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Summary
Background Evidence on the associations between long-term exposure to multiple air pollutants and cardiopulmonary
mortality is limited, especially for developing regions with higher pollutant levels. We aimed to characterise the
individual and joint (multi-pollutant) associations of long-term exposure to air pollutants with cardiopulmonary
mortality, and to identify air pollutant that primarily contributes to the mortality risk.

Methods We followed 37,442 participants with a mean age of 43.5 years in four cities in northern China (Tianjin,
Shenyang, Taiyuan, and Rizhao) from January 1998 to December 2019. Annual particulate matter (PM) with di-
ameters ≤2.5 μm (PM2.5), ≤10 μm (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) were estimated using
daily average values from satellite-derived machine learning models and monitoring stations. Time-varying Cox
proportional hazards model was used to evaluate the individual association between air pollutants and mortality
from non-accidental causes, cardiovascular diseases (CVDs), non-malignant respiratory diseases (RDs) and lung
cancer, accounting for demographic and socioeconomic factors. Effect modifications by age, sex, income and
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education level were also examined. Quantile-based g-Computation integrated with time-to-event data was
additionally applied to evaluate the co-effects and the relative weight of contributions for air pollutants.

Findings During 785,807 person-years of follow-up, 5812 (15.5%) died from non-accidental causes, among which 2932
(7.8%) were from all CVDs, 479 (1.3%) from non-malignant RDs, and 552 (1.4%) from lung cancer. Long-term
exposure to PM10 (mean [baseline]: 136.5 μg/m3), PM2.5 (mean [baseline]: 70.2 μg/m3), SO2 (mean [baseline]:
113.0 μg/m3) and NO2 (mean [baseline]: 39.2 μg/m3) were adversely and consistently associated with all mortality
outcomes. A 10 μg/m3 increase in PM2.5 was associated with higher mortality from non-accidental causes (hazard
ratio 1.20; 95% confidence interval 1.17–1.23), CVDs (1.23; 1.19–1.28), non-malignant RDs (1.37; 1.25–1.49) and
lung cancer (1.14; 1.05–1.23). A monotonically increasing curve with linear or supra-linear shape with no evidence
of a threshold was observed for the exposure-response relationship of mortality with individual or joint exposure
to air pollutants. PM2.5 consistently contributed most to the elevated mortality risks related to air pollutant
mixture, followed by SO2 or PM10.

Interpretation There was a strong and positive association of long-term individual and joint exposure to PM10, PM2.5,
SO2, and NO2 with mortalities from non-accidental causes, CVDs, non-malignant RDs and lung cancer in high-
exposure settings, with PM2.5 potentially being the main contributor. The shapes of associations were consistent
with a linear or supra-linear exposure-response relationship, with no lower threshold observed within the range of
concentrations in this study.

Funding National Key Research and Development Program of China, the China Scholarship Council, the National
Natural Science Foundation of China, Natural Science Foundation of Guangdong Province.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
We searched Medline and PubMed without language
restrictions for studies published up to November 2022, using
the search terms “air pollution”, “long-term”, “cohort”,
“mortality” and “cardiovascular” or “respiratory” or “lung
cancer”. Abstracts and full texts were then screened for
relevant studies. We found that epidemiological evidence
from relevant cohort studies is mostly from developed
regions with low air pollution levels (e.g., Western Europe and
North America), especially for cause-specific mortalities, while
the evidence from low- and middle-income countries (LMICs)
with much higher air pollution levels is still relatively limited.
An increasing number of cohort studies have been conducted
in China in the past 2 years, while these studies generally
focused on either single pollutant or specific mortality
outcome. Additionally, the results (e.g., exposure-response
relationship) had a high degree of heterogeneity, and
uncertainty from limited consideration for co-exposures of air
pollutants.

Added value of this study
In this large population-based Chinese cohort with a follow-
up of 22 years (785,807 person-years), we characterised the
mortality pattern of non-accidental causes, cardiovascular
diseases, non-malignant respiratory diseases and lung cancer
associated with long-term individual and joint exposure to

PM2.5, PM10, SO2, and NO2, accounting for the time-varying
exposures and individual demographic and socioeconomic
factors. Additionally, we applied Quantile-based g-
Computation integrated with time-to-event data to identify
the potential air pollutant that primarily contributes to the
elevated mortality risk. We found a consistently elevated risk
of cardiopulmonary mortality associated with both single or
combined long-term exposure to PM2.5, PM10, SO2, and NO2,
with monotonically increasing linear or supra-linear non-
threshold curves observed for the exposure-response
relationships. PM2.5 consistently contributed most to the
elevated mortality risks related to air pollutant mixture,
followed by SO2 or PM10.

