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Abstract

Underwater video monitoring systems are being widely used in fisheries to investigate fish

behavior in relation to fishing gear and fishing gear performance during fishing. Such sys-

tems can be useful to evaluate the catch composition as well. In demersal trawl fisheries,

however, their applicability can be challenged by low light conditions, mobilized sediment

and scattering in murky waters. In this study, we introduce a novel observation system

(called NepCon) which aims at reducing current limitations by combining an optimized

image acquisition setup and tailored image analyses software. The NepCon system

includes a high-contrast background to enhance the visibility of the target objects, a com-

pact camera and an artificial light source. The image analysis software includes a machine

learning algorithm which is evaluated here to test automatic detection and count of Norway

lobster (Nephrops norvegicus). NepCon is specifically designed for applications in demersal

trawls and this first phase aims at increasing the accuracy of N. norvegicus detection at the

data acquisition level. To find the best contrasting background for the purpose we compared

the output of four image segmentation methods applied to static images of N. norvegicus

fixed in front of four test background colors. The background color with the best performance

was then used to evaluate computer vision and deep learning approaches for automatic

detection, tracking and counting of N. norvegicus in the videos. In this initial phase we tested

the system in an experimental setting to understand the feasibility of the system for future

implementation in real demersal fishing conditions. The N. norvegicus directed trawl fishery

typically has no assistance from underwater observation technology and therefore are

largely conducted blindly. The demonstrated perception system achieves 76% accuracy (F-

score) in automatic detection and count of N. norvegicus, which provides a significant eleva-

tion of the current benchmark.
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Introduction

Crustacean trawl fisheries are very important socially, gastronomically and economically

worldwide [1]. The Norway lobster (Nephrops norvegicus) (hereafter referred to as N. norvegi-
cus) fishery is one of the most commercially important in the northeastern Atlantic region.

Approximately 95% of N. norvegicus catches in Europe are caught using demersal trawls [2]

and this fishery is challenged by several unique conditions. Firstly, N. norvegicus are benthic

animals and inhabit muddy sediments in which they make burrows [3]. Thus, this species can

be caught only when they are out of burrows on the seabed [4]. There are currently no robust

indicators for fishers to identify when N. norvegicus are outside burrows and available to trawl-

ing. For this reason, demersal trawl fishery targeting N. norvegicus conducts trawl tows based

on experience only with no real-time assessment of the fishing operations efficiency. Fishing

operations can last for several hours and may often result in catches with little or none of the

target species, but with catches of unintended species and sizes [5]. It is indeed a mixed fishery

because of the high presence of co-habiting fish species and the small mesh sizes needed to

retain N. norvegicus efficiently [6, 7]. This challenges the sustainability of this fishery and can

have severe ecological and economic consequences which, in some jurisdictions, may restrict

fishing opportunities. For example, in EU waters where fisheries activities are quota regulated

and subject to the landing obligation [8].

The N. norvegicus fishery would benefit expressively from improved decision support tools

in terms of real-time monitoring and description of the ongoing catching process and this is

the main motivation of this study. Since N. norvegicus live in close proximity to the seabed,

acoustic detection is difficult [9]. Similarly, optical detection methods are challenged in demer-

sal trawl fisheries by the dark murky conditions at the seabed [10]. Video monitoring of

catches on commercial vessels are mostly performed on deck for control purposes when the

catch has been already extracted from the fishing gear. But it has been shown that the survival

rates of some commercially important bycatch species that are lifted on board and then

released are decreased [7]. Therefore, the development of an underwater monitoring tool can

provide valuable decision support during the single fishing operations, helping to reduce

bycatches and fuel consumption due to reduced fishing time [11]. Although promising results

have been already obtained by integrating novel imaging systems into the fishing gear [11–13],

the method is not yet fully developed, due to the difficulties in collecting underwater images of

sufficient quality for species recognition.

Different systems for underwater image acquisition have been developed and used in fish-

ing gear technologies, for example to observe fish behavior, verify the fish species observed on

the echograms and to monitor the gear dynamics [10, 13, 14]. However, these applications are

challenged by poor underwater visibility conditions by ground gear sediment mobilization

especially in low-headline demersal trawls. High-resolution acoustic methods [9, 15] and

range-gated systems [16] may improve observation of fish in natural conditions, but specific

applications in catch monitoring are not available yet for the demersal trawl fishery.

