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A B S T R A C T   

Background and purpose: Radiotherapy centers frequently lack simple tools for periodic treatment plan verifi
cation and feedback on current plan quality. It is difficult to measure treatment quality over different years or 
during the planning process. Here, we implemented plan quality assurance (QA) by developing a database of 
dose-volume histogram (DVH) metrics and a prediction model. These tools were used to assess automatically 
optimized treatment plans for rectal cancer patients, based on cohort analysis. 
Material and methods: A treatment plan QA framework was established and an overlap volume histogram based 
model was used to predict DVH parameters for cohorts of patients treated in 2018 and 2019 and grouped ac
cording to planning technique. A training cohort of 22 re-optimized treatment plans was used to make the 
prediction model. The prediction model was validated on 95 automatically generated treatment plans (auto
matically optimized cohort) and 93 manually optimized plans (manually optimized cohort). 
Results: For the manually optimized cohort, on average the prediction deviated less than 0.3 ± 1.4 Gy and − 4.3 
± 5.5 Gy, for the mean doses to the bowel bag and bladder, respectively; for the automatically optimized cohort a 
smaller deviation was observed: − 0.1 ± 1.1 Gy and − 0.2 ± 2.5 Gy, respectively. The interquartile range of DVH 
parameters was on average smaller for the automatically optimized cohort, indicating less variation within each 
parameter compared to manual planning. 
Conclusion: An automated framework to monitor treatment quality with a DVH prediction model was successfully 
implemented clinically and revealed less variation in DVH parameters for automated in comparison to manually 
optimized plans. The framework also allowed for individual feedback and DVH estimation.   

1. Introduction 

Treatment plan quality is affected by human skills, experience and 
the manual (trial-and-error) aspects of radiotherapy planning, which 
introduces variability between patients, planners and institutions. Most 
centers lack methods to verify or compare the quality of their treatment 
plans throughout different time periods, after a change in planning 
technique or during the planning process. There is a lack of tools which 
are simple to use, provide individual feedback and strategies for quality 
assessment. The constant verification of treatment quality is paramount 
as it may drop with e.g. time, workload and the subjective aspect of 
technician’s experience. 

There have been increasing developments in the automation and 
quality assurance (QA) of the treatment planning process. Automation 
has been shown to improve planning speed and efficiency and to reduce 

variability either using iterative optimization strategies or prior 
knowledge and experience: e.g. knowledge-based (KB) [1] or machine 
learning approaches [2]. However, as new plans are predicted based on 
previous plans, KB models are trained and validated using a selection of 
standard human optimized trial-and-error plans with inconsistencies 
across the population. KB planning drawbacks also include the risk that 
a subgroup of patients might receive a suboptimal plan, when being out 
of the KB model scope, and it might lack the planner’s interpretation of 
unique individual characteristics. 

Therefore, it is necessary to have plan QA tools available [3]. Up- 
front prediction models of achievable treatment plan quality could 
allow for more realistic planning goals, increase planning efficiency and 
allow for establishing a QA system of the treatment planning process. 
Instead of relying solely on experience, the planner can be guided by an 
interval of attainable OAR doses derived from such a prediction model. 
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Prediction models for QA have been approached by several anatomy- 
based methods such as the overlap volume histogram (OVH), principal 
component analysis and other geometric strategies [4–7]. The OVH, 
where organ at risk (OAR) sparing is considered by its spatial overlap 
distribution with the planning target volume (PTV), has been applied to 
different treatment sites with success [8–11]. 

For the pelvic region, different strategies have been developed for 
prostate cancer patients. Zhu et al. [6] proposed a machine learning 
based quantitative evaluation tool which estimates OAR sparing and 
provides reference in evaluating adaptive strategies. This tool was 
further used by Wang et al. to prospectively predict achievable dose- 
volume histograms (DVHs) for automatically generated plans. The 
OVH has been evaluated as an OAR dose predictor to improve treatment 
[12–14] and to assess automated planning software [15]. However, for 
rectal cancer patients a plan QA tool or an OVH model has not yet been 
described in the literature. 

The aim of this study was to present a plan QA framework for rectal 
cancer patients with an anatomy-based OVH prediction model. First, the 
development and validation of the OVH model were outlined. The 
prediction model allows for feedback on plan quality during treatment 
planning for individual patients and periodic assessment of previously 
treated patients on a cohort level. Second, the prediction model was 
used to assess the introduction of a KB planning technique in clinical 
routine. Finally, the clinical framework structure was described. The 
framework was developed to automatically monitor planning quality, 
assist technicians in the planning process and create a database for 
further analysis. This is an application of a planning QA method, with 
(almost) real-time feedback to the technicians: we reported on our 
ongoing clinical experience. 

