
sensors

Article

Smart SDN Management of Fog Services to Optimize QoS
and Energy

Piotr Fröhlich 1 , Erol Gelenbe 1,2,* , Jerzy Fiołka 3 , Jacek Chęciński 3, Mateusz Nowak 1

and Zdzisław Filus 3

����������
�������

Citation: Fröhlich, P.; Gelenbe, E.;

Fiołka, J.; Chęciński, J.; Nowak, M.;

Filus, Z. Smart SDN Management of

Fog Services to Optimize QoS and

Energy. Sensors 2021, 21, 3105.

https://doi.org/10.3390/s21093105

Academic Editor: Antonio Skarmeta

Received: 9 March 2021

Accepted: 26 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 44-100 Gliwice, Poland;
pfrohlich@iitis.pl (P.F.); mateusz@iitis.pl (M.N.)

2 Laboratoire I3S, Université Côte d’Azur, 06103 Nice, France
3 Faculty of Automatic Control, Electronics and Computer Science, The Silesian University of Technology,

Akademicka 2A, 44-100 Gliwice, Poland; jfiolka@polsl.pl (J.F.); jchecinski@polsl.pl (J.C.); zfilus@polsl.pl (Z.F.)
* Correspondence: seg@iitis.pl

Abstract: The short latency required by IoT devices that need to access specific services have led to the
development of Fog architectures that can serve as a useful intermediary between IoT systems and the
Cloud. However, the massive numbers of IoT devices that are being deployed raise concerns about
the power consumption of such systems as the number of IoT devices and Fog servers increase. Thus,
in this paper, we describe a software-defined network (SDN)-based control scheme for client–server
interaction that constantly measures ongoing client–server response times and estimates network
power consumption, in order to select connection paths that minimize a composite goal function,
including both QoS and power consumption. The approach using reinforcement learning with neural
networks has been implemented in a test-bed and is detailed in this paper. Experiments are presented
that show the effectiveness of our proposed system in the presence of a time-varying workload of
client-to-service requests, resulting in a reduction of power consumption of approximately 15% for
an average response time increase of under 2%.

Keywords: Fog computing; software-defined networks (