Implications of all the available evidence
The study supports a strong and robust adverse association
that may be underestimated previously between long-term
exposure to air pollutants and cardiopulmonary mortality in
LMICs with high-exposure settings. The shapes of associations
were consistent with a linear or supra-linear exposure-
response relationship, with no lower threshold observed
within the range of concentrations in high-exposure settings.
The findings from this study contribute to very limited
evidence on the pattern of cardiopulmonary mortality due to
long-term individual and joint exposure to air pollutants for
high exposure settings typical in developing countries.
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Introduction
Outdoor air pollution is the leading environmental
contributor to the global disease burden. It is estimated
that more than 4.2 million premature deaths were
attributable to ambient air pollution worldwide per year,
with about 91% occurring in low- and middle-income
countries (LMICs), especially those in South-East Asia
and Western Pacific regions, including China.1 Though
the LMICs bear a disproportionately high disease
burden due to air pollution, the majority of the evidence
on long-term exposure to outdoor air pollution and
mortality, especially for cause-specific mortalities, was
from Western Europe and North America.2 A positive
association and non-threshold exposure-response rela-
tionship has been well established in these regions,
especially for particulate matters (PM).2,3 However, these
regions have comparatively low exposure settings
around or below the air quality guidelines for the Eu-
ropean Union or the United States (US).2,3 Evidence
from LMICs with much higher air pollution levels and
different sources of pollution is still relatively limited,4,5

leading to gaps in the knowledge about the shape of the
exposure-response (ER) relationships between air pol-
lutants and mortality at higher exposure levels, which is
important for informing future policy in countries
where the greatest health burden exists.3

As the largest LMIC, China has experienced rapid
changes of air pollution exposure levels with a broad
range over the past decades.6–8 An increasing number of
cohort studies have been conducted in China to char-
acterise the ER relationships between chronic exposure
to air pollutants and mortality in the past 2 years.9–19

These studies suggested that long-term exposure to
ambient air pollution, particularly PM2.5, was associated
with increased risks of various adverse health outcomes,
including lung cancer, chronic obstructive pulmonary
disease, cardiovascular mortality, and all-cause mortal-
ity. However, the studies generally focused on either
single pollutant or specific mortality outcome (e.g., all-
cause/non-accidental mortality), possibly due to the
data unavailability, limited number of cases and/or the
strong collinearity between air pollutants. To our
knowledge, there are no published studies on the joint
effects of chronic exposure to air pollutants on individ-
ual causes of death.

Because people are exposed to complex and varying
pollutant mixtures throughout their life course, multi-
pollutant models, which consider the potential syner-
gistic linear or non-linear effects among air pollutants,
may be more appropriate for estimating ER
functions.20–22 Further, previous studies have been
generally based on air pollution at baseline, which did
not allow for changes in air pollution exposure levels
and participant characteristics throughout the follow-up
period. While empirical knowledge on the shape of the
ER relationship at higher exposures has grown appre-
ciably in the last 5 years, the extent to which findings to
www.thelancet.com Vol 36 July, 2023
date resemble those using alternative model specifica-
tions to account for these issues is unknown. Investi-
gation into these research gaps will help develop policies
specific to such settings.

In the context of a Chinese cohort with 22 years of
follow-up, we aimed to utilize an integrated multi-
pollutant model with time-varying Cox analysis to
investigate the associations of long-term exposure to PM
with an aerodynamic diameter of equal to or less 10 μm
(PM10), equal to or less 2.5 μm (PM2.5), sulfur dioxide
(SO2), nitrogen dioxide (NO2) with mortalities from
non-accidental causes, cardiovascular diseases (CVDs),
non-malignant respiratory diseases (RDs) and lung
cancer, and to identify potential vulnerable sub-
populations and main contributor of air pollutant.
Methods
Study setting and population
The study was based on data collected between January
1998 and December 2019 in four cities selected to be
typical of those in northern China: Tianjin, Shenyang,
Taiyuan, and Rizhao (Fig. S1). These cities represent a
wide range of air pollution sources and concentrations
(Fig. 1). Tianjin is one of the national central cities and
was one of the first, mainly coal-consuming, heavy in-
dustrial cities in China. Tianjin had a population of 15.6
million and an area of 11,917 km2 in 2019. Shenyang is
the capital of Liaoning province and the largest city,
economic centre in Northeast China with a total area of
12,860 km2 and a population of 7.6 million in 2019.
Taiyuan is the capital of Shanxi province and produces
the most coal in China. It had a population of 4.5
million and an area of 6988 km2 in 2019. Rizhao is an
emerging port city with a population of 2.9 million and
an area of 5359 km2 in 2019.