Fully integrated vision-based monitoring tools in demersal fisheries could be achieved by

using existing widely used portable cameras and the image analysis can be automatized with

the aid of software packages that are supported by a large open source community. These

developments include fast, minimal or no parameter object segmentation methods for image

and video data, creating a fruitful ground for of in-situ catch count monitoring. The NepCon

system described in this study is the first step towards a cost effective, fully in-trawl integrated

system. This first development phase is concerned with the identification of materials and con-

trasting colors optimizing image segmentation of N. norvegicus, which is a critical step for the

future automated detection and counting components of the NepCon system in trawls.
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Due to the known challenges of image data collection from demersal trawls, we are inter-

ested in developing an enclosed section in the aft part of the trawl for making optical observa-

tions. The section will be made with an opaque PVC-coated tarpaulin material covering the

netting inside the trawl to present a static observation environment and be flexible and robust

enough to withstand commercial application. The background will enable optical catch moni-

toring during fishing operation and further automatization of the video analysis in terms of N.

norvegicus recognition and counting. Under such static conditions we have an opportunity to

implement classic computer vision approaches for object segmentation that utilize features

such as edges, color and texture. In this study we focus on the selection of the background,

lighting and camera conditions, as well as exploring classic and deep learning computer vision

object segmentation methods, so that future at sea trawl application of the system will be well-

adapted to the challenge.

Classic image processing and object segmentation from the background provide satisfac-

tory results for identifying animals in the images based on the pixel intensities [17]. This

method does not require high computational power and is easy to implement in comparison

with training a deep learning-based object segmentation, meaning a fast and low-cost solution

for the fishery. This method is based on pre-defined parameters, and will identify any “object”

that satisfies the predetermined criteria [18]. In other words, this method is not semantic and

is dependent on the input image or video quality and predefined parameters. However, it

shows to be efficient and does not require the extensive labeled training data.

State-of-the-art deep learning algorithms are shown to have high accuracy in object seg-

mentation and classification and have outperformed classic computer vision approaches in

these tasks [19]. However, to benefit from the deep learning approach one needs to provide a

large, annotated dataset and powerful hardware to train the model [20]. Most of the deep

learning models are trained on extensive datasets containing millions of images of common

objects that can be found in everyday life. The models are robust enough that the learned seg-

mentation knowledge gained in one problem can be transferred, solving another specific task

within the related field—the technique commonly called transfer learning [21]. In this study

we explored the ability of a deep learning model trained on an extensive dataset to segment N.

norvegicus without modifying the layers and weights of the network through specific training.

We have selected mask R-CNN (mask region based convolutional neural network) that in

addition to the bounding box and class identification outputs a pixel-wise mask of an object

[22]. The mask also gives an opportunity to convert the pixel length of the object to an estimate

of the actual size of an object [23–25].

To automatically detect N. norvegicus in the videos we apply an image processing pipeline

and algorithm for identifying N. norvegicus-like objects in images, and then track these objects

between frames in videos. The automatic count is compared with the ground truth of manually

counted N. norvegicus.
The observation conditions during fishing can change dramatically depending on the day-

time and depth as well as the fishing grounds. Where possible, we use automatic settings on

the camera, such as white balancing and exposure, to reflect the fact that the actual lighting

conditions in the trawl are unknown and subject to change, which means the camera must

adapt to the conditions. Furthermore, the end users (i.e. fishers) require an automated solution

with minimal background knowledge in photography or computer vision to operate.

We conclude this paper with evaluation of the proposed underwater image acquisition sys-

tem and recommendations for further development of the in-trawl observation scene for

image data collection for the automated detection in demersal trawls and challenges with the

in-trawl implementation. Further improvement of the object detection and classification with
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the application of deep-learning approaches is dependent on the increase of the underwater

images database.

Methods and materials

Ethical statement

We used 16 individuals of live N. norvegicus in the experiment. The individuals that were fixed

in front of the background for images acquisition and used for the first set of videos were killed

prior to the experiment through transection of the cephalothorax. N. norvegicus used for col-

lecting videos of group of individuals were alive and the experiment was done in fresh seawater

supplied by the seawater intake at the North Sea Science Park, Hirtshals, Denmark. N. norvegi-
cus is not an endangered or protected species and no permit is required to conduct the experi-

ment on invertebrates.

Replication of the fishing conditions in experiment

We performed the experiment in a custom-made round tank facility made to simulate condi-

tions during trawling at the Technical University of Denmark (DTU Aqua) (Fig 1). A current

of approximately 2 knots was created using an industrial centrifugal pump (Tapflo1) to

approach the towing speed during demersal N. norvegicus directed fishing [26].

The test backgrounds were four sheets of PVC-coated tarpaulin with the colors: yellow,

green, orange and white. They were fixed on the center cylinder in pairs: yellow/green and

orange/white, each color covering half of the circumference.

The background colors choice was based on the literature review [27] of the visibility of dif-

ferent colors under water: in clear fresh water, murky fresh water, sea water, turbid sea water.

According to the review orange is the most visible color in turbid waters, therefore was chosen

as a test color. Yellow is the second bright color in terms of underwater visibility, white is the

color that reflects all the wavelengths of the visible spectrum and the green is a complementary

color to the red target species [18, 28].

After the images and video footage were recorded for the first piece of tarpaulin, it was

replaced by another color set.

