovascular exercise test is considered
the gold standard assessment of endurance performance (Hausen
et al., 2018). We observed that those subjects with a higher
value in the GES, presented significantly better results in the
cardiovascular exercise test according to VO2 in VT1, VO2 in
VT2 and most importantly, VO2 max which is internationally
considered the key measure of aerobic capacity (Hausen et al.,
2018). Actually, VO2 max obtained in this kind of test represents
the highest capacity of oxygen consumption during a maximal
exercise (Shete et al., 2014). Additionally, VT1 is the point at
which the aerobic metabolism is no longer the major energy
source and the anaerobic metabolism begins to be used. The
exercise intensity at which VT1 occurs is considered the highest

submaximal level tolerated by an individual for long time periods
(Herdy et al., 2016). Hence, we hypothesized that higher values of
VO2 at VT1 may predict higher VO2 max, which leads to better
endurance conditions. Concerning VT2, it is the point where the
demand of oxygen by muscles exceeds the mitochondrial supplies
and consequently, energy production begins predominantly
anaerobic. It begins when lactate starts to accumulate in blood
which is usually at 60–70% VO2 max (Albouaini et al., 2007).
The VO2 at VT2 is considered a submaximal index of exercise
capacity and endurance performance, so that the higher VO2 at
VT2, the better endurance results (Coyle et al., 1988; Herdy et al.,
2016). These achievements may complement the association
found between a genetic score based on a GWAS study and the
improvement of the VO2 max in a sedentary population carried
out by previous researchers (Bouchard et al., 2011).

When we analyzed the association between the different
genotypes individually and the cardiovascular test results,
we also found some interesting correlations. In this regard,
individuals presenting the favorable genotypes for endurance
sports according to AQP1 (Martinez et al., 2009; Saunders et al.,
2015), showed better results in the cardiovascular exercise test
(higher levels of VO2 in VT1 and % of VO2 in VT1 in relation to
VO2 max), than GG homozygous. The physiological explanation
for this association may lie in the AQP1 encoded membrane
protein role. The aquaporin 1 water channel is implicated
in the transport of water, maintaining the osmotic balance
between the blood and the cells (Frigeri et al., 2004). During
prolonged exercise, body temperature is regulated by controlling
the distribution of body fluid; water passes from the intracellular
to the extracellular spaces and evaporates by sweating. An
inadequate loss of sweat during exercise, especially in hot
climates, will negatively affect athletic performance (Kenny,
2014). Thus, we hypothesize that CC genotype is associated with
an efficient state of cellular hydration and body temperature
regulation which leads to a better endurance performance.

Moreover, favorable genotypes for endurance performance
of the PPARα (Lopez-Leon et al., 2016) presented significantly
higher values of VO2 in VT2 than CC + CG. This gene regulates
the expression of other genes involved in the metabolism of
energy, fats and sugars in the skeletal muscle among other tissues
(Duval et al., 2004). Given its involvement in these processes,
it is hypothesized that it is activated during endurance exercise
(Lopez-Leon et al., 2016). Another suggested explanation for the
association of PPARα genotypes with endurance performance
has to do with the type of fibers in the skeletal muscle.
In this sense, in a cohort of 786 Russian athletes it was
observed that GG homozygous presented significantly higher
percentage of type I muscle fibers than the other genotypes
(Ahmetov et al., 2006). These skeletal muscle fibers are classified
into two types: type I or slow contraction and type II or
rapid contraction fibers. Type I fibers have greater resistance
to fatigue and predominate in resistance athletes, while the
type II ones are adapted to strong and explosive muscle
contractions and predominate in athletes who perform power
sports (Cartee et al., 2016).

Regarding the GABPB1, the individuals presenting the AA
genotype showed a lower maximal HR and lower HR in VT1 and
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FIGURE 3 | Association of SNPs included in the prediction algorithm GES and specific dietary variables. (A) Consumption of% total caloric value (TCV)
carbohydrates according to AQP1 rs1049305. (B) Consumption of% TCV sugars according to CKM rs8111989. (C) Mean glycemic index values according to ACE
rs4343.

FIGURE 4 | Rations of tea and coffee consumed according to the genetic endurance prediction score (GES).