For each city, we randomly selected participants from
small neighbourhoods (e.g., street blocks or apartment
buildings) in residential and commercial areas. In-
dividuals born prior to January 1, 1975, and lived in the
defined area since January 1, 1998 were included as
study participants. Socio-demographic information,
residential addresses, smoking or drinking status,
occupational exposures, and exercise level for leisure
were collected for these participants at baseline (1998)
and at follow-up (2009) from local neighbourhood of-
fices and via standard questionnaires by trained in-
terviewers. From the initial 39,054 participants who
completed the study, 1576 (4.0%) were excluded due to
missing data on covariates, resulting in a total of 37,478
participants in the study. The residence for the majority
of the cohort (81.2%) did not change from January 1998
to the follow-up, whereas a move within the city was
observed for the rest of the residents. The ethical com-
mittee of the coordinating centre of Tianjin Medical
University approved the study. Written informed con-
sents were obtained from all participants.
3
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Fig. 1: Annual average exposure (μg/m3) of PM10, PM2.5, SO2, and NO2 of the cohort participants in four cities from 1998 to 2009.
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Mortality outcomes definition
The mortality outcomes for each participant were fol-
lowed up until 31 December 2019 or their date of death.
Detailed information on death (e.g., time, place, and
cause of death) was obtained from the questionnaires
completed by the family members of deceased subjects
and the Centre for Disease Control and Prevention
(CDC). The mortality outcome was coded and defined
based on the International Classification of Disease 10th
revision (ICD-10). Four mortality outcomes were
selected: non-accidental causes (ICD-10: A00‒R99),
CVDs (ICD-10: I10‒I70), non-malignant RDs (ICD-10:
J00‒J99), and lung cancer (ICD-10: C34).23 To investi-
gate the long-term (>1 year) effects of air pollutants,
individuals who died within 1 year of the baseline were
excluded (N = 36), yielding a final of 37,442 participants
for the analysis.

Ambient air pollutants assessment
Ambient exposures of PM10 and PM2.5 from 2000 to
2019, and SO2 and NO2 from 2013 to 2019 were
assessed using gridded (∼10 km) air pollution datasets
for China, which were derived from machine learning
models with predictors of ground measurements, sat-
ellite retrievals, emissions, chemical transport model
simulations, and other sources.24–27 These datasets have
been shown high quality (cross-validation coefficients of
determination 0.80–0.93; root-mean-square error
4.89–24.28 μg/m3) in mainland China and were widely
used in previous studies on health impact assessment of
air pollution.8,28–34 As these datasets did not include PM
before 2000, as well as SO2 and NO2 before 2013, we
estimated PM10 between 1998 and 1999, and SO2 and
NO2 between 1998 and 2009 using the concentrations
from the monitor stations (within 10 km of home)
during these years calibrated with a ratio calibration
factor (the ratio of the concentrations of model-derived
air pollutants to those of the monitoring stations dur-
ing the year when both of them were available). For
years that monitoring and modelled air pollutants were
both unavailable (PM2.5 between 1998 and 1999, SO2

and NO2 between 2010 and 2012), we imputed them
with a natural spline function of the available data for
the other years.35 A 10-km buffer around the geocoded
residential addresses was used as the primary buffer to
quantify the annual ambient exposures of air pollutants
for each participant between 1998 and 2019. Annual
average ambient air pollution before the death date or
end of follow-up was defined as the primary long-term
exposure for each individual.36–38

Statistical analysis
For the descriptive analysis, we characterised distribu-
tions for all variables and used the mean ± standard
deviation (SD) to describe normally distributed contin-
uous variables and the t-test to compare between-group
differences. Categorical variables were compared be-
tween groups using a chi-square test. Spearman rank
tests were used to test the pairwise correlations among
air pollutants.
www.thelancet.com Vol 36 July, 2023
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In the main analyses, we applied a time-varying Cox
proportional hazards model adjusted for age at baseline
(in years), sex (female vs. male), body mass index (BMI,
kg/m2), level of education (<High school vs. ≥High
school), monthly income level (<1500 Yuan vs. ≥1500
Yuan), occupational exposure (self-reported exposure
to dust and fumes in the workplace, yes vs. no), phys-
ical exercise (active vs. non-active), marital status
(married vs. single/separated/divorced), and current
smoking (yes vs. no) and alcohol consumption (yes vs.
no) to investigate the associations between mortality
and air pollutants.39 A random intercept of city was also
included in the model to accommodate any residual
spatial clustering. Considering the long-term time
trend (e.g., changes in medical treatment level and
death reporting accuracy over the long study period),
we used calendar year as the time scale in the Cox
model.40 Air pollutant exposures, income, BMI, phys-
ical exercise and current status of smoking and
drinking were included in the models as time-
dependent variables. The follow-up period began on 1
January 1998 and ended on 31 December 2019 or at the
date of death for each participant, whichever came first.
The results are presented as hazard ratios (HRs) for
mortality from non-accidental causes, CVDs, non-
malignant RDs and lung cancer, and their corre-
sponding 95% confidence intervals (CIs), correspond-
ing to a 10 μg/m3 increase in air pollutants (PM10,
PM2.5, SO2, NO2).