We used a GoPro Hero 7 camera for images and videos acquisition. The camera was

attached to the inner wall of the tank with Velcro1 tape and GoPro housing facing the inner

cylinder covered by tarpaulin. After finalizing data collection for a background color, the

camera was moved to the opposite inner wall of the tank for the second background color

Fig 1. Experiment setup. A) Dimensions of the experimental round tank (front wall removed) with GoPro camera (A)

attached to the inside tank wall via holder and Velcro-tape; the light (INON) (B); inner cylinder covered by the

tarpaulin sheet (C); arrow indicates the water flow direction; B) Experimental tank: view from top.

https://doi.org/10.1371/journal.pone.0252824.g001
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recording. To approximate low-light fishing conditions we isolated the facility from outside

illumination.

As a light source we used INON1 diver underwater light (LF1300-EWf) with maximum

intensity of 1300 lumens and 100 degree underwater coverage. We fixed INON1 underwater

light above N. norvegicus for the observation scene. The light was pointing downwards facing

the tank bottom to minimize the presence of shadows on the background from the N. norvegi-
cus passing in front of the camera (Fig 1).

We moved the light source vertically closer to and further away from the camera (± 10 cm)

and object to optimize appropriate illumination conditions of the target N. norvegicus and

background.

Data sampling

The experiment consisted of three parts. The first part included images acquisition of the fixed

N. norvegicus in front of each background (Fig 2A). The experiment was done in two days,

therefore two different individuals of the same size were used.

The aim of the second and third parts was to record video of single and multiple N. norvegi-
cus, respectively, passing with the water current in front of the camera. Videos were sampled at

30 frames per second, 1440p (4:3) resolution, the rest of the settings were set to default.

Data analysis

Image datasets preparation. The image set collected for the four different backgrounds

consisted of 28 images (7 for each background). To keep only the relevant information of the

image and to use only the background color itself (without the effect of the part of the tank vis-

ible on the sides of the image) we have cropped the original images with keeping N. norvegicus
in the middle and cropping the image down to 2500 pixels in width by 1500 pixels in height.

To check the effect of the different foreground appearance on the segmentation output from

the background color we have used the simple copy paste augmentation techniques to substi-

tute the original foreground with a foreground taken from another color set without applying

any geometric transformations (Fig 3A) [29].

To test the accuracy of the object segmentation we have manually created the binary ground

truth masks for each of the image in the dataset using the MATLAB1 Image Labeler app poly-

gon ROI assisted labeling assisted freehand method (Fig 2B). To create the ground truth mask

for the augmented images we used binary OR operation on the original ground truth masks of

the both images from which the foreground and the background were used (Fig 3B).

Object segmentation

To check whether the specific background results in a better segmentation of the target object

we have compared the predicted masks for images in the four datasets with alternative models

based on: edge detection, Graph cut, Random forest classifier, pre-trained mask R-CNN

model. The scikit-image library [30] was used to implement the Graph cut and Random forest

classifier segmentors.

The accuracy of the segmentation prediction was estimated using the Jaccard index (JI)

[31] of similarity calculation computing the intersection of the binary images of the predicted

binary mask (X) against the ground truth mask (Y) (Eq 1):

J ¼
jX \ Yj
jX [ Yj

ð1Þ
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Edges in an image are significant local changes in pixel intensities associated with the

boundary of an object in the scene [32]. Edge detection is based on isolating local maxima of

gradient magnitude by non-maximum suppression along the local gradient direction by Lapla-

cian of Gaussian kernel. It uses zero crossings of second derivatives for precise edges localiza-

tion [18].

Graph cut segmentation approach treats each pixel as a node in a graph to combine them

in superpixels based on the similarity between neighboring pixels. In the method we used

the superpixels are determined according to the Simple Linear Iterative Clustering (SLIC)

algorithm, which defines the superpixels based on the color and spatial proximity of the

Fig 2. Comparison of the segmentation results. A) Mean images representing the N. norvegicus fixed in front of the each of the experimental color

backgrounds; B) Mean ground truth masks obtained by selecting the regions of interest via Image Labeler MatLab App; C) Predicted object mask based

on filling the edge detected by Laplacian of Gaussian; D) Mean predicted masks based on Graph cut segmentation; E) Mean predicted mask obtained by

the Random Forest classifier; F) Mean predicted mask by the mask R-CNN pre-trained on the COCO dataset.

https://doi.org/10.1371/journal.pone.0252824.g002
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candidate regions [33]. Region adjacency graph provides a simple-connectivity view based

on the mean color [34]. Dividing the foreground and the background is then done by a nor-

malized cut [35].

Random forest is an ensemble model consisting of multiple decision trees [36]. After multi-

ple trees are generated, in this study the number of trees was set to 50, they vote for either the

foreground or the background class of each pixel. As we test the effect of the background color

on the segmentation we use pixel intensity and texture features as inputs to the decision trees.

