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Abstract: IgG4-related disease (IgG4-RD) is a spectrum of complex fibroinflammatory disorder with
protean manifestations mimicking malignant neoplasms, infectious or non-infectious inflammatory
process. The histopathologic features of IgG4-RD include lymphoplasmacytic infiltration, storiform
fibrosis and obliterative phlebitis together with increased in situ infiltration of IgG4 bearing-plasma
cells which account for more than 40% of all IgG-producing B cells. IgG4-RD can also be diagnosed
based on an elevated serum IgG4 level of more than 110 mg/dL (normal < 86.5 mg/mL in adult) in
conjunction with protean clinical manifestations in various organs such as pancreato–hepatobiliary
inflammation with/without salivary/lacrimal gland enlargement. In the present review, we briefly
discuss the role of genetic predisposition, environmental factors and candidate autoantibodies
in the pathogenesis of IgG4-RD. Then, we discuss in detail the immunological paradox of IgG4
antibody, the mechanism of modified Th2 response for IgG4 rather than IgE antibody production
and the controversial issues in the allergic reactions of IgG4-RD. Finally, we extensively review the
implications of different immune-related cells, cytokines/chemokines/growth factors and Toll-like as
well as NOD-like receptors in the pathogenesis of tissue fibro-inflammatory reactions. Our proposals
for the future investigations and prospective therapeutic strategies for IgG4-RD are shown in the
last part.

Keywords: IgG4-related disease; fibroinflammatory disorder; lymphoplasmacytic infiltration;
storiform fibrosis; obliterative phlebitis; modified Th2 response; follicular helper T cell; CD4+cytotoxic
T cell; Fab–arm exchange

1. Introduction

IgG4-related disease (IgG4-RD) is a newly defined multiorgan immune-mediated fibroinflammatory
disorder with protean clinical manifestations [1–8]. In general, human immunoglobulins (IgGs) contain
four subtypes, IgG1 through IgG4, of which IgG4 is the scarcest. Nevertheless, IgG4-RD is characterized
by elevated serum IgG4 levels together with tissue infiltration by IgG4-secreting lymphoplasmacytic
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cells. The IgG4-secreting plasma cell infiltration may cause swelling, inflammation and finally fibrosis
of organs mimicking malignant tumors [6–9]. The commonly involved organs include pancreas, liver,
bile duct, major salivary glands, lacrimal glands, lungs, kidneys, aorta, thyroid glands, lymph nodes,
retroperitoneum, prostate, pachymeninx and other tissues/organs, thus leading to a broad spectrum of
protean clinical features as shown in Table 1.

It was accepted that histopathologic findings are crucial for the diagnosis of IgG4-RD. The essential
pathologic characteristics including lymphoplasmacytic infiltration, storiform fibrosis and obliterative
phlebitis should be confirmed in the biopsy specimens [10–12]. These tissue-infiltrating B lymphocytes
and plasma cells are polyclonal in nature. In addition, eosinophils are commonly present in the
lesions. However, no or rare neutrophilic infiltration or necrosis can be found in the tissues. Another
distinctive histopathologic finding in IgG4-RD is the storiform fibrosis. This particular fibrosis appears
as an irregular whorled or cartwheel-like organization of the collagen bundles in the tissue, which
is presumably produced by the myofibroblasts (MFBs) after activation by profibrotic stimuli during
inflammation. However, it is also accompanied scarcely by spindle cells infiltration in the affected
tissues [12]. Obliterative phlebitis is characteristic of luminal obliteration by inflammatory cells and
fibrosis next to a patent artery. Table 1 summarizes the wide spectrum of protean clinical manifestations
and the nature of the characteristic histopathologic findings in patients with IgG4-RD. Although
clinical, serologic, radiological and pathologic features are all contributory to the classification of
IgG4-RD, none of them alone can fulfill the classification criteria. Therefore, the 2019 ACR-EULAR
classification criteria for IgG4-RD agreed to contain both exclusion and inclusion standards [13].

Table 1. A wide range of protean clinical manifestations and characteristic histopathologic findings in
patients with IgG4-related disease.

(1) Clinical manifestations [1–8]

Type 1 autoimmune pancreatitis IgG4-related pachymeningitis
IgG4-related dacryoadenitis IgG4-related hypophysitis
IgG4-related sialoadenitis IgG4-related aortitis/periaortitis/arteritis

/mediastinitis/mesenteritis
Küttner’s tumor (submandibular sialodenitis) IgG4-related pleuritis/pericarditis
Mikulicz’s disease (sialoadenitis +dacryoadenitis) InG4-related mastitis
IgG4-related orbital myositis Ormond’s disease (retroperitoneal fibrosis)
Riedel’s thyroiditis IgG4-related membranous glomerulonephritis
IgG4-related allergic rhinitis IgG4-related ureteritis/urethritis
IgG4-related asthma IgG4-related prostatitis
IgG4-related chronic rhinosinusitis IgG4-related skin diseases
IgG4-related lung disease / pseudotumor IgG4-related lymphadenopathy

IgG4-related midline destruction lesion
IgG4-related sclerosing cholangitis
IgG4-related cholecystitis
IgG4-related hepatitis

(2) Characteristic histopathological features [9–12]

Lymphoplasmacytic infiltration: IgG4 (+) plasma cell/IgG (+) plasma cell ratio >40%
Storiform fibrosis: irregular whorled organization of the collagen bundles throughout the tissue led by the
activation of myofibroblasts after profibrotic stimuli of inflammation
Eosinophil, but not neutrophil infiltration, is commonly present
Absence of granuloma or tissue necrosis
Obliterative phlebitis: partial or complete obliteration of medium-sized veins by lymphoplasmacytic cell
infiltration appearing as an inflammatory nodule next to a patent artery

2. Genetic Predisposition in Patients with IgG4-RD

IgG4-RD is regarded as a complex autoimmune-mediated fibroinflammatory disorder in which
type 1 autoimmune pancreatitis (AIP) is the archetype. Although a number of genetic loci have been
found associated with AIP, these genetic predispositions are not consistent with the actual features
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described more recently because no one of them can well define the disease entity. Here, we only
cite the genetic studies after genome-wide association study (GWAS) has been published. In this
regard, Oguchi et al. [14] by reference from GWAS, have found that KLF7, FRMD4B, LOC101928923
and MPPED2 are the susceptibility genes that trigger lacrimal and salivary gland lesions in Japanese
patients with type 1 AIP.