A set of sensitivity analyses were conducted to check
the robustness of the results. Firstly, as a common
practice in cohort studies, we repeated the analysis
using a baseline model, in which a Cox proportional
hazards model was fitted with baseline air pollutants
and other covariates. Secondly, to examine the influ-
ence of selected confounders on our results, we re-
fitted the main model with different sets of cova-
riates: Model 1 (Crude), adjusted for age and sex;
Model 2, additionally adjusted for individual socioeco-
nomic status (SES) including level of education, in-
come, and marital status; and Model 3, additionally
adjusted for BMI and physical exercise. Thirdly, we
repeated the analysis with city-level air pollutions to
investigate the possible bias due to the potential move
within the city of the study participants. Fourthly, we
used different imputation functions (linear, Stineman,
or periodic) for missing data on PM2.5 and SO2 and re-
conducted the main analysis.41,42 Fifthly, to evaluate the
possible bias from excluding participants due to
missing covariates at follow-up, we conducted an in-
verse probability weighting analysis.43 We included the
inverse probabilities of being included in the main
analyses, which were estimated by using baseline
covariates as predictors, as a weight in the Cox model.
Sixthly, we utilized multivariate imputation by chained
equations for missing covariates at baseline and follow-
up with 10 multiple imputations and 50 iterations.44–46
www.thelancet.com Vol 36 July, 2023
Estimates from the main analyses re-conducted with
the 10 imputed complete datasets were then pooled
according to Rubin’s rules.47 Seventhly, we obtained
annual ozone estimates from 1998 to 2019 which were
used in the Global Burden of Disease (GBD) 2019
study and additionally adjust ozone in the main model
to examine the influence of ozone on the results.48

Finally, we considered multiple exposure time win-
dows, including average exposure in the 1–5 years
prior to death or end of follow-up.

To visualize the ER curve of the associations between
PM10, PM2.5, SO2, NO2, and mortality outcomes, we
further re-fitted the main models with a penalized
spline, a variation of basis spline that is robust against
the number of knots and knot placements, for the
pollutant variable instead of a linear term.49

We also examined the potential effect modification of
the associations between long-term exposure to PM10,
PM2.5, SO2, NO2 and mortality by introducing an
interaction term of each air pollutant and effect modifier
in the model and testing with the Wald test. Pre-
specified modifiers include age categories at baseline
classified by Chinese retirement age (<60 years or ≥60
years), sex, education (<High school or ≥High school),
and income level (<1500 Yuan/month or ≥1500 Yuan/
month).

To assess the joint associations between air pollut-
ants and mortality and the relative contribution of each
air pollutant, we performed multi-pollutant analysis
using Quantile-based g-Computation.50 Compared to the
traditional multi-pollutant model of weighted quantile
sum (WQS) regression, this approach further integrates
its estimation procedure with g-Computation in a mar-
ginal structural model that overcomes the assumption of
uni-direction and can incorporate non-linearities for the
joint exposures.50 Additionally, it allows including Cox
proportional hazards models as the underlying model
for time-to-event analysis. Air pollutants (PM10, PM2.5,
SO2, NO2) were included in the multi-pollutant analysis
with a quantile number of 20 in an underlying model of
time-varying Cox proportional hazards, with the
adjustment of the same confounders as in the main
analysis, to assess their relative contribution weights.
The air pollutants with positive weight were further
modelled as air pollutant mixture for the associations
with mortality. We used a quantile number of 20 to
create quantile indicators representing the air pollutants
exposures. A total of 1000 Monte Carlo simulations were
adopted to obtain accurate point estimates and 500
bootstraps to calculate the 95% CIs.51

All statistical analyses were conducted in R v4.0.3
(R Development Core Team). A two-tailed P-value less
than 0.05 was considered statistically significant.

Role of the funding source
The funders had no role in study design, data collection,
data analysis and interpretation, or report writing.
5
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Results
Study population and exposure
Table 1 shows the baseline characteristics of the
included participants in the cohort of four northern
Chinese cities by outcome (alive or dead). A total of
37,442 participants with a mean age of 43.5 years (SD:
13.4) at the baseline were included in the final analyses.
The average BMI at baseline was 22.6 kg/m2 (SD: 2.95).
Among the included participants, 50.7% were female,
and 24.9% and 20.2% were current smokers and alcohol
drinkers at baseline, respectively. During a mean follow-
up time of 21.0 (SD: 3.12) years or 785,807 person-years,
5812 (15.5%) died from non-accidental causes. Among
these deaths, 2932 were from all CVDs, 479 from non-
malignant RDs, and 552 from lung cancer. Compared
to individuals who were alive at the end of follow-up,
participants who had died were more likely to be
male, older, single/separated/divorced, current smokers
or drinkers, have occupational exposures, lower educa-
tion level and higher BMI or income level (Table 1).