2. Materials and methods 

2.1. Patient selection and treatment planning objectives 

Three hundred and seventy-one stage I-III rectal adenocarcinoma 
patients were treated in 2018 and 2019 at Maastro Clinic, The 
Netherlands. Institutional review board approval (MAASTRO-P0222) 
was granted for this study. A total of 196 patients treated with a pre
scription dose of 50 Gy in 25 fractions were included. Patients who 
received different treatment strategies, e.g. different fractionation or 
concomitant boost, were excluded, i.e. 175 patients. Patients were 
treated with a full bladder in supine position using two or three volu
metric modulated arc therapy (Varian Rapid Arc) arcs. The gross target 
volume (GTV), which encompasses the primary tumor and possible 
lymph nodes, was expanded with 5 mm to yield the clinical target vol
ume (CTV). The CTV was adapted considering the local anatomy and 
excluding overlapping OAR regions. A margin of 10 mm was added to 
the CTV to generate the planning target volume (PTV). The OARs 
comprised the bowel bag and the bladder. The clinical objectives, dose 
and volume constraints were summarized in supplementary material 
table ST1. 

All 196 patients were divided into cohorts according to their treat
ment planning technique. The cohorts were distributed as in Supple
mentary material Fig. SF1. Ninety-five patients were treated after the 
introduction of KB software RapidPlan™ (Varian Medical Systems, Palo 
Alto, CA), they were referred to as automatically optimized cohort. 
Ninety-three patients were manually planned before the introduction of 
RapidPlanTM according to our clinical protocol using the treatment 
planning system (TPS, Eclipse 15.5, Varian Medical Systems, Palo Alto, 
CA). This cohort was called the manually optimized cohort. Further
more, a subset of 22 plans (not included in the other cohorts), 8 from 
2018 and 14 from 2017, was revised, further optimized and re-planned, 
by an experienced technician and a medical physicist until they 
improved and reached an optimal status according to their judgment. 
This subset of re-plans was called the training cohort. The training 
cohort was used to train the OVH DVH prediction model and the 

manually and automatically optimized cohorts were used to validate the 
model. Both validation cohorts were further used to compare the manual 
planning technique with RapidPlan™. 

2.2. Prediction model 

The DVH prediction model used in this study was based on the OVH 
concept: the histogram which describes the distribution of distances of 
an OAR with respect to the tumor [4]. It considers the dose fall off from 
the PTV towards each OAR; on average, as the distance from the PTV 
increases, the dose to the OAR decreases. This OVH DVH prediction 
model, which followed the method described by Petit and van Elmpt 
[10], was summarized and explained in Fig. 1. The first step was to 
derive dose-distance curves for the OARs of each patient of the training 
cohort. The dose-distance points, where each point shows the dose at the 
distance from the PTV, were displayed at the top right panel. From these 
points, the patient dose-distance curve was calculated, which described 
the relationship between the average dose in the OAR voxels at a specific 
distance from the PTV: steeper curves indicate a better OAR sparing. As 
each cohort was subject to the same treatment set-up, the dose–distance 
relation for each OAR was robust and almost patient independent [10]. 
The second step was to derive the training cohort population dose- 
distance curve. For each OAR, the dose-distance curves were calcu
lated and the population relations 25th, 50th and 75th percentile were 
used. Thus, a bandwidth between the best 25% and 75% of plans was 
generated. 

From the population relation, it was possible to obtain the cohort’s 
expected DVH and to predict DVH metrics for a new patient. For the 
DVH prediction, only the population curve (the expected DVH) and the 
distances between PTV and OARs for a new patient, i.e. their structures 
delineations, were necessary (Fig. 1). The prediction model was subse
quently applied to the validation cohorts. Individual patient’s dose- 
distance relations were generated following the method described 
above. By comparing individual distances to the population dose- 
distance and associating that distance with the dose value, an estimate 
of the dose to each new patient was obtained. The inverse cumulative 
histogram of the dose at every calculation point, weighted on the new 
patient’s anatomy, yielded the DVH curve. 