The mammalian homologs of yeast sterile 20 (STE 20)-like kinases (MST), MST1~MST4 and YSK1,
belong to serine/threonine kinases, playing crucial roles in the control of immune cell trafficking,
proliferation, differentiation and apoptosis [15]. Siedel et al. [16] have found that MST1 locus contains
CpG islands in its promoter region and suggested that the epigenetic regulation of MST1 could control
immune responses. Fukuhara et al. [17] have demonstrated that decreased expression of MST1 due to
hypermethylation in the promoter region in regulatory T cells (Treg) can lead to IgG4-related AIP.

Fibroblast growth factor-binding protein 2 (FGFBP2) secreted by cytotoxic T lymphocytes can
potently bind to FGF to enhance collagen fiber synthesis by fibroblasts (FBs). The variant sequence
in FGFBP2 after binding to FGF is predicted to form a distorted coil morphology of collagen fibers
as found in the storiform fibrotic tissue in IgG4-RD rather than a normal helical-turn-helix fibril
structure [18]. Newman et al. [19] have reported that FGFBP2 variant is highly prevalent in circulating
CD4+cytotoxic T cells (CD4+Tc) in a family rather than in sporadic IgG4-RD patients.

3. Intestinal Dysbiosis in Animal Model and Patients with IgG4-RD

3.1. Induction of AIP by Persistent Exposure to Intestinal Commensal Flora Antigens in Animal Models

Haruta et al. [20] have explored the potential effect of chronic exposure (1 week ~12 months) of a
mouse model to killed E. coli in the pathogenesis of IgG4-RD. They have concluded that a persistent
stimulation of pathogen-associated molecular pattern (PAMP) activator to innate immune system
may ultimately lead to the occurrence of AIP associated with salivary gland lesions which is probably
through molecular mimicry. Yanagisawa et al. [21] have further identified the outer membrane protein
flagellin (FliC) of the commensal flora could induce AIP-like pancreatitis with generation of high titer of
anti-lactoferrin and anti-CA II antibodies in mice after repeated inoculation. These results emphasize the
importance of commensal bacteria in inducing AIP via PAMP recognizing receptors. Following this way,
many authors have also demonstrated that intestinal commensal microflora-released danger-associated
molecular pattern (DAMP) activator can bind to Toll-like receptors (TLRs) or nucleotide-binding
oligomerization domain-like receptor (NOD-like receptors, NLRs) on basophils to skew naïve T
lymphocytes to Th2 responses for the development of IgG4-RD [22–26].

3.2. Intestinal Dysbiosis-mediated AIP

It is believed that gut microbiome participates in the development of host immune system.
Ahuja et al. [27] have demonstrated that antimicrobial peptides secreted by pancreatic acinar cells can
shape the gut microbiome crucial for intestinal innate immunity, barrier function and host survival.
Mice lacking acinar Ca2+ channel, Orai 1, exhibit intestinal bacterial outgrowth and dysbiosis, which
ultimately lead to inflammation and death. Hamada et al. [28] have conducted a comprehensive
analysis of gut microbiota in patients with type 1 AIP by next generation DNA sequencing (NGS).
They have found that gut microbiota profile in AIP was different from that in chronic pancreatitis
(CP) in that the proportions of Bacteroides, Streptococcus and Clostridium species were lower in patients
with AIP. Recently, Kamata et al. [29] have confirmed that activation of innate immune response
by repeated administration of intestinal microflora-derived polyinosinic–polycytidylic acid could
stimulate plasmacytoid dendritic cell (pDC) to produce IFN-α and IL-33 with eventual development of
experimental AIP. Putting these data together, intestinal dysbiosis can activate pDC to induce type 1
experimental AIP.

Table 2 summarizes the possible genetic factors and intestinal microflora in the pathogenesis of
IgG4-related AIP.
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Table 2. Genetic loci and intestinal microflora involved in the pathogenesis of IgG4-related autoimmune
pancreatitis (AIP).

(1) Genetic loci

KLF7, FRMD4B, LOC101928923, MPPED2 in Japanese AIP associated with lacrimal/salivary gland lesions [14]
Decreased MST1 of regulatory T in Japanese AIP with extra-pancreatic lesions [17]
FGFBP2 (fibroblast growth factor binding protein type 2): single base deletion in IgG4-RD [19]

(2) Persistent exposure of intestinal commensal flora antigen in mouse AIP model

Avirulent E. coli (as PAMP activator) induces anti-CA II, anti-LF and ANA in mouse AIP with salivary gland
involvement [20]
Commensal E. coli-derived membrane protein flagellin (FliC) induces AIP-like inflammation in mouse
model [21]
Intestinal microflora can activate TLRs and NLRs on basophils to promote Th2 skewing and IgG4 production
in the presence of BAFF [22–26]

(3) Intestinal dysbiosis-mediated AIP development via pDC activation

Decrease in gut Bacteroides, Streptococcus and Clostridium species in patients with AIP, compared to chronic
pancreatitis [28]
Activation of pDC by innate immune responses against intestinal dysbiosis in experimental mouse AIP [29]

BAFF—B cell-activating factor of TNF family; pDC—plasmacytoid dendritic cell; CA—carbonic anhydrase;
LF—lactoferrin; ANA—antinuclear antibodies.

4. Autoantibody Diversity in Patients with IgG4-RD

Carbonic anhydrases (CAs) are extremely basic zinc metallo–enzymes with a wide phyletic
distribution. The enzyme family is important for acid–base regulation and at least seven isoenzymes
(CA I–CA VII) were found in mammals [30]. Inagaki et al. [31] have reported that individuals suffering
from autoimmune diseases including systemic lupus erythematosus (SLE) and Sjögren’s syndrome
produced a novel antibody against a 60-kDa molecule that is identified as CAs. Nishimori et al. [32]
have immunized PL/j mice intradermally with human CA II in adjuvant to induce autoimmune
sialoadenitis. Besides CAs, lactoferrin (LF), a red iron-binding protein, is also present mainly in
the secretion of body fluid such as pancreatic juice. Many authors successively demonstrated that
anti-LF and anti-CA II [33–35], anti-CA I and anti-CA II [33], and anti-CA IV [36] were common
nonspecific autoantibodies found in patients with AIP. Whether these autoantibodies are relevant
to pathogenesis of AIP needs further investigations. Recently, a number of autoantibodies have
been successively discovered by authors in addition to antibodies against CAs and LF. These unique
autoantibodies include anti-pancreatic secretory trypsin inhibitor-1 (PST1) [37], anti-plasminogen-
binding protein (PBP) of H. pylori [38], anti-pancreatic trypsinogens, PRSS1 and PRSS2 [39], anti-13.1
kDa protein in systemic IgG4-related plasmacytic syndrome (SIPS) [40] and anti-amylase-α2A [41].
Anti-prohibitin [42,43], anti-galectin-3 [43–45], anti-annexin A11 [43,46], anti-laminin 511-E8 [43,47]
and anti-monomeric C-reactive protein (anti-mCRP) have been found in acute interstitial nephritis [48].
Table 3 summarizes the autoantibodies found in the patients with IgG4-RD. However, most of these
autoantibodies belong to IgG1 subclass and only a minor proportion of them are IgG4 subtype.
Since IgG4 is unable to activate complements and bind to FcγR, it remains to be answered whether
autoantibodies of IgG4 subclass are pathogenic or only represent an over-reactivity to undetermined
antigen, which will be discussed in detail in Section 5.2.