Fig. 1 shows the annual average exposure of four air
pollutants (PM10, PM2.5, SO2, and NO2) for the partici-
pants in four study cities from 1998 to 2019. For each air
pollutant, there were generally high but similar
decreasing trends of exposure levels across the four
cities, especially for PM10, PM2.5, and SO2. From 1998 to
2019, the overall annual average concentration changed
from 136.47 μg/m3 (SD: 27.1) to 87.66 μg/m3 (SD: 7.7)
Characteristics Total (N = 37,442)

Age at baseline (years), mean (SD)b 43.5 (13.4)

BMI, mean (SD)b 22.6 (2.95)

Sex, n (%)b

Male 18,456 (49.3)

Female 18,986 (50.7)

Education level, n (%)b

<High school 21,476 (57.4)

≥High school 15,966 (42.6)

Income level per month, n (%)b

<1500 Yuan 35,115 (93.8%)

≥1500 Yuan 2327 (6.21%)

Occupational exposure, n (%)b 2705 (7.22)

Marital status, n (%)b

Married 34,455 (92.0)

Single/separated/divorced 2987 (7.98)

Smoking status, n (%)b

Never 27,124 (72.4)

Former 989 (2.64)

Current 9329 (24.9)

Alcohol intake, n (%)b 7558 (20.2)

Exercise, n (%) 18,880 (50.4)

Abbreviations: BMI, body mass index; SD, standard deviation. aMortality from all non-

Table 1: Baseline characteristics of the participants from the four-city cohort
to 2019.
for PM10, 70.16 μg/m3 (SD: 13.2) to 46.55 μg/m3 (SD:
4.1) for PM2.5, 113.03 μg/m3 (SD: 88.6) to 18.0 μg/m3

(SD: 6.9) for SO2, and 39.20 μg/m3 (SD: 16.1) to
44.34 μg/m3 (SD: 5.1) for NO2. The greatest decline was
observed for SO2, followed by PM10 and PM2.5. There
were generally mild to modest positive correlations be-
tween air pollutants (correlation coefficient ranged from
0.03 to 0.55, Table S1).

Associations between air pollution and mortality
Single pollutant model
Table 2 shows the results from the time-varying Cox
proportional hazards models for the associations be-
tween air pollutants and mortality. We observed
generally consistent and positive associations between
PM10, PM2.5, SO2, and NO2 and non-accidental mor-
tality, CVD mortality, as well as non-malignant RDs
and lung cancer mortality. HRs for non-accidental
mortality were 1.19 (95% CI: 1.17–1.21), 1.20
(1.17–1.23), 1.04 (1.03–1.05), and 1.24 (1.21–1.27) per
10 μg/m3 increment in PM10, PM2.5, SO2, and NO2,
respectively. Similar HRs were found for CVD mor-
tality. In comparison, stronger associations were
observed for PM10, PM2.5, SO2, and non-malignant
RDs mortality. When additionally adjusted for ozone,
the HRs of PM10 and SO2 did not change apparently,
while the HRs of NO2 and PM2.5 increased slightly
(Table S2). The results were generally robust in models
Censored (N = 31,630) Deada (N = 5812)

43.0 (13.2) 46.2 (14.1)

22.6 (2.96) 22.9 (2.92)

15,250 (48.2) 3206 (55.2)

16,380 (51.8) 2606 (44.8)

17,801 (56.3) 3675 (63.2)

13,829 (43.7) 2137 (36.8)

29,770 (94.1%) 5345 (92.0%)

1860 (5.88%) 467 (8.04%)

2197 (6.95) 508 (8.74)

29,187 (92.3) 5268 (90.6)

2443 (7.72) 544 (9.36)

23,133 (73.1) 3991 (68.7)

815 (2.58) 174 (2.99)

7682 (24.3) 1647 (28.3)

6266 (19.8) 1292 (22.2)

15,918 (50.3) 2962 (51.0)

accidental causes. bP < 0.05 for difference between alive and dead groups.

in Northern China by the status (alive or dead) from the baseline (1998)
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Air pollutants HR (95% CI)a

Non-accidental causes CVDs Non-malignant RDs Lung cancer

PM10 1.19 (1.17, 1.21) 1.20 (1.17, 1.23) 1.30 (1.23, 1.39) 1.11 (1.05, 1.17)

PM2.5 1.20 (1.17, 1.23) 1.23 (1.19, 1.28) 1.37 (1.25, 1.49) 1.14 (1.05, 1.23)

SO2 1.04 (1.03, 1.05) 1.04 (1.03, 1.06) 1.11 (1.07, 1.16) 1.05 (1.02, 1.08)

NO2 1.24 (1.21, 1.27) 1.26 (1.22, 1.31) 1.17 (1.06, 1.28) 1.16 (1.08, 1.26)

Abbreviations: CVDs, cardiovascular diseases; CI, confidence interval; HR, hazard ratio; NO2, nitrogen dioxide; PM10, particulate matter with aerodynamic diameter ≤10 μm;
PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; RDs, respiratory diseases; SO2, sulfur dioxide.

aAdjusted for age, sex, BMI, level of education, income,
occupational exposure, physical exercise and status of marital, smoking and drinking.

Table 2: Associations between per 10 μg/m3 increase in PM10, PM2.5, SO2, NO2 and mortality from non-accidental causes, CVDs, non-malignant RDs
and lung cancer (N = 37,442).