Random forest predicts the two classes based on the small training examples, which are the

marked groups of pixels in the image. The foreground label, 100 by100 pixels centered on the

Fig 3. The augmented images. From left to right: A) the mean yellow foreground on the mean green background (YG); the mean green foreground on

the mean yellow background (GY); the mean orange foreground on the mean white background (OW); the mean white foreground on the mean

orange background (WO); B) Mean ground truth masks obtained by selecting the regions of interest via Image Labeler MATLAB App; C) Predicted

object mask based on filling the edge detected by Laplacian of Gaussian; D) Mean predicted masks based on Graph cut segmentation; E) Mean

predicted mask obtained by the Random Forest classifier; F) Mean predicted mask by the mask R-CNN pre-trained on the COCO dataset.

https://doi.org/10.1371/journal.pone.0252824.g003
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object and the first 100 rows from top were used as the labels for the background. The Random

forest classifier was applied via scikit-learn module in Python 3.7 [37].

Mask R-CNN is an extension of the faster R-CNN with the extra to the existing in faster

R-CNN branch for bounding box recognition, where mask runs in parallel to it. Mask R-CNN

is an instance segmentation technique that allows to predict not only the bounding box but

also the pixel region of an object [22].

To further estimate the effect of the different background colors we used the mask R-CNN

trained on the Common Objects in COntext (COCO) dataset [38] to predict the regions and

masks for N. norvegicus. Each of the image of the four backgrounds was used to predict the

mask. The model was set to run in inference mode to only predict the mask for the image seg-

mentation task and to predict the mask and the bounding box in the videos; the class predic-

tion was omitted. The key steps of each of the algorithms are presented in Table 1.

Automated N. norvegicus detection, tracking and counting

The videos were processed with the aid of computer vision toolbox in MATLAB1 2019a. In

the computer vision based approach, we combined three foreground detection methods: back-

ground modelling and subtraction, red channel thresholding, and low-contrast histogram

equalization thresholding (S4 Fig). The first branch of the detector is based on the background

subtraction model using Gaussian Mixture Models (GMM) [40]. Compared to the segmenta-

tion methods used for background evaluation, this method considers temporal change in

video frames and a GMM of the background. In this study, we used 5 Gaussians, 140 training

frames and a 0.64 minimum background ratio. We then performed opening and closing mor-

phological operations on the output of the GMM to remove noise, a square structural element

was used of size 3 for opening and 15 for closing [41].

The key feature of the remaining two filters is based on the enhanced contrast of the target

object and utilizes the red channel thresholding to ultimately separate N. norvegicus from the

background. Thus, the second branch is a red channel thresholding filter (middle branch in S4

Fig), which is used to pick up red components in the image (such as N. norvegicus). To reduce

the influence of varying light conditions in the red channel we subtract the gray scale frame

from the red channel frame. We then apply a very low intensity threshold on the red channel

intensity of 1%.

The mean intensity shifted histogram equalization filter (right branch in S4 Fig) aims to

first reduce the image contrast by subtracting the mean intensity image (across all channels for

each pixel), and clipping the intensities outside the interval [0, 1], then restore contrast the

image through histogram equalization (CLAHE). The mean intensity shift reduces or removes

low intensity color components, resulting in pixels that are dominated by either red, green, or

blue colors. Histogram equalization then balances the intensity of the pixels so that contrast is

Table 1. Steps for each segmentation algorithm.

Method Input Step 1 Step 2 Step 3 Step 4 Step 5 Output

Edge

Detection

RGB

image

Convert to gray

scale

Image smoothing Edge detection (LoG) Morphological closing and flood-fill Binary

mask

Graph cut Convert to CIE-

Lab

Equalize L-channel SLIC superpixel

segmentation

RAG Construction using

mean color

Normalized Cut into FG/

BG clusters

Random

forest

Convert to HSV CLAHE on Value

channel

Training labels of the FG

and BG

Train a Random forest

classifier

Predict the FG and BG

Mask R-

CNN

The mask R-CNN implementation follows implementation on Keras and Tensorflow by

Matterport [39]

Merge (binary OR)

foreground masks

https://doi.org/10.1371/journal.pone.0252824.t001
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restored [42]. The red channel is then extracted, and a low threshold is applied to remove low

intensity noise artifacts from the resulting mask.

The three resulting masks multiplied elementwise (multi-AND operation) which is then

passed to the blob analysis function. The blob analysis function, provided in MATLAB1, iden-

tifies groups of connected foreground pixels (blobs) that are separated from each other and

within a specified size (minimum blob area is set to 7500 pixels). It then provides bounding

box position and size information for each detected blob.

As a second object-detection method, the mask R-CNN architecture with weights pre-

trained on the COCO dataset (as used in background evaluation) was selected. As the initial

network was trained on 80 classes of objects and we are controlling that only N. norvegicus
objects pass the camera, we can simply treat all detected classes as the same instance class.

Thus, in our setup mask R-CNN is not used for object classification, we just use the bounding

box position and size information from each detected instance.