Aoki et al. [49] have incubated serum obtained from AIP patients with normal pancreas, liver, bile
duct and salivary gland. They have found these serum samples containing IgG4 subclass antibodies
that could bind to the epithelial cells from these organs. Furthermore, Shiokawa et al. [50] have injected
circulating IgGs from IgG4-RD subjects into neonatal male BALB/c mice to examine their pathogenic
activity. They concluded that both IgG1 and IgG4 from IgG4-RD exhibited pathogenic activity via
binding to the affected tissue in this mouse model.
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Table 3. The presence of autoantibodies in patients with IgG4-related disease.

Anti-carbonic anhydrase II [33–35]
Anti-carbonic anhydrase I [33] and IV [36]

Anti-pancreatic secretary trypsin inhibitor-1 (PST1) [37]
Anti-plasminogen-binding protein (PBP) of H. pylori [38]

Anti-pancreatic trypsinogens PRSS1 and PRSS2 [39]
Anti-13.1 kDa protein in systemic IgG4-related plasmacytic syndrome (SIPS) [40]

Anti-amylase-2A [41]
Anti-prohibitin [42,43]
Anti-galectin-3 [43,45]

Anti-annexin A11 [43,46]
Anti-laminin 511-E8 [43,47]

Anti-monomeric C-reactive protein (mCRP) in acute interstitial nephritis [48]

5. Development of IgG4 Antibodies by Modified Th2 Response

The production of immunoglobulins (Igs) is carried out by B cells in the presence of helper T cells.
The IgG class is more complex in structure and biology than we think. The synthesis of IgG1, IgG2b,
IgG3, IgG4 and IgE requires the help from Th2 cells whereas IgG2a synthesis is dependent on Th1 help.
The most abundant IgG1 level in serum ranges from 5–10 mg/mL whereas the least abundant subclass
IgG4 ranges from 0.35–0.51 mg/mL. However, in case of IgG4-RD, the serum levels of IgG4 may elevate
to higher than 130 mg/mL. Aalberse et al. [51] have demonstrated that IgG4 antibodies commonly
arise after long-term exposure to an antigen by a modified Th2 response such as in a scenario of
allergen desensitization therapy. Thereby, the production of IgG4 antibody can reduce the degree of
chronic allergic or inflammatory reaction to environmental stimuli by displacing the binding of IgG1
or IgE antibodies with their cognate antigens or allergens. Another two important unique properties
of IgG4 antibodies are low binding affinity to C1q and FcγR on immune cells. These two unique
immunological properties may originate from “Fab–arm exchange” between two IgG4 molecules
to become asymmetrical antibodies with two different antigen-binding sites called as “bi-specific
monovalent antibody for a given antigen” (Please see the next section in detail.)

5.1. Modified Th2 Response for the Class-switch from IgE to IgG4

It is well established that there are strong links between IgG4 and IgE. Usually, IgG4 responses are
connected with IgE-mediated allergic reaction since both antibodies are induced by Th2 cytokines,
mainly IL-4 and IL-13 [52]. However, the two cytokine receptors are distinct since production of IgE
antibodies often occurs before IgG4 [53]. Thus, a ‘modified Th2 response’ is defined as “presence of
IgG4 antibodies in the absence of IgE antibodies” [54]. Aalbese et al. [55] have further reported that
DNA encoding IgG4 is upstream to the DNA encoding IgE and is deleted during the class switch to
IgE in normal situation. However, Jeanine et al. [56] have demonstrated that the key cytokine driving
“reverse” IgE/IgG4 class switch in the modified Th2 response is IL-10 which promotes IgG4 production
but inhibit IgE production.

Recent investigations by van der Neut Kolfschoten et al. [57] have demonstrated that in the context
of an allergic response, IgE-producing plasma cells require not only IL-4, but IL-5, IL-6, IL-7, IL-9
and IL-13 to help synthesize IgE. In addition to Th2 cytokines, T follicular helper 2 (Tfh2) cell-derived
cytokine, IL-21, is also involved in determining IgG4/IgE ratio [58,59]. Recently, Akiyama et al. [60] have
confirmed that IgG4/IgG ratio was statistically higher in the presence of IL-4 alone than in the presence
of Tfh2 cytokines including IL-21 alone in patients with IgG4-RD, but not in healthy individuals. In brief
conclusion, IL-10 is implicated in the class switch from IgE to IgG4 production. Furthermore, IL-10 is
needed for driving the differentiation of IgG4-class-switched B cells to IgG4-secreting plasma cells.
IL-21 also exerts a similar effect with IL-10 and is one of the major cytokines that drive IgG4 shift.
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5.2. Odd Immunological Properties of IgG4 Antibody

5.2.1. Fab–arm Exchange Between 2 Different IgG4 Antibodies Resulting in Non-inflammatory
Properties of IgG4 Antibody

Van der Zee et al. [61,62] are the 1st researcher to note that human IgG4 antibodies against allergen
is unable to link across the identical antigens, in which functional change to monovalency of IgG4
antibodies is suspected. This unique immunological property can be applied in the allergen-induced
immunotherapy (AIT) and the production of IgG4-therapeutic antibodies in clinical practice [63–66].
Aalberse et al. [67] have compared the CH3 domain of IgG1 and IgG4 and found 3 amino acid differences
at glutamine (Q)355 in IgG4 vs. arginine (R)355 in IgG1, (R)409 in IgG4 vs. lysine (K)409 in IgG1 and
L445 in IgG4 vs. P445 in IgG1. Because residue 409 is located in the interface between the two CH3
domains, the mutation (K→R) may affect the stability of the non-covalent interaction between H-chains.
In contrast, Schuurman et al. [68] observed that cross-linking of two non-identical antigens by IgG4
antibodies may occur via bi-specificity of IgG4 antibodies. In exploring the molecular basis of IgG4
Fab–arm exchange in the core sequence of IgG4 hinge region (residues 226–230), Aalberse group [69,70]
have found a replacement of serine (S) for proline (P) in this interval promotes formation of intra-
rather than inter-H chain disulfide bonds. However, the dissociation of the CH3 domains seems to be a
rate-limiting step in the Fab–arm exchange process [51,70–73]. The “Fab–arm exchange” property of
IgG4 antibody leads to the formation of monovalent bi-specific antibody, a poor interaction with FcγRII
and/or FcγRIII, an absence of complement C1q binding activity, the formation of small non-precipitating
immune complexes and an eligibility for the production of therapeutic antibodies [66,67]. We have
summarized the differences in the regulation, mode of action and clinical application between IgE &
IgG4 antibodies in Table 4.