Articles
with inverse probability weighting, and to different sets
of adjusted covariates, different calibration approaches,
different interpolation functions and exposure time
windows (Tables S3‒S7). The models using the full
cohort with multivariate imputation also presented
almost identical results to those in the main analysis
(Table S8). However, the effect estimates changed
materially and generally tend to be smaller in models
using city-level or baseline air pollutants (Tables S9‒
S10). Fig. 2 further depicts the ER curve of mortality
risks associated with four air pollutants. The
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associations between PM10, PM2.5, SO2, and NO2 and
mortality from non-accidental causes, CVDs, non-
malignant RDs and lung cancer generally showed a
non-threshold linear or supra-linear shape.

Fig. 3 exhibits the results of stratification analysis by
age, sex, education, and income level. In stratified
analysis by age, we found consistent and similar
elevated risks of mortality from non-accidental causes,
CVDs, non-malignant RDs and lung cancer associated
with PM10, and PM2.5 among the different age sub-
groups. Generally, no modification effect of age on the
N
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associations was observed. Regarding the effect modi-
fication by sex, we found generally stronger associations
for PM2.5 and SO2 with mortality outcomes among
males compared with female participants, but without
heterogeneous effects for PM10 and NO2. Level of edu-
cation modified associations of mortality with PM10,
PM2.5, and SO2 where associations were adverse and
generally stronger for participants with lower education
level. Significant interactions were also generally found
for income with PM10, PM2.5, and SO2 on mortality
outcomes, with stronger and adverse associations
among those with higher income compared to those
with lower income. No heterogeneous effects were
observed for NO2 with mortality among subgroups of
different income levels.
Multi-pollutant model
In multi-pollutant analysis, we found that PM2.5

consistently contributed most to the adverse associa-
tions between air pollutants (PM10, PM2.5, SO2, and
NO2) and mortality, followed by SO2 for mortality from
non-malignant RDs and lung cancer or PM10 for mor-
tality from non-accidental causes and CVDs, while the
adverse effects of NO2 were largely attenuated and
covered by other air pollutants (Fig. S2). We found non-
threshold monotonically increasing curves for non-
accidental mortality, CVDs mortality, non-malignant
RDs and lung cancer mortality, where HRs increased
with respect to percentiles of air pollutant mixture and
levelling out at around median level (i.e., 65% of the
maximum concentration of each air pollutant: 124.1 μg/
www.thelancet.com Vol 36 July, 2023
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m3 for PM10, 82.7 μg/m3 for PM2.5, 75.2 μg/m3 for SO2,
and 43.5 μg/m3 for NO2) (Fig. 4 and Table S11). How-
ever, large uncertainties could be seen at a high level of
air pollutant mixtures as reflected by wide CI, especially
for non-malignant RDs and lung cancer mortality.
Discussion
Our large cohort study characterised the independent
and joint associations between long-term exposure to air
pollutants and mortality and identified vulnerable pop-
ulations. Long-term exposure to a higher level of air
pollutants, including PM10, PM2.5, SO2, and NO2, was
consistently associated with increased risks of mortality
from non-accidental causes, CVDs, non-malignant RDs
and lung cancer. A generally non-threshold linear or
supra-linear ER function without safety level was
observed for the mortality pattern associated with
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Fig. 4: Associations of mortality from non-accidental causes (a), CVDs (b),
exposure of PM10, PM2.5, SO2, and NO2. The shaded regions are 95% CIs
ucation, income, occupational exposure, physical exercise and status of
diseases; CI, confidence interval; HR, hazard ratio; NO2, nitrogen dioxide;
particulate matter with aerodynamic diameter ≤2.5 μm; RDs, respiratory
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individual exposure to air pollutants. For the elevated
mortality risk associated with joint exposure to air pol-
lutants, PM2.5 consistently contributed most to it, fol-
lowed by SO2 or PM10. Inverted J-shaped ER
relationships were observed for the joint associations of
air pollutant mixtures with all mortality outcomes, with
a HR levelling out at around the median level of the
overall exposure. Stronger adverse associations were
found for PM2.5 and SO2 with all mortality outcomes
among participants being male, with lower education or
higher income level compared to their counterparts,
while no heterogeneous effects were observed for other
air pollutants among subgroups.

To the best of our knowledge, this is one of the
longest cohort studies with the most comprehensive
evaluation of the associations between air pollutants and
mortality from an LMIC. Previous relevant studies
generally focused on the risks of single mortality
−10
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Joint exposure percentile (%)