The tracking part of the algorithm (S5 Fig) was the same and, in both cases, the bounding

box information was used as input. The object tracker consists of an object-to-track assign-

ment component and a Kalman filter-based track prediction component [43]. Each object

track is considered unique and are tallied for automatic counting.

The objects are assumed to be moving with a constant velocity through the image, so the

Kalman filter model is first order (second derivatives are set to 0). This assumption reflects our

use case: N. norvegicus are expected to tumble through the trawl net at a near-constant speed

and are unable to swim with the trawl [44]. Detected centroids that are assigned to tracks are

then used in the update step of the assigned Kalman filter. Tracks that have not been updated

for several consecutive frames are then marked as lost (indicating it is likely that the object has

left the image). Detected objects that have not been assigned to a track by the assignment com-

ponent are initialized with a new Kalman filter tracker. Each unique track is counted and con-

tributes to the automatic count of N. norvegicus from the input video.

The assignment component uses the Hungarian algorithm [45] to match observed object

centroids for the current frame with predicted track centroids for any existing tracks. The

track prediction component is a Kalman filter, initialized upon the detection of a new object

that predicts the position of the assigned object. A cost matrix for the Hungarian algorithm is

constructed as the matrix of Euclidean distances between detected object positions and pre-

dicted positions of tracked objects.

A total of five video files were used for evaluating the algorithms: three with single individu-

als dragged across the camera’s field of view and two videos containing several N. norvegicus
freely passing in front of the camera with the water flow. The evaluation was based on compar-

ing the automatic count with a manual count made by a human watching the video. Further-

more, the human supervisor counted the number of false positives (times when the algorithm

identified an object when there was none) and false negatives (times when the algorithm

missed an object).

Results

Object segmentation

Segmentation applied to the original images showed the highest JI values for the green back-

ground images set (JI = 0.72). N. norvegicus on white and orange backgrounds was segmented

from the background with the average JI = 0.5. N. norvegicus on the yellow background pro-

vided the second segmentation results (JI = 0.63).
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Among the four segmentation techniques the edge detection segmentation provided the

highest results for all color sets and on average JI equaled to 0.75 (Table 2). The mean predicted

masks by each of the techniques is presented in Fig 2C–2F.

In case of augmented images the segmentation based on the edge detection provided pre-

dicted masks of high accuracy for all four sets (0.77 < JI< 0.82) (Table 3). The Graph cut

method of the foreground-background separation based on the mean color showed the best

segmentation results for the green background among the four combinations: JI = 0.77. The

Random forest classifier showed better segmentation results for the white background

JI = 0.67, whereas the JI-values for the other three background colors were very similar and

ranged between 0.46 and 0.48. The foreground mask prediction obtained by the pre-trained

mask R-CNN increased among the four background colors from JI = 0.12 to JI = 0.42 by on

average 0.1 for the orange, green, yellow and white backgrounds respectively. The mean pre-

dicted masks by each of the techniques are presented in Fig 3C–3F.

Automated N. norvegicus detection, tracking and counting

Application of the proposed computer vision (CV) detector followed by motion-based track-

ing algorithm on the video dataset showed high N. norvegicus detection, tracking and counting

accuracy (Table 4). The algorithm performed better for the single N. norvegicus passing video

types, with lower accuracy for the multiple N. norvegicus videos.

Fig 4 provides an example of successful detection and assigned tracking number to the N.

norvegicus from both the blob analyzer (A) and mask R-CNN (B).

To better understand the performance of the algorithm, we have counted the number of

false positive and false negative detections. False positives occur when noise was detected as N.

norvegicus or when a single N. norvegicus was detected as multiple individuals. False negatives

Table 2. The mean Jaccard index (JI) scores for the four segmentation techniques applied to the original images.

Segmentation Green Yellow White Orange Average JI per segmentation

LoG edge detection ± STDEV 0.80±0.04 0.79±0.04 0.76±0.04 0.66±0.27 0.75±0.1

Graph cut ± STDEV 0.76±0.06 0.59±0.07 0.22±0.19 0.56±0.2 0.53±0.13

Random forest ± STDEV 0.71±0.12 0.55±0.07 0.48±0.07 0.57±0.06 0.58±0.08

Mask R-CNN ± STDEV 0.61±0.27 0.58±0.08 0.55±0.38 0.22±0.36 0.49±0.27

Average JI for the color set 0.72±0.12 0.63±0.07 0.5±0.17 0.5±0.22

The presented values of Jaccard index are the means of the individual indexes obtained for the individual image ± Standard Deviation (STDEV). The original set

contained seven images for the each of the four test background colors.

https://doi.org/10.1371/journal.pone.0252824.t002

Table 3. The mean Jaccard index (JI) scores for the four segmentation techniques applied to the augmented images.