2.3. Generation of treatment plan database 

A computational framework was established (Fig. SF2) to automat
ically collect treatment plan information for QA purposes. For every 
rectal cancer treatment, plan specific metrics e.g. irradiation technique 
or (achieved and predicted) treatment doses were automatically 
collected and stored in a database called PlanQA. The database could be 
accessed for prospective purposes e.g. feedback on individual patients 
during treatment planning, or retrospectively e.g. for cohort analysis 
after modifying the treatment technique. 

The framework architecture was built using a pipeline from the 
clinical databases, where patient information is stored, towards a 
DICOM® mediator. The mediator moved the DICOM® treatment ob
jects: plan, dose matrix and contours from the TPS to the Picture 
Archiving and Communication System (PACS) not to interfere with the 
clinical workflow. The PACS was connected to the PlanQA database, 
where, through a series of wrapped Matlab (The Mathworks, Natick, 
MA) scripts, treatment metrics were calculated. PlanQA was in turn 
connected to the clinical electronic medical record system, from which 
treatment protocol information was retrieved. Finally, only calculation 
results were stored in the PlanQA database. 

For rectal cancer patients, the parameters calculated and included in 
the database comprehend all the DVH metrics according to the clinical 
goals (Table ST1), dose predictions, dose-distances and treatment plan 
information, such as the total number of monitor units (MU), MU/cGy, 
and treatment technique specifications. However, the selection of 
treatment plan metrics for calculation was based on a customizable 
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configuration file thus additional parameters could be included. Calcu
lations could be started from a website for single or multiple patients 
using patient and plan identifiers. The results were visualized either in 
an online report or using a stand-alone Matlab graphical user interface 
(GUI). The GUI also allowed for offline calculations from DICOM® 
objects. 

2.4. Cohort analysis and prediction comparison 

The validation cohorts were used to evaluate the prediction model. 
The predicted mean doses to the bowel bag and bladder were compared 
to the achieved doses as well as the V45cm3 for the bowel bag and the 
V35% for the bladder. To assess the different planning techniques, the 
achieved mean and maximum doses and the total number of MUs for the 
validation cohorts were compared using the database results. A paired t- 
test was used to indicate statistical significance (p-value < 0.05) of 
differences between the predicted and achieved DVH parameter values. 

3. Results 

Variation between predicted and achieved mean doses for the 
automatically optimized cohort compared to the manually optimized 
cohort was reduced (p < 0.001) both for the mean doses to the bowel 
bag and the bladder (Fig. 2). This behavior was also observed for the 
predicted and achieved V45cm3 and V35% of the bowel bag and 
bladder, respectively (Fig. 3). The results for individual patients were 

summarized on the average differences between predicted and achieved 
doses for the treatment planning constraints (Table 1). For the manually 
optimized cohort, on average the prediction deviated<0.3 ± 1.4 Gy and 
− 4.3 ± 5.5 Gy, for the mean doses to the bowel bag and bladder, 
respectively; for the automatically optimized cohort a smaller deviation 
was observed: − 0.1 ± 1.1 Gy and − 0.2 ± 2.5 Gy, respectively. 

The mean and maximum doses to the PTV, bowel bag and bladder, 
were within the clinical constraints for both cohorts (Fig. 4). All volume 
metrics were also within the clinical constraints (not shown). The 
interquartile range was on average smaller for the automatically opti
mized cohort, indicating less variation within each parameter. For the 
mean and maximum dose to the bladder and PTV the interquartile range 
was significantly smaller (Student’s t-test p < 0.001) and so was for the 
number of MUs used in the treatment (Fig. 4c, p < 0.001), the 25th, 50th 

(median) and 75th percentiles were 18%, 11% and 5% higher in com
parison to the manually optimized cohort; however, a slightly higher 
modulation, expressed in a higher MU/Gy, was seen for the automati
cally optimized cohort. A steeper dose fall-off for the bladder for the 
automatically optimized cohort was seen (Fig. 5), whereas for the bowel 
bag, both curves present similar behavior. This was in accordance with 
the mean and maximum doses (Fig. 4a) and the model premise that 
steeper curves indicate a better OAR sparing. The mean dose to the PTV 
ranged from 49.1 Gy to 50.9 Gy for the manually optimized cohort and 
from 48.7 Gy to 50.5 Gy for the automatically optimized cohort. 