non-malignant RDs (c), and lung cancer (d) with percentiles of joint
(N = 37,442). Models were adjusted for age, sex, BMI, level of ed-
marital, smoking and drinking. Abbreviations: CVDs, cardiovascular
PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5,
diseases; SO2, sulfur dioxide.
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outcome, mostly non-accidental or all-cause, related to
individual air pollutant (mostly PM2.5).9,10,52 For example,
three cohort studies with a mean follow-up duration of
15 years in Mainland China investigated the mortality
risks related to ambient PM in the general population
and found HRs varying from 1.08 to 1.11 for all-cause/
non-accidental mortality per 10-μg/m3 increase in
PM2.5,7,8,53 which is relatively lower than our fully
adjusted HR of 1.20 (95% CI: 1.17–1.21). Similar pat-
terns but generally higher HRs were observed in our
current study by comparing limited studies on other air
pollutants (i.e., PM10, SO2, NO2) and causes of death
(i.e., CVDs, non-malignant RDs and lung cancer) in
developing regions.7,8,44,54–56 This could be attributable to
the relatively higher level of air pollution exposure and
the potentially different sources and chemical compo-
sitions in our study.57,58 For example, higher risk esti-
mates of PM2.5 and SO2 in this study may be due to
their primary source from coal power plant emissions
and the heavy metals (e.g., mercury) in them.59,60 Be-
sides, the time-varying Cox model adopted in this study
accounts for the cumulative and generally decreasing
level of air pollutant exposures over the study period.61

Previous studies generally linked health endpoints
with a relatively high level of air pollution at baseline,
which could overestimate the actual exposure levels
given the substantial downward trend in pollution levels
and may lead to an underestimation of the risks, as
suggested by our sensitive analysis (Table S9).

In our study, we observed generally linear or supra-
linear and monotonically increasing ER curves with no
evidence of a threshold and safety level for the mortality
pattern related to air pollutants exposures, which is
generally consistent with the existing evidence. A linear
or supra-linear ER relationship of mortality with long-
term exposure to air pollution has been well estab-
lished in studies from developed countries or regions of
relatively low levels of exposure, with a generally steeper
concentration response at the lowest levels.2,3,52,62–67 For
example, a very recent study that involved seven cohorts
with 28 million participants in Europe suggested non-
threshold and monotonically increasing concentration-
response functions for risks of non-accidental mortal-
ity related to long-term exposures of ambient PM2.5 and
NO2, with the steepest part of the curves occurring at
low exposures (5–10 μg/m3 for PM2.5, 0–20 μg/m3 for
NO2).23 We identified a similar pattern for the less
established ER relationships of PM10, PM2.5, SO2, and
NO2 with mortality from non-accidental causes, CVDs,
non-malignant RDs and lung cancer in high air pollu-
tion concentration settings. Further, we observed
similar but significantly strong ER relationships of
mortality with long-term exposure to air pollutant mix-
tures. However, few studies have been conducted to
investigate the joint effect of long-term exposure to
ambient air pollutant mixtures on health and more
research needs to be conducted to further characterise
it. Given the potentially strong additive or synergic ef-
fects detected in our study, the ER relationships of heath
outcomes with air pollutant mixtures instead of only a
single air pollutant should be considered in future air
quality standards/guidelines or policy development.

Our study shows higher risks of mortality due to
PM2.5 and SO2 among participants being male, with
lower education or higher income level. However, pre-
vious relevant evidence considered subgroups depend-
ing on sex, education, or income level was generally
limited or mixed.10,68,69 For example, four studies from
developed countries with relatively low air pollution
levels (the US, the United Kingdom, Japan, and Swe-
den) found a stronger adverse association between SO2

and mortality in the female population.70–73 By compar-
ison, one study from China suggested no between-sex
difference and the other study from Italy observed
higher risk in men.74,75 Consistent with our findings,
Carey et al. found higher mortality risks due to SO2 for
the subgroup with higher income level,71 while Dong
et al. did not observe significant differences across
subgroups of different income levels.75 The difference
could be attributed to the difference in population
characteristics, air pollution levels and modelling strat-
egy. Overall, the stratified results have varied in previous
studies and no clear explanation for such differences
has yet been proposed.9,52,68,76 Current epidemiological
evidence on the effect modifiers on the associations
between air pollutions and health is still inconclusive.
More studies are required to better elucidate this issue
and the underlying mechanisms.

In the multi-pollutant and time-varying analysis, we
found that PM2.5 consistently contributed most to the
joint adverse associations between air pollutant mixtures
(PM10, PM2.5, SO2, and NO2) and mortality, followed by
SO2 or PM10, while the adverse effects of NO2 were
largely attenuated and covered by other pollutants. Evi-
dence had been well-established to suggest that the
health risks of PM10 could be dominated by the PM2.5