Segmentation YG GY OW WO Average JI per segmentation

LoG edge detection ± STDEV 0.80±0.05 0.78±0.04 0.77±0.03 0.82±0.02 0.79±0.04

Graph cut ± STDEV 0.77±0.12 0.53±0.1 0.62±0.19 0.35±0.16 0.57±0.14

Random forest ± STDEV 0.48±0.08 0.48±0.1 0.67±0.06 0.46±0.16 0.52±0.1

Mask R-CNN ± STDEV 0.26±0.36 0.35±0.28 0.42±0.29 0.12±0.37 0.29±0.36

Average JI for the color set 0.58±0.15 0.53±0.13 0.62±0.14 0.44±0.27

The presented values of Jaccard index are the means of the individual indexes obtained for the individual image ± Standard deviation (STDEV). The augmented images

set consists of the images with the foreground taken from the other color set: the letters in abbreviation correspond to the color first letter from where the foreground

and the background, respectively was used for making the augmented images.

https://doi.org/10.1371/journal.pone.0252824.t003
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occur when N. norvegicus was present in the frame, but missed by the algorithm. These values

were used to estimate the precision, recall and F-score performance of the algorithm.

Like accuracy, these three metrics were larger (indicating better performance) for the single

target compared to multi-target videos.

For the single target videos, the precision was higher than the recall, whereas for the multi-

ple objects the recall was higher comparing to the precision (Table 4).

The pre-trained mask R-CNN detector, used instead of the blob analyzer showed a higher

number of false positives that was also indicated by lower precision. However, the number of

the false negatives was comparable with the blob detector (Table 4).

Real-time performance assessment

We have recorded the time taken for the classic computer vision algorithm to process, view

the processed video frames as they are completed and save the results in a new video file. The

test videos were processed using an Intel1 Core™ i5-8250U CPU 1.60GHz processor with 16

Table 4. Results of the automated detection and count of N. norvegicus.

Single (S)/

Multiple (M)

targets

Video length

(seconds)

Manual

count

Total automatic

count (CV |

MR-CNN)

True positive

(CV |

MR-CNN)

False positive

(CV |

MR-CNN)

False negative

(CV |

MR-CNN)

Precision (CV

| MR-CNN)

Recall (CV |

MR-CNN)

F-score (CV |

MR-CNN)

S 1 283 40 40 | 139 37 | 36 3 | 103 3 | 4 0.93 | 0.26 0.93 | 0.90 0.93 | 0.20

S 2 136 19 17 | 73 16 | 17 1 | 56 3 | 2 0.94 | 0.23 0.84 | 0.89 0.89 | 0.18

S 3 403 74 65 | 239 64 | 69 1 | 170 10 | 5 0.98 | 0.29 0.86 | 0.93 0.92 | 0.22

M 1 146 11 14 | 24 6 | 8 8 | 16 5 | 3 0.43 | 0.33 0.55 | 0.73 0.48 | 0.23

M 2 152 7 13 | 18 6 | 5 7 | 13 1 | 2 0.46 | 0.28 0.86 | 0.71 0.60 | 0.20

CV, the proposed computer vision algorithm and MR-CNN, the pre-trained mask R-CNN detection followed by the Kalman filter applied on the videos of the single (S)

individual dragged in front of camera, whereas a multiple (M) target set was a group of N. norvegicus released in the tank.

https://doi.org/10.1371/journal.pone.0252824.t004

Fig 4. Example of detected and tracked N. norvegicus. (A) The output of the proposed computer vision algorithm; (B) the output

of mask R-CNN pre-trained on COCO.

https://doi.org/10.1371/journal.pone.0252824.g004
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GB RAM. Given these settings and hardware the algorithm processes on average one frame

per 2.5 frames of the input video stream.

Assessing only the algorithm (without displaying or saving the processed video just provid-

ing the count) it processes one frame per 1.5 frames of the input video. With further optimiza-

tion of the code and utilization of parallel CPU cores the performance of the algorithm is

expected to become close to or even exceed one processed frame per video input frame.

To run the algorithm with mask R-CNN as the object detector we used an Intel1 Core™ i7-

8750H CPU 2.20GHz processor with a 16 GB RAM, NVIDIA Quadro P1000 Graphic card

with 640 NVIDIA CUDA1 Cores and 4 GB GPU memory. Given these settings and hardware

the algorithm processes on average one frame per 31.5 frames of the input video stream.

Discussion

In this study, we presented an image acquisition system (NepCon) for N. norvegicus-directed

trawl fishing, and evaluated the effect of the high-contrast background on the object segmenta-

tion and automatic N. norvegicus detection, tracking and counting based on computer vision

and deep learning algorithms. In this first phase NepCon was developed under fixed experi-

mental conditions with the controlled light source as well the opaque contrasting material

used as a background.

Background color choice

Several factors contributed to the selection of background color and material: color visibility

under water, custom color hue, segmentation results, potential visibility for the fishes (for at-

sea implementation and the effect on fish behavior), camera automatic settings response to the

particular color.