Fig. 1. Schematic summary of the DVH prediction model. Top left: sagittal view of a patient anatomy with planned dose distribution for the PTV and OARs (bowel 
bag and bladder). Top right: patient-specific OAR (bowel bag) dose-distance scatter plot (in gray) and average dose-distance relation (in green). Bottom right: mean 
dose-distance curves for the bowel bag of all patients in the cohort (in gray) and the population’s 25th, 50th (median) and 75th percentile dose-distance curves (in 
pink). Bottom left: the OAR’s (bowel bag) 25th, 50th and 75th percentile DVH prediction curves for a new patient based on the population curve. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

A plan QA framework with a prediction model for DVH metrics was 
presented and evaluated. The framework allowed for rapid and easy 
access to dose and plan metrics per treatment protocol. As a first use 
case, the clinical introduction of a KB planning technique was evaluated. 
The comparison between the manually optimized and the automatically 
optimized cohorts showed no large dose discrepancies between both 
techniques, although less variation in treatment parameters using the 
automated technique was seen. The interquartile range was on average 
smaller for the automatically optimized cohort, e.g. for the total number 
of monitor units the range was 2.2 times higher for the manually opti
mized cohort. However, automatically optimized plans presented a 
slightly higher degree of modulation (i.e. MU/Gy). 

Previous publications have also compared automated to manual 
treatment planning for rectal cancer patients. Wu et al. [16] reported a 
slightly improved homogeneity index for the PTV and significant dose 
reduction to the OARs. Castriconi et al. [17] implemented a KB opti
mization strategy for adaptive treatments which resulted in robust, 
better or equivalent clinical plans and a significantly lower dose to the 
OARs (up to 3 Gy to the bowel bag). For other sites, such as the prostate 
[18–20], head and neck [21] and esophagus [22], automated planning 
software showed superior consistency and less variation than manual 
planning, which demonstrates the reduction of intra- and inter-planner 
subjective dependency. However, to establish an acceptable model for 
automated planning, it is important to manually fine-tune the optimi
zation objectives during model training [23] and to use a large variety of 

patients to validate the model, i.e. a cohort as heterogeneous as the one 
used for training is recommended [24]. Moreover, the stability of the 
automated planning algorithm should be evaluated over large cohorts 
from daily practice as it is not clear how plans are produced or if they are 
the best option for each patient, due to the black box aspect of com
mercial algorithms [15]. 

The prediction model from Petit and van Elmpt [10] was in this study 
for the first time applied to cohorts of rectal adenocarcinoma patients 
treated with VMAT. Based on a database of previously calculated dose- 
distances, this model predicted the DVH curve based exclusively on the 
patient’s anatomy: only the contours of the PTV and selected OARs were 
necessary. Moreover, the model provided confidence intervals for every 
calculated metric. This allowed for comparison with previously treated 
patients and considered the heterogeneity in the population. The 
method is easily implementable as it does not require complex software 
or expert programming skills and the trained prediction model could be 
distributed to other centers if the population dose-distance relationships 
are comparable, according to treatment technique, TPS, optimization 
and clinical goals. The model could also be trained at different in
stitutions, where a training cohort of around 25 patients should yield 
representative predictions [10]. 

Prediction values were closer to the achieved results for the auto
matically optimized cohort in comparison to the manual cohort. This 
was an expected result: when during manual planning OAR dose con
straints are met a plan could be considered clinically usable, but might 
not be optimal or Pareto optimal, i.e. any further beneficial dose redis
tribution to one OAR would be detrimental to other OARs. The model 

Fig. 2. Predicted and achieved mean dose to the bowel bag and bladder for individual patients. Comparison between the training, manually and automatically 
optimized cohorts for the bowel bag (top) and the bladder (bottom). The predictions are derived from the median population dose–distance and the error bars 
correspond to the 25th and 75th percentiles. The diagonal line indicates where predicted and achieved results coincide. 
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used to create the plans in the automatically optimized cohort was 
trained with a dataset of re-plans considered optimal by experts, 
resulting in less variation amongst the patient population, which vali
dated the prediction model and assured the quality of the KB software. 
Moreover, the prediction for both dose and volume metrics was more 
realistic for the bowel bag in comparison to the bladder. The much larger 
volume of the bowel bag, different levels of bladder filling, increased 
distance from the PTV and different priority values set during manual 
plan optimization were complementary reasons for that. The dose- 
distance curves (Fig. 5) showed a steeper dose fall-off for the automat
ically optimized cohort. 