fraction, with finer particulate matter being more
harmful to humans.77,78 Similar to our findings, Ji et al.
assessed the associations of PM2.5 and NO2 with mor-
tality in a national Chinese elderly cohort from 2008 to
2018 and found an insignificant HR for NO2 after
adjusting PM2.5.79 However, little published evidence is
available on the joint associations of mortality with long-
term exposure to air pollutants and their relative con-
tributions.80,81 A cohort study of 7600 middle-aged and
elderly participants in Canada assessed the combined
effects of air pollutants on rheumatoid arthritis (RA)
based on WQS regression models.82 Similarly, they
found that PM2.5 was the major contributor to the
detrimental effects of air pollutants on RA, followed by
SO2 and NO2. The difference in the pattern of relative
contributions of each air pollutant may be explained by
the difference in health outcomes, modelling strategy
and exposure levels and chemical compositions.
www.thelancet.com Vol 36 July, 2023
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Besides, the original WQS method relies on the uni-
directional assumption (the effects of exposures on the
outcome were either all positive or negative), which is a
critical restriction and could lead to the non-
convergence of models or biased estimates.83,84 By
comparison, Quantile-based g-Computation builds up
on WQS regression by integrating its estimation pro-
cedure with g-Computation, which could overcome the
assumption of uni-direction.50 Overall, the relative
contribution of each air pollutant to the adverse health
risks associated with long-term exposure to air pollu-
tions remains highly unclear due to the very limited
evidence. Our findings of the potentially strongest long-
term associations of mortality with PM2.5 among air
pollutants highlight the great significance of reducing
PM2.5 to a relatively low level in China over the past
decade.85

This study has several strengths. First, we included
a relatively large sample size (∼37 thousand) of the
general population with a long-follow up of more than
two decades (22 years) in Mainland China, which
provided new evidence on the mortality pattern related
to long-term exposure to ambient air pollutions in a
rapidly developing setting with a wide range and high
level of exposures. Second, we conducted a compre-
hensive analysis by including four air pollutants (PM10,
PM2.5, SO2, and NO2) and four main mortality out-
comes (non-accidental mortality, CVDs mortality, non-
malignant RDs and lung cancer mortality), as well as a
series of individual-level risk factors that may confound
the associations (e.g., BMI, level of education, income,
occupational exposure, physical exercise and status of
marital, smoking, and drinking). Furthermore, we
used a time-varying (accounting for the changes of
exposures and confounders) multi-pollutant model
(accounting for the collinearity and potential additive
or synergic effects among air pollutants) to characterise
the joint associations of mortality with air pollutant
mixtures and assess the contribution of each air
pollutant, which are of great importance for under-
standing the effects of air pollution and for delivering
targeted strategies to minimize the adverse health
impacts of primary air pollutants.

However, several limitations of this study should be
acknowledged. First, though many potential con-
founders were adjusted in our main model, the possi-
bility of residual confounding cannot be excluded. For
example, though the long-term time trend was
controlled in the model, the potential confounding ef-
fects of the covariates that changed over the long study
period like the medical treatment level and death
reporting accuracy were not adequately accounted for
due to the lack of these data for the study locations. The
significant improvement in medical treatment level
along with the substantial decrease in air pollution
level between 1998 and 2019 in mainland China may
lead us to overestimate the adverse effects of air
www.thelancet.com Vol 36 July, 2023
pollution. Second, we only had data from four cities in
Northern China with a typical setting of rapid indus-
trialization and urbanization. The findings of our study
may therefore not be generalizable to other northern
areas (e.g., rural areas with a relatively stable air
pollution level). Third, due to the lack of satellite-
derived air pollution data early in the cohort, we esti-
mated PM10 (1998–1999), PM2.5 (1998–1999), SO2

(1998–2012), and NO2 (1998–2012) using calibrated
monitoring air pollution data and/or imputation to
ensure consistent yearly satellite-derived air pollution
data from 1998 to 2019 for the time-varying multi-
pollutant analysis. This could increase the uncertainty
of our results. However, considering the almost iden-
tical results in the sensitivity analysis of different cali-
bration approaches or imputation functions, we
believed the impacts could be modest. Fourth, there
were potential recall and self-reported bias when col-
lecting the death information or covariates (e.g.,
smoking or drinking status), which could result in
misclassification of both covariates and outcomes.
However, the observed adverse associations were
robust to a series of sensitivity analyses including
different adjustments of covariates. Therefore, we
supposed that recall and self-reported bias did not exert
a great influence on our findings. Finally, we were not
able to account for ozone due to a lack of regional
ozone data as it has only been monitored and available
since 2013. Therefore, we used ozone data from GBD
2019 that should correlate well with regional ozone as a
proxy.48 Elevated risks were observed in the main
models with additional adjustment of ozone, suggest-
ing that the observed long-term adverse associations
between PM10, PM2.5, SO2, and NO2 and mortality may
not be attenuated by ozone. However, due to increasing
evidence of the adverse effects of long-term exposure to
ozone, further explorations with a more comprehen-
sive inclusion of air pollutants are warranted in the
future.86,87

In summary, the results of this study support a
strong and robust adverse association of long-term
exposure to air pollutants, including PM10, PM2.5, SO2,
and NO2, with risks of mortality from non-accidental
causes, CVDs, non-malignant RDs and lung cancer.
PM2.5 consistently contributed most to the elevated
mortality risk among air pollutants, followed by SO2 or
PM10. A generally non-threshold linear or supra-linear
exposure-response curve without safety level was
observed for the mortality risks associated with both
individual and joint exposure to air pollutants.
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