Table 4. Differences in the regulation, modes of action and clinical applications between IgE and
IgG4 antibodies.

Parameters IgE IgG4

Class-switch by IL-4, IL-13 [52] IL-4, IL-13 [52], IL-10
Enhanced secretion by IL-5, IL-6, IL-7, IL-9 & IL-13

[52,55,57]
IL-10 [56], IL-21 [58–60]

Surface receptor binding FcγR on mast cells and basophils Low binding to FcγR on immune cells
[51,66,67]

Precipitating immune
complexes formation

(+) (-) [61,62,66,67]

Complement activation (+) (-) [62,66,67]
Unique immunological

effects
Allergic reaction Anti-allergen antibody [51,53,54,64]

Therapeutic application Anti-cancer IgE antibody [54] Non-inflammatory monoclonal
antibody [57,62–65,73]

5.2.2. A Unique Conformation of FG Loop in the CH2 Domain of IgG4 Molecule

Davies et al. [69,71], by using high-resolution crystal structure analysis at 1.9 Å and 2.35 Å, have
revealed a unique conformation for the FG loop structure in the CH2 domain of IgG4 different from
that of the IgG1 molecule. This loop could explain the poor FcγRII, FcγRIII and C1q binding capacities
of IgG4 compared to IgG1 and IgG3 via preclusion of any interaction of immune complexes with the
lower hinge region of IgG4 backbone and subsequent facilitation of Fab–arm exchange between two
IgG4 antibody molecules [66,67]. Moreover, this CH2 domain in the FG loop also alters conformingly
the C1q binding site [74].
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5.2.3. Rheumatoid Factor-like Fc Binding Activity of IgG4 in the Autoimmune and Inflammatory
Pathology

Contradictory to anti-inflammatory and anti-allergic activity, the IgG4 molecule per se can undergo
Fc-mediated aggregation via the binding site in IgG4-CH2 and neighboring IgG4-CH3 interface to form
aggregated IgG4 similar to IgG-rheumatoid factors [75]. Different from the conventional RF, which
binds via its variable F(ab’)2 domains, the activity of IgG4-“RF” relies on its constant Fc domain [51,75].

5.2.4. Pathologic Roles of IgG4-autoantibodies in Certain Autoimmune Diseases

It is well-known that most of the antibody-mediated autoimmune diseases are caused by IgG1
and IgG3 autoantibodies. However, Rock et al. [76] have noted that pemphigus vulgaris, a skin blister
disease, is hallmarked by IgG4-autoantibodies in the affected skin tissue. To date, at least 13 IgG4-related
autoimmune diseases have been reported including myasthenia gravis with muscle-specific kinase IgG4
antibody and idiopathic membranous nephropathy with IgG4 anti-phospholipase A2 receptor [77–79].
These aberrations are compatible with the observations by Aoki et al. [49] that IgG4 obtained from
patients with IgG4-RD bound to normal epithelial cells and exerted pathologic effects on different
tissues, which are quite different from the protective effect of IgG4 antibody to damp harmful effects of
immune complexes in classical autoimmune-mediated tissue damage [51,63,66,67].

5.2.5. The Glycosylation Patterns of IgG4 Molecule Induce Complement Activation in Some IgG4-RD
Patients with Hypocomplementemia and Primary Sclerosing Cholangitis

Usually, the IgG4 molecule exhibits low C1q binding capacity and does not activate classical
complement system as stated in Section 5.2.1. However, 40–50% of patients with IgG4-related renal
inflammatory diseases are found to have soluble immune complex formation and hypocomplementemia
with low C2, C4 levels and CH50 activity in the serum [80]. Nuraki et al. [81] have reported that
36% of AIP patients are with low C3 and C4 levels and 17% of them have low CH50. Moreover,
Deshpande et al. [82] and Cornell et al. [83] have observed that immune complex (IC) formation
is playing a role in the pathophysiology of IgG4-related AIP patients. Sugimoto et al. [84] have
analyzed the PEG-precipitated IC from IgG4-RD patients and found that IgG4 could participate in
the activation of complements in IgG4-RD patients with hypocomplementemia. To elucidate the
inconsistency in complement-activating effect of IgG4 antibody, Konno et al. [85] have analyzed
the N-linked glycan of IgG4 molecule derived from patients with IgG4-RD. They found decreased
galactosylation of IgGs is irrelevant to complement activation whereas IgG4 fucosylation may lead to
complement activation, hypocomplementemia and various organ damages in patients with IgG4-RD.
Furthermore, Culver et al. [86] have shown that an increase in IgG4-specific Fc fucosylation and hybrid
structures in IgG2/3 Fc portions that are proinflammatory in nature are found in IgG4-RD and primary
sclerosing cholangitis.

Putting these results together, IgG4 antibodies with particular N-glycan alterations can activate
complements and are associated with hypocomplementemia in some IgG4-RD patients. We have
summarized the odd immunological properties of IgG4 antibodies in patients with IgG4-RD in Table 5.
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Table 5. Odd immunological properties of IgG4 antibodies in patients with IgG4-RD.