Besides automating treatment planning, KB planning could be used 
as a QA tool: as dosimetry predictions rely on prior knowledge, e.g. dose 

prediction based on prior anatomical knowledge and the OVH, this data 
could be used for plan quality evaluation [1]. In this study, an inde
pendent DVH prediction tool for treatment plan QA was developed, 
trained, validated and used to assess the automated treatment planning 
process. Such tools are essential in the context of automated planning, as 
automation might decrease human awareness [15]. Plan QA models and 
databases can ensure treatment consistency and quality. However, a 
limitation of the KB approach is that model quality is a function of the 
training data quality: although acceptable, the quality might not be the 
highest and accuracy assessment becomes challenging. Wang et al. 
overcame this issue by creating a “ground truth” dataset of Pareto 
optimal plans for plan QA model performance evaluation and OVH 
model performance validation [25]. This sophisticated solution is likely 

Fig. 3. Predicted and achieved V45Gy of the bowel bag (top) and V35% of the bladder (bottom) for individual patients. Comparison between the training, manually 
and automatically optimized cohorts. The predictions are derived from the median population dose–distance and the error bars correspond to the 25th and 75th 

percentiles. 

Table 1 
Average differences between predicted and achieved mean dose to the bowel bag and bladder, bowel bag V45Gy and bladder V35%. The volume metrics were 
normalized to the respective OAR volume.     

Training cohort Manually optimized (Validation 
cohort) 

Automatically optimized 
(Validation cohort)    

Mean ± SD Range 
(min–max) 

Mean ± SD Range 
(min–max) 

Mean ± SD Range 
(min–max) 

Bowel bag ΔDmean Absolute [Gy] 0.0 ± 1.0 − 1.6–1.7 0.3 ± 1.4 − 2.6–5.0 − 0.1 ± 1.1 − 2.6–2.7 
ΔV45 Absolute [cm3] − 6.3 ± 5.4 − 17.5–-0.1 − 0.3 ± 12.2 − 43.9–55.6 − 6.7 ± 11.1 − 31.8–7.5 

Normalized to the bowel bag volume [%] − 0.4 ± 0.4 − 1.2–0.4 − 0.2 ± 0.7 − 1.7–3.0 − 0.4 ± 0.5 − 3.0–0.8 
Bladder ΔDmean Absolute [Gy] − 0.4 ± 2.5 − 3.5–5.1 − 4.3 ± 5.5 − 5.3–15.7 − 0.2 ± 2.5 − 6.1–9.9 

ΔV35 Absolute [%] − 3.0 ± 3.6 − 9.8–3.4 − 0.1 ± 8.7 − 15.2–42.3 − 3.8 ± 3.8 − 11.9–13.8 
Normalized to the bladder volume [%] − 2.9 ± 5.8 − 24.2–2.3 − 0.3 ± 8.9 − 36.0–64.6 − 2.6 ± 3.5 − 6.2–15.5  
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to improve treatment quality and provides independent controls to 
detect systematic errors and outliers. However, their dataset was limited 
to prostate cancer patients and the generation of Pareto optimal plans is 
currently only available in a limited number of institutes. 

This study shows how we developed a framework to automatically 
monitor planning quality, help the technicians in the planning process 
and create a useful database for further analysis. We suggest a concept 
that is flexible enough to simply store information or to add different 
layers of calculation on top of dicom-based treatment results, such as 
prediction models or e.g. outcome analysis. Radiation oncologists, 
medical physicists and radiotherapy technicians could use the frame
work for straightforward verification of historical data and improve
ment of plan quality. Besides assessing automated planning 
implementation for other treatment sites, it is possible to use this 

framework for cohort analysis after changes in planning techniques e.g. 
modification of the fractionation regimen and for assessing gradual 
changes in plan quality over time. Furthermore, treatment planning 
system operators could use the prediction model during the treatment 
planning process. For example, one could predict dose values for new 
patients who have only been contoured or whose dose calculations are 
finished but it is not clear if the plan could be further improved. Com
parison and prediction with confidence intervals in these cases, allow for 
more educated clinical decisions. 

We developed a clinical plan QA framework with an anatomy-based 
OVH prediction model and used it to assess the introduction of a KB 
planning technique in clinical routine. A lower degree of variation on 
DVH metrics was seen for automated treatment planning in comparison 
to manual treatment plan optimization. The framework was developed 

Fig. 4. Comparison of achieved metrics from manually and automatically optimized cohorts. a) Mean bowel bag and bladder doses. b) Mean PTV and maximum PTV, 
bladder and bowel bag doses. c) Total number of monitor units per cohort. 

Fig. 5. Cohort dose-distance curves for a) the bowel bag and b) the bladder for both cohorts. The area between the 25th and the 75th percentiles is depicted.  
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as a simple and customizable tool to automatically monitor treatment 
quality and provide feedback to the treatment planner. 
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