The background color influences the object appearance in case the automatic camera

settings are chosen (Fig 2A and S1 and S2 Figs). The shift in object hues may preserve the effi-

ciency of object segmentation, however it complicates the evaluation of the object classifica-

tion. Yet, the use of the camera automatic settings allows the system to be more adjustable for

the possible variations in lightning, such as back-scattering of the light from the reflective fish

scales and the sediment.

Orange is the most visible color in turbid waters and N. norvegicus were distinguishable on

this background. However, the hues of N. norvegicus were shifted more towards blue, and

additionally orange background could possibly yield in higher visibility for fish in trawl.

White is a uniform color, and when used as a background it makes all items visible with

the camera settings reflecting the ‘true’ color of the object. However, most fishes and aquatic

organisms contain white color in their pigmentation that may affect the object detection accu-

racy and potentially the size estimation of the object due to less accurate detection in case of

partial detection. A white background is expected to make the dark sediment more visible

leading to poorer image quality and higher chance of the false positive detections.

Green is a complementary color to red (the color of the target species) [18, 27], and it cre-

ates a good contrast yielding in better segmentation results. N. norvegicus, like several other

species of crustaceans, reflect red-band wavelength light due to the presence of carotenoid pig-

ment, astaxanthin, in the carapace [46]. The sediment and algae are expected to be less visible

on the darker green background due to similar wavelength of the reflected light.

Yellow is the second most visible color in turbid waters after orange and showed the second

segmentation results for N. norvegicus according to Jaccard index (Table 2). We expect the

higher sediment visibility on this brighter than green background.
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N. norvegicus segmentation

We have evaluated the accuracy of the segmentation techniques by calculating the Jaccard

index that compares the similarity between the predicted object mask with the ground truth

mask. The ground truth has been generated using the pixel label assisted freehand that helps to

create the more accurate object mask with minimum presence of the background pixels in the

foreground mask. However, with this technique the background pixels are not entirely elimi-

nated from the foreground mask hence resulting in a bias in the Jaccard index values.

The segmentation techniques applied on the augmented data showed higher variability in

the results (Table 3). Due to the ground truth labeling process, the foregrounds pasted onto

different backgrounds contain small amounts of pixels belonging to the original background

(Fig 3A and 3B), this biases the segmentation results, however all the augmented images have

the same source of bias with the same relative contamination. The Graph cut segmentation

method showed the highest results for the green background (Table 3). As this technique is

based on mean color distance for the foreground-background separation, it supports the

hypothesis that the better color contrast provides better segmentation results at least for color-

based techniques. Here we can see that the shift in the foreground hue still provides the best

segmentation output. The obtained result correlates with the larger distance between the fore-

ground and the background of the tested colors (S3 Fig).

N. norvegicus detection, tracking and counting

In a stable observation scene (i.e. controlled illumination and an opaque background of a spe-

cific color), the proposed algorithm based on the blob detector can detect, track and count N.

norvegicus with an F-score of 76.4%. The accuracy of the algorithm was higher for the videos

containing individual N. norvegicus compared to the accuracy for the multiple individuals

passing. The observed result can be explained by the fact that the algorithm tends to inaccu-

rately separate the individuals when they are occluding each other while formed in groups.

Blob detector is semi semantic, in that it attempts to identify instances within a binary image,

whereas mask R-CNN creates a binary image for each instance. Besides this, some individuals

are being detected in parts, i.e. parts of a single N. norvegicus are being identified as separate N.

norvegicus entities. These issues may be solved by proceeding with advanced feature-based seg-

mentation methods. The deep learning methods show promise as they consider a wider range

of learned object features in addition to color and area of interest size however they require a

large amount of the training data [20, 47]. In this study, we have used the pre-trained mask

R-CNN as a substitute of the blob analyzer. Even without performing the transfer learning of

the model on the collected data, the network is able to accurately predict regions of interest,

however the mask R-CNN detector resulted in a higher number of false positive detections in

both single and multiple target videos. This method has a large potential to outperform the

proposed blob analyzer object detection and to be more robust in terms of low sensitivity to

other objects and noise that can be present in the frame during fishing [19].

Mask R-CNN has already found an application in solving different tasks related to fishery.

For instance, it has been used for automatic fish species detection and classification in the

images collected during the scientific monitoring [23, 48]. It has also been used in assistance to

the analysis of videos obtained during electronic monitoring onboard the fishing vessel [49].

The pixel-wise mask output of the model helped to estimate the total length of the wild and

farmed harvested fish [24, 25].

The multi-object tracking component of the algorithm does not provide an issue in terms

of accuracy, however the object detection component is where most of the inaccuracy can be

attributed. This is due to incorrect detection (false positive) and missed target object (false
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negative) errors. The occurrence of the false positive and false negative detections can be

explained by the general approach that is used in the filtering masks, blob analyzer and the

input data quality which is dependent on the sampling conditions.

The application of the deep learning detector in its current configuration is however not

applicable for near real-time performance, whereas the blob analyzer is closer to real-time and,

under the controlled conditions, is able to provide an accurate automated catch indication.