IgG4 antibodies undergo a process of “Fab–arm exchange” to become half-antibodies with monovalency
incapable of C1q activation and with low binding affinity to FcγRII and FcγRIII resulting in non-inflammatory
property [51,62,67–73]
Anti-allergic effect by attenuation of Th2 cytokine-mediated inflammation and immunosuppression
[51,53,54,63,72]
Exhibition of rheumatoid factor-like activity by Fc–Fc aggregation to resume activating complements [51,75]
IgG4 obtained from IgG4-RD subjects binds to normal epithelial cells of pancreato–hepatobiliary tissues and
salivary glands in vitro [49]
Pathologic effects in certain autoimmune diseases including pemphigus foliaceus, muscle-specific kinase
myasthenia gravis (MuSK MG) and idiopathic membranous nephropathy [76–80]
Complement activation and hypocomplementemia in IgG4-RD with unique-pattern glycosylation [81–86]

6. Eosinophilia, Hyper-IgE Levels and Allergy in Patients with IgG4-RD

It is well known that IgG4 levels rise after IgE concentration declines in the hyposensitization
therapy in allergic disorders. Scientists have thus hypothesized that IgG4 perhaps emerges to shutdown
allergen offense in an attempt to attenuate allergic inflammation elicited by noxious environmental
allergens. It has also long been recognized that a proportion of patients with type 1 AIP have histories
of allergies, peripheral eosinophilia and elevated serum IgE or manifestations of atopy during the
development of AIP [87]. Van Toorenenbergen et al. [88] have demonstrated a significant correlation
between total IgE and total IgG4 levels in patients with AIP and patients with atopic diseases, but not
with patients with pancreatic cancer. The group has also found that the serum IgE/IgG4 ratio in patients
with atopic diseases is significantly different from the ratio in patients with AIP. For exploring the
roles of IgE and allergic diseases in the diagnosis as well as pathogenesis of AIP, Zhang et al. [89] have
surveyed the patients with AIP. They discovered that half of their Chinese AIP patients suffered from
allergic conditions whether they have high or low serum IgE levels. Those with higher IgE levels and
allergic conditions suffered from more seasonal changes in pancreatic inflammation with increased mast
cell number. They concluded that allergic processes may play an important role in the AIP pathogenesis.
Della-Torre et al. [90] have also concluded that the processes inherent to IgG4-RD itself rather than
atopy per se may contribute to eosinophilia and hyper-IgE without atopy. To solve the enigma regarding
allergic reactions, eosinophilia and hyper-IgE levels in IgG4-RD, some authors have revealed that IL-10
can suppress allergen-specific accessory function of monocytes and Th2 responses, thereby decrease
the IL-4-induced IgE synthesis [91–93]. As shown in Table 5, IL-10 is essential for cross-switch of IgE to
IgG4 and is also crucial for IgG4 secretion by B cells. Accordingly, atopic reaction during the processes
of AIP development may stimulate eosinophilia &/or IgE production, but irrelevant to allergic reaction
in 40-50% of AIP patients. Demographic study conducted by Saeki et al. [94] has shown that younger
age onset, female preponderance and upper-body organ involvement are characteristic in 43% of
IgG4-RD patients with allergic condition. In clinical practice, Culver et al. [95] have reported high
serum IgG4 levels in 81%, and high serum IgE levels in 54% of patients with IgG4-RD. Moreover, an
IgE-mediated allergic response tends to develop in most of the IgG4-RD subjects. Thus, the serum IgE
level could be used in the diagnosis and prediction of atopy relapse in these patients. On the other hand,
whether the AIT by repeating injections of low-dose allergens to induce IgG4 class-switching from IgE
to IgG4 can result in IgG4-RD remains in debate. Della-Torre et al. [96] analyzed 116 patients with
biopsy-proven IgG4-RD to link AIT and IgG4-RD. Their results did not support obvious association
between the two events although an increased tendency of high IgG4 in AIT group was observed. We
speculate that elevated serum IgE levels is responsible for allergen-specific allergic reactions whereas
serum IgG4 elevation is not the necessary parameter for the occurrence of IgG4-RD unless changes of
glycosylation pattern in IgG4 molecules have occurred as stated in Section 5.2.3.
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7. The Pathogenic Role of B Cells in Chronic Inflammation and Storiform Fibrosis in Patients
with IgG4-RD

7.1. The Pathogenic Roles of CD19+ Plasmablasts in AIP Patients

Until now, the actual pathogenesis of IgG4-RD has remained elusive. The characteristic
fibroinflammatory tissue in IgG4-RD contains many IgG4-producing plasmacytes/plasmablasts
embedded in a fibrotic matrix that are originating from activated mesenchymal cells. New insights
into cross-talk among different immune-related cells including innate immune cells, T cell subsets, B
cell subset and fibroblasts/myofibroblasts have been discussed by Touzani et al. [97]. Recent studies
have documented heterogeneity of the functions of B cell lineages, including cytokine secretion,
antigen presentation, autoantibody production and modulation of T-B interactions, which would
contribute to tolerance, autoimmunity as well as autoimmune diseases. In the tissue specimens
of IgG4-RD, ectopic germinal center formation with dense infiltration by lymphoplasmacytes is
prominent in salivary glands, which is probably caused by IL-21 [98]. Besides, the de novo oligoclonal
expansion of circulating CD19+ plasmablasts in active and relapsing IgG4-RD has been observed,
which could be used as a diagnostic biomarker for IgG4-RD independent of serum IgG4 [99]. The
CD19+plasmablasts may produce proinflammatory cytokine (IL-1), profibrotic factors (TGF-β and
platelet derived growth factor B [PDGFB]) and a diverse autoantibodies (as shown in Table 3)
in mediating tissue inflammation, destruction and fibrosis. Accordingly, anti-CD20 monoclonal
antibody (rituximab) appears to be an effective treatment for IgG4-RD, even without combination
of glucocorticoids in clinical practice [100]. On the other hand, regulatory B cell (Breg) mainly
originating from the marginal zone of lymph nodes can produce IL-10 and TGF- β for regulatory T
cell (Treg) differentiation and Th1/Th2 polarization [101]. Sumimoto et al. [102] and Lin et al. [103]
have specifically demonstrated that in addition to plasmacytes, there are two distinct Breg subsets,
CD19+CD24highCD27+ Breg, which activates.and CD19+CD24highCD38high Breg, which suppresses the
activity of AIP (please see more details in Section 8.3). Another B cell subpopulation, CD27+ memory
B cell can express higher affinity cell receptor as potent APC to produce high affinity antibodies
particularly in the later phases of chronic immune reaction [104]. The glucocorticoid treatment
for IgG4-RD can reduce naïve B cell, circulatory plasmablasts/plasma cells and increase memory B
cells [105].