VT2 than AC genotypes. This result is in accordance with other
studies that also consider this genotype favorable for endurance
sports (Eynon et al., 2013) as it has been described that endurance
athletes present lower HR in maximum aerobic traits (Zaniqueli
et al., 2014). The GABPB1 gene encodes the GA-binding protein
transcription factor, which is implicated in the regulation of

the mitochondrial function generating ATP energy (Dinkova-
Kostova and Abramov, 2015) what might explain the implication
of this gene in the individual endurance capacity.

Additionally, AA genotypes for theACE gene presented higher
maximum VE than the AG + GG genotypes. The AA genotype of
the rs4343 is considered equivalent to the II genotype of the ACE
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I/D rs4340 (Glenn et al., 2009) which at the same time is the most
studied favorable genotype for endurance performance (Ma et al.,
2013). Maximal VE has been reported to be directly correlated
with VO2 max (Keramidas et al., 2010; Malekmohammad et al.,
2012). Accordingly, it is suggested that muscles of endurance
athletes require higher values of VO2 so that their VE during
exercise is higher.

Hypoxia-inducible factor-1 (HIF1) regulates oxygen
homeostasis in mammalian cells and in particular, it seems
to have a role during high intensity exercise, helping the skeletal
muscle to adapt to low oxygen concentrations (Freyssenet, 2007).
According to the association between somatotype variables and
the different genotypes, individuals carrying the T allele of the
HIF1A SNP presented moderate or high mesomorphic values,
while none of the CC homozygous had a high mesomorphic
component. Precisely, allele T is associated with power-oriented
athletes (Drozdovska et al., 2013). This makes sense as high
mesomorphic individuals are characterized by high skeletal
muscle mass, needed for power anaerobic exercises (Gutnik et al.,
2015). Besides, as cycling is more an endurance-oriented sport
than a power sport, it also makes sense that the mesomorph was
the component with the lowest value among the sample.

When we analyzed the association of the different genotypes
and the dietary records, we also found diverse significant
associations. The cyclists with a favorable genotype for endurance
sports regarding the AQP1 presented a higher intake of
carbohydrates which we hypothesize that would probably be
due to maintain the glycogen stores needed for long distance
exercise (Alghannam et al., 2018). Similarly, individuals with
an unfavorable genotype for power sports according to CKM
consumed higher amounts of sugars (Chen et al., 2017).
Commonly, it is considered that genotypes unfavorable for
power are favorable for endurance sports and vice versa, which
might explain this association. To our knowledge, this is the
first time that AQP1 and CKM genotypes have been associated
with dietary intake.

Moreover, individuals presenting a favorable genotype for
endurance sports according toACE gene presented a higher mean
glycemic index intake than the other genotypes. Although it
seems clear that carbohydrate consumption is needed to maintain
glycogen stores, whether these macronutrients are preferable
to be complex or with a high glycemic index appears to be
controversial, as there are studies that point out that moderate
glycemic index diets improves exercise performance (Durkalec-
Michalski et al., 2017) while others support the low glycemic
index (Durkalec-Michalski et al., 2018). A possible explanation
of this controversy may lie in the fact that the unfavorable
ACE genotype for endurance performance has also been linked
to lower glucose tolerance (Schuler et al., 2017). Thus, we
hypothesize that ACE AA individuals might take advantage in
endurance sports by consuming a moderate glycemic index diet
as they can metabolize glucose in a better way. However, we
are aware that more studies in this field are needed to confirm
this hypothesis.

Finally, an interesting association between the habit of
consuming caffeinated beverages and the result of the GES was
observed. A possible explanation for this inverse correlation

might be that athletes less genetically predisposed to endurance
sports where energy is a key factor, are more likely to use
ergogenic aids such as caffeine. However, we have to consider that
the food frequency questionnaire used gives overage data of the
last year, but we do not have data on dietary intakes in specific
time frames such as competitions.

CONCLUSION

The outcomes of the present study confirm a positive relationship
between an endurance prediction algorithm and the results
of a cardiopulmonary exercise test. Moreover, AQP1, PPARα,
GABPB1, and ACE genes were individually related with
endurance performance. Besides, HIF1A showed an association
with the somatotype and AQP1, CKM, and ACE genes were
associated with the athletes’ dietary intake. In addition, an inverse
association between the habit of consuming caffeinated beverages
and the GES was observed.

This information may facilitate the design of larger studies
implicated in the prediction of sports capacities, which may
facilitate the finding of genetically talented athletes, improve their
training and dietary habits, as well as help in the improvement of
physical conditions of amateur athletes.
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