Applications of NepCon

The NepCon system can be used not only in fisheries, but also have an application in the mon-

itoring of aquatic resources. For instance, the automated recognition and removal system of

the Asian carp [50] can benefit from the contrast enhancement used in NepCon and detect

and remove species based on more basic object features instead of applying the genetic

algorithm.

Fish, both fresh water and marine, are the most common target for automatic detection for

the fishing industry. The approaches aim to detect targets both in situ underwater and on deck

after fishing is over, for example, on the conveyer belt during sorting, to estimate the amount

of bycatch or to assist the manual catch sorting [51]. The object recognition on the conveyer

belt is easier than underwater since it is performed with a stable, highly controllable back-

ground with lighting, whereas underwater conditions are much more challenging, especially

close to the seabed where mobilized sediment can occlude the image. Thus, the presented auto-

mated algorithms used for N. norvegicus detection and count may be applied on the on-deck

catch monitoring.

Computer vision found an application in a study of N. norvegicus behavior [52]. To distin-

guish between individuals and identify their movements the authors designed tags that were

attached to the animals’ cephalothoraxes and were used as references for automatic detection.

The NepCon can be applied here without the need to design and attach tags to animals, instead

N. norvegicus can be automatically detected either fully or partially and tracked.

In-trawl catch monitoring systems are being tested in pelagic research trawls to verify the

catch species composition captured by the echosounders [13]. The data obtained by such a sys-

tem can also be processed automatically [23]. The system may benefit from the NepCon con-

cept by applying the contrasting background to the target species which enables the computer

vision based object recognition techniques and improves the performance of the deep learning

model for the object segmentation task.

Conclusions and future work

We have developed and demonstrated a design concept for underwater image acquisition of

N. norvegicus using opaque contrasting materials as a background and further explored the

possibility of automatic detection and counting of one of the most challenged and economi-

cally valuable species in the European demersal trawl fisheries.

Such system can be implemented by both fishers, to monitor ongoing catch rates, and by

researchers performing monitoring operations. The technology can work as an assistant to

fishers by using the core algorithm to provide a catch estimate, besides, the algorithm can be

used for selecting frames of interest for the deep learning algorithm training.

Our study presents a novel approach to the demersal fisheries field by introducing a stable,

robust and cost-effective image acquisition system for underwater environments, specifically

tuned for automatic detection and tracking of N. norvegicus. This experimental development

and test of concept under controlled conditions is an important step before transferring the

system to real fishing conditions and before expanding the database for further improvement
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of the automatic detector. The future in-trawl system integration should maintain consistent

light conditions as well as an opaque high-contrasting background. Using tarpaulin, or similar

material as a background instead of colored netting will minimize influence from external var-

iation in light and seabed color that can be visible through netting. Despite the optimization of

the observation scene setup the mobilized by the ground gear sediment may to some extend

challenge the quality of the image acquired during the demersal trawling.

Semantic and instance segmentation methods, which have been achieved through several

powerful deep learning approaches, could improve upon the proposed solution provided

enough training data is collected.

Therefore, future work includes integrating an observation section inside the demersal

trawl gear, containing a fixed green background with sufficient artificial light and a camera

overviewing the passing catch elements as the main components. When operational in trawl,

extensive images for the application of state-of-the-art deep learning segmentation algorithms

should be collected.

Supporting information

S1 Fig. Comparison of the gray scale mean images histograms: A) rgb2gray (luminance)

Chi-squared distances between the histograms of the four test backgrounds; B) rgb2light-

ness (lightness) Chi-squared distances between the histograms of the four test back-

grounds; C) rgb2gray (luminance) Euclidean distances between the histograms of the four

test backgrounds; D) rgb2lightness (lightness) Euclidean distances between the histograms

of the four test backgrounds.

(TIF)

S2 Fig. Comparison of the gray scale mean foreground (FG) histograms: A) rgb2gray

(luminance) Chi-squared distances between the histograms of the four test backgrounds;

B) rgb2lightness (lightness) Chi-squared distances between the histograms of the four test

backgrounds; C) rgb2gray (luminance) Euclidean distances between the histograms of the

four test backgrounds; D) rgb2lightness (lightness) Euclidean distances between the histo-

grams of the four test backgrounds.

(TIF)

S3 Fig. Comparison of the foreground (FG) and background (BG) in the four mean

images: A) Euclidean distance B) Mahalanobis distance.

(TIF)

S4 Fig. Flowchart indicating steps of the object detection part of algorithm based on the

computer vision approach. The left branch indicates the foreground detector filter using

Gaussian Mixture Models (GMM); the middle branch indicates thresholding on just the red

channel of the frame. The right branch indicates the mean intensity shift and histogram equali-

zation filter.

(TIF)

S5 Fig. Flowchart indicating steps of the automated object tracking and counting.

(TIF)
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