Another histopathologic hallmark of IgG4-RD is the presence of storiform fibrosis in some of
the affected tissues characterized by a dense tissue fibrosis with an irregular whorled organization
of the collagen bundles. However, renal fibrosis is relatively rare, and interstitial nephritis as well as
membranous glomerulonephritis are more frequent in IgG4-related nephropathy. On the other hand,
nodal fibrosis is relatively rare, but granuloma formation is frequent in IgG4-related lymphadenopathy.
It is conceivable that the histopathologic features would inevitably cause lack or scarcity of fibrosis
in these two IgG4-related illness. Fukui et al. [106] have observed through transmission electron
microscopy an abnormal periodicity of collagen bundles and epithelial–mesenchymal transition (EMT)
of FBs to MFBs without reducing E-cadherin expression. These may lead to increases in filamentous
actin and α -smooth muscle actin, SNAIL, as well as heat shock protein 47 found in storiform fibrosis
of patients with IgG4-RD.

7.2. The Ontogenesis of MFBs

It is believed that chronic inflammation can accelerate the progression of fibrosis in IgG4-RD.
MFBs are the major effector cells of tissue fibrosis arising from FBs, pericytes, epithelium, endothelium
or smooth muscle cells. After activation by fibrosis-related inflammatory mediators, the mesenchymal
cells begin to trans-differentiate to MFB, proliferate and produce an excessive amount of extracellular
matrix including fibrillary collagens (collagen I, III), glycoproteins (fibronectin, fibrillin, elastin and
proteoglycans) and non-fibrillary collagen (collagen IV) that can deposit in the tissue [107].
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7.3. The Fibrosis-related Inflammatory Mediators

Recently, a bunch of fibrosis-related inflammatory mediators have been successively discovered.
These fibro-inflammatory mediators include IL-1 family (IL-1α, IL-1β, IL-18, IL-33, IL-36 α, IL-36β
and IL-36γ) [107], Th1 cytokine (IFN- γ) [108], Th2 cytokines (IL-4, IL-5, IL-10 and IL-13), Th17
cytokines (IL-17 and IL-22), innate immune cell-derived proinflammatory cytokines (IL-6 and TNF-
α), growth factors (TGF-β, PDGF, CTGF, IGF, FGF, EGF and VEGF) and chemokines (CCL2, CCL3,
CCL4, CCL20) [109]. Furthermore, Kotsiou et al. [110] have documented that IL-33/ST2 (suppression
of tumorigenicity 2) axis can facilitate EMT process of various cell types and abnormal FB proliferation,
ultimately leading to tissue fibrosis. Kawashiri et al. [111] have concluded that increased growth
differentiation factor 15 (GDF-15), as a serologic surrogate marker for fibrosis-related processes, may
precisely reflect the degree of tissue fibrosis in patients with IgG4-RD.

7.4. Pathogenic Roles of B Cell Subsets, B Cell-derived Factors and Help Signals in the Tissue Fibrosis of
Patients with IgG4-RD

It is postulated that B lymphocytes and their lineages, Breg’s, participate in tissue fibrosis of
IgG4-RD. In an in vitro study, Francois et al. [112], by co-culturing peripheral blood B cells and dermal
FBs isolated from systemic sclerosis patients, have found an increase in IL-6, TGF-β1, CCL2, collagen
synthesis, α-SMA, TIMP and MMP-9 in dermal FBs. This enhancement can be further augmented
by the addition of B cell-activating factor of TNF family (BAFF). Della-Torre et al. [113] have proved
that B cell depletion by therapeutic antibody attenuates serologic biomarkers of fibrosis and MFB
activation in patients with IgG4-RD. The same group has further directly demonstrated that B cells
obtained from IgG4-RD patients could produce many different profibrotic molecules including PDGFB
for stimulating collagen production from FBs, lysyl oxidase like 2 (LOXL2) for extracellular matrix
remodeling and various chemotactic factors (CCL4, CCL5, CCL11) for chemo-attraction and activation
of FBs [114]. Puente et al. [115] have even proposed that LOXL2 may become a new target for
anti-fibrogenic therapy. Breg, via secretion of regulatory cytokines such as IL-10 and TGF-β, can
contribute to fibrosis [101–103]. It is particularly interesting that the antigen-presenting function of
memory B cells can enhance proliferation and maturation of follicular helper T2 cell (Tfh2) to become
CD4+- and CD8+-cytotoxic T cell (Tc) populations [104]. The two cytotoxic T cell subpopulations
then secrete perforin and granzymes (A and B) to induce apoptosis of non-immune, non-endothelium
mesenchymal cells, inflammation and finally fibrosis in IgG4-RD [116]. On the other hand, after
receiving help signals from Tfh2 cells, B cells mature to CD19+ plasmablasts, which can subsequently
produce autoantibodies, proinflammatory cytokine (IL-1β) and profibrotic cytokines (TGF-β1, LOXL2
and PDGFB) to enhance collagen fiber synthesis and deposition driven by FBs and MFBs. All of these
B cell-derived factors and help signals hasten tissue inflammation and consequently tissue fibrosis in
patients with IgG4-RD. Figure 1 depicts the pathogenic role of B lymphocytes as APC and effector cells
in the tissue inflammation and fibrosis of patients with IgG4-related disease.



Int. J. Mol. Sci. 2020, 21, 5082 11 of 24

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 12 of 25 

 

 384 
Figure 1. Pathogenic role of the B lymphocyte as antigen-presenting cell (APC) and effector cell in the 385 
tissue fibrosis of patients with IgG4-related disease. The genetically predisposed B cells (acting as 386 
APCs) bind to environmental offending agents (e.g., H. pylori), intestinal microflora or autoantigens 387 
and then provide signals to CD19+ plasmablasts to mediate effector functions including: (1) IgG4 class-388 

Figure 1. Pathogenic role of the B lymphocyte as antigen-presenting cell (APC) and effector cell in the
tissue fibrosis of patients with IgG4-related disease. The genetically predisposed B cells (acting as APCs)
bind to environmental offending agents (e.g., H. pylori), intestinal microflora or autoantigens and then
provide signals to CD19+ plasmablasts to mediate effector functions including: (1) IgG4 class-switch
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with the help of follicular helper T2 (Tfh2), (2) IL-1β production to cause tissue inflammation,
(3) production of profibrotic molecules (TGF-β, LOXL2, PDGF-B) to activate fibroblasts (FBs) and
myofibroblasts (MFBs) in charge of collagen fiber production and deposition in the tissue and (4)
autoantibody production to contribute to tissue destruction. Moreover, B cells help Tfh2 cells facilitate
the ontogenetic differentiation of the two cytotoxic T cells (Tc), CD4+Tc and CD8+Tc, in tissue destruction.
LOXL2—lysyl oxidase-like 2; PDGF—platelet derived growth factor. For abbreviations not designated
here, please see the abbreviation list in the main text.

8. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients
with IgG4-RD

In addition to the crucial roles of B cell subpopulations as antigen-presenting and effector cells
in the pathogenesis of tissue fibrosis in patients with IgG4-RD, recent investigations have further
revealed that many innate immune cells including white blood cell lineages (neutrophils, basophils
and eosinophils), and macrophage type 2 (M2–Mϕ)/plasmacytoid dendritic cells (pDC) [117,118] and
different T cell subsets including, Th2, Treg, Tfh2 and CD4+ - and CD8+-cytotoxic T cells (CD4+and
CD8+ Tc) play active and critical roles in the immunopathogenesis of IgG4-RD [101].

8.1. Involvement of Innate Immune Cells in Patients with IgG4-RD

Triggering of innate immune responses by microbe-associated molecular patterns (MAMPs) and
damage-associated molecular patterns (DAMPs) is mediated by binding of these molecules to the
TLRs and NOD-like receptors (NLRs) on innate immune cells including Mϕ2/pDC, basophils and
polymorphonuclear cells (PMN). The binding leads to release of proinflammatory cytokines (IL-1 and
IL-6), B cell growth factors (BAFF and APRIL) and Th2 differentiation cytokine (IL-4) to induce B
cell maturation and Igs class-switch from IgE to IgG4 by modified Th2 response. For clarifying the
properties of fibroinflammatory cytokines and their individual producing cells, many authors have
successively demonstrated that IL-10 and IL-13 released from Th2, B lymphocyte-activating factor
of TNF family (BAFF) and a proliferating inducing ligand (APRIL) released from M2-Mϕ and PMN,
IL-4 and IRF-7 released from pDC, IL-33 released from antigen presenting cell (APC) and endothelial
cell (EC) in patients with IgG4-RD [117–122]. In addition, activated M2-Mϕmay release profibrotic
cytokines (TGF-β and IL-33) to activate the production of profibrotic cytokines from Treg including
TGF-β, IL-10 and IL-33. These effects can further stimulate FBs and MFBs to synthesize collagen fibers
for storiform fibrosis in IgG4-RD.

8.2. The Immunopathologic Roles of Aberrant Functions of Treg, Tfh and CD4+ and CD8+Tc Subsets in
Patients with IgG4-RD

Recent studies have revealed that increased proportions of Th2 and Treg cells, with their abnormal
cytokine production, are involved in IgG4-RD and CD4+T cell infiltration constitutes the major
inflammatory cell populations in IgG4-RD lesions. Tsuboi et al. [123] have detected the mRNA
expression of Treg and Th2 cytokines in PBMCs and labial salivary glands by RT-PCR. They have
concluded that overexpression of IL-10, TGF-β and activation-induced cytidine deaminase (AID)
in salivary glands are involved in the pathogenesis of IgG4-RD. Generally, Treg cells are usually
subdivided into 2 groups: (1) naturally occurring Treg, with CD45RO+CD25highCD4+ surface marker
and (2) naïve Treg with CD45RA+CD25+CD4+ surface marker. Miyoshi et al. [124] have reported that
increased numbers of naturally occurring Treg in the circulation can affect IgG4 production in AIP
whereas decreased numbers of naïve Treg may be implicated in the pathogenesis of AIP.

Histologically, ectopic germinal center (GC) formation is present in some lesional tissues of
patients with IgG4-RD. Wurster et al. [125] have documented that IL-21 is crucial for Th2 cytokine
productions and can specifically inhibit the differentiation of naïve helper T cells to INF-γ producing Th1
cells. Furthermore, IL-21 production by Tfh that expresses CXCR5 (corresponding ligand is CXCL13)
chemokine receptor can help GC formation [98]. Tfh cells are a distinct CD4+T cell subpopulation
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that can expedite B and plasma cell differentiation and finally GC formation. Aberrant expansion and
function of Tfh subsets can be found associated with circulating plasmablast numbers, IgG4, IL-4 levels
and tissue damage in patients with IgG4-RD [126,127]. Further investigations by Grados et al. [128] have
revealed that IgG4-RD patients showed an increase in circulating Treg, Th17 and CD4+CXCR5+PD1+Tfh

cell populations. The increased Tfh cells were caused by a specific expansion of Tfh2 (CCR6-CXCR3-),
and to a lesser extent, Tfh17 (CCR6+CXCR3-) subsets. Therefore, IgG4-RD is characterized by a shift of
circulating T cells toward a Th2/Tfh2 and Th17/Tfh17 polarization.

Although CD4+T helper cells are regarded as the most abundant cells in the GC of affected tissues
in IgG4-RD, these cells are considered as a driver in the pathogenesis of the disease. Another unique
CD4+T cells existing in lesional sites are CD4+ cytotoxic T cells (CD4+Tc) which secrete cytolytic
molecules including perforin and granzymes A and B. Moreover, profibrotic cytokines (IL-1β, TGF-
β) and Th1 cytokine (IFN- γ) are also secreted by these cells [129–131]. Some of these unique cells
also bear signaling lymphocytic activation molecule F7 (SLAMF7) surface marker which is usually
presented on the plasmablasts and plasma cells, but not CD4+T cells [132]. Della-Torre et al. [133] have
identified a subset of CD4+SLAMF+CD8a- TEM (CD45RO), the cytotoxic T cells with effector memory
phenotype, which is oligoclonally expanded in patients with active IgG4-RD and can be suppressed
following glucocorticoid administration to remit disease. In short conclusion, both CD4+CTL and
CD8+CTL in disease lesions of IgG4-RD may contribute to the induction of cell apoptosis and tissue
fibrosis of the disease [116].

8.3. Involvement of Abnormally Functioning Bre FliC g Cells in Patients with IgG4-RD

Kessel et al. [134] have found an antigen-driven B cell with CD19+CD25high surface marker which
expresses a regulatory effect to suppress proliferation of autoreactive T lymphocytes. IL-10 is believed
to be the major effector molecule released from these Breg cells to exert immune-regulatory functions.
Authors have also demonstrated that IL-10 is produced by both CD19+CD24highCD27+ (B10) and
CD19+CD24highCD38high (immature) Breg subsets. Sumimoto et al. [102] and Lin et al. [103] have
demonstrated that these two Breg cell aberrations, increased immature Breg subset, but decreased
B10 type Breg subset, are involved in IgG4-RD. However, more studies are required to get a definite
conclusion. In conjunction with the context of Section 7, we provide a comprehensive scheme to
illustrate the cellular and molecular bases of allergy, chronic inflammation, and storiform tissue fibrosis
in patients with IgG4-RD in Figure 2.
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Figure 2. Cellular and molecular bases of immunopathogenesis in patients with IgG4-related disease.
The environmental or self-antigens such as PAMP or MAMP bind to the TLRs/NLRs on basophils (Bϕ)
and plasmacytoid dendritic cells (pDC), skewing naïve T cells to Th2 subset. Upon the effects of Treg,
Tfh2, M2 macrophage (Mϕ2,) and PMN, the B cells mature and undergo Ig class-switch from IgE to
IgG4 by the modified Th2 response in the ectopic germinal center of fibroinflammatory tissue. The IL-4-
and IL-5-stimulated eosinophils (Eϕ) and the residual IgE mediate allergic reaction. On the other hand,
B cells (as APC), Mϕ2, and Treg provide profibrotic cytokines to facilitate production and accumulation
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of collagen fibers by fibroblasts (FBs)/myofibroblasts (MFBs) to mediate storiform fibrosis. Furthermore,
B cells as APCs enhance generation of two populations of CD4+cytotoxic T cells (CD4+Tc),
CD4+IFN-γ+Tc and CD4+SLAMF7+CD8α-Tc, to induce cell apoptosis and tissue destruction by
the secreted perforin and granzymes (A and B). TLR—Toll-like receptor; NLR—nucleotide-binding
oligomerization domain like receptor; Th2—helper T cell type 2; BAFF—B cell-activating factor of
tumor necrosis factor family; APRIL—a proliferation-inducing ligand of B cell. For the abbreviations
not designated here, please see the abbreviation list in the main text.

9. Conclusions

IgG4-RD is a complex, protean and multiorgan fibroinflammatory disease originated from
overactive IgG4-producing lymphoplasmacytic cell infiltration in variable tissues. It may thus lead
to bizarre clinical and histological manifestations including storiform tissue fibrosis and obliterative
phlebitis. The odd properties of IgG4 molecules such as Fab–arm exchange, Fc–Fc aggregation and
modified Th2 response lead to immunological paradox in IgG4-RD. A series of florid interactions among
innate and adaptive immune cells result in abnormal cytokine/chemokine/growth factor modulation
that may lead to fibroinflammatory cell infiltration, tissue inflammation with fibrosis and allergic
conditions in patients with IgG4-RD. Many conundrums remain to be solved such as the nature of
antigenic stimuli, the molecular mechanism underlying storiform fibrosis, the etiology of aberrant
immunobiology, the fine-tuning of genetic/epigenetic modifications of cytokine expression, and the
pathologic roles of autoantibodies relevant to immunopathogenesis of IgG4-RD.

10. Future Prospects

With regards to the designation of new therapeutic strategies for IgG4-RD other than corticosteroids,
nonspecific immunosuppressants and anti-CD20 therapy are mandatory in clinical practice. These
strategies may include blockades of modified Th2 response and new anti-fibrogenic therapies. However,
many unmet needs should be fulfilled for identifying more in-depth the cellular and molecular
mechanisms underlying IgG4-RD—as well as improving its therapies. These investigations may
focus on:

1. The precise epigenetic regulations, including DNA methylation/acetylation and histone
modifications for the diverse immune dysfunctions in IgG4-RD;

2. The aberrant expression of non-coding RNAs in the ontogenesis of abnormal B cell biology
in IgG4-RD;

3. The characterization of factors involved in the induction of CD4+Tc in IgG4-RD;
4. The elucidation of the sophisticated molecular mechanism underlying storiform fibrosis;
5. Clarification of the interactions between H. pylori infection and other environmental factors, such

as allergens for development of the disease;
6. Immunopathologic roles of different IgG4 autoantibodies in its pathogenesis;

These are only a few points we suggest that may be helpful for understanding IgG4-RD, as well
as the unique nature of IgG4, per se. Since the disease is a relatively newly found disorder implicating
the humoral immune system, a multi-arrays of work are expected to have fruitful results in the future.
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Abbreviations

AID activation-induced cytidine deaminase
AIP autoimmune pancreatitis
AIT allergen-induced immunotherapy
APC antigen presenting cell
APRIL a proliferation-inducing ligand
BAFF B B lymphocyte-activating factor of tumor necrosis factor family
Bϕ basophil
Breg regulatory B lymphocyte
C complement component
CA pancreatic carbonic anhydrase
CCL C-C chemokine motif ligand
CD cluster of differentiation
CP chronic pancreatitis
CTGF connective tissue growth factor
CXCL C-X-C chemokine motif ligand
CXCR C-X-C chemokine receptor
DAMP damage associated molecular pattern
EC endothelial cell
Eϕ eosinophil
FB fibroblast
FcγR Immunoglobulin G fragment C gamma receptor
FGFBP2 fibroblast growth factor binding protein 2
FliC flagellin
GC germinal center
GWAS genome-wide association study
HLA human leukocyte antigen
H. pylori Helicobacter pylori
IgG4-RD IgG4-related disease
IFN interferon
IL interleukin
IRF-7 interferon regulatory factor-7
K lysine
LF lactoferrin
LOXL2 lysyl oxidase-like 2
MAMP microbe-associated molecular pattern
mCRP monomeric C-reactive protein
MFB myofibroblast
MMP matrix metalloproteinase
MST mammalian STE20-like protein kinase
Mϕ macrophage
NLR nucleotide-binding oligomerization domain like receptor
P proline
PAMP pathogen-associated molecular pattern
PBMC peripheral blood mononuclear cell
PBP plasminogen-binding protein
pDC plasmacytoid dendritic cell
PDGF platelet-derived growth factor
PDGFB platelet-derived growth factor B
PMN polymorphonuclear neutrophil
Q glutamine
R arginine
RT-PCR reverse transcriptase assisted polymerase chain reaction
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S serine
SIPS systemic IgG4-related plasmacytic syndrome
SLAMF7 signaling lymphocytic activation molecule F7
SLE systemic lupus erythematosus
SNP single nucleotide polymorphism
SPINK1 serine peptidase inhibitor, Kazal type 1
PST1 pancreatic secretary trypsin inhibitor-1
PRSS1 protease serine 1 (trypsin 1)
ST2 suppression of tumorigenicity 2
Tc cytotoxic T lymphocyte
TCN1 transcobalamin 1
TEM T cells with effector memory phenotype
Tfh follicular helper T cell
TGF transforming growth factor
Th helper T lymphocyte
TIMP tissue inhibitor of matrix metalloproteinase
TLR Toll-like receptor
Treg regulatory T lymphocyte
UBR2 ubiquitin–protein ligase E3 component n-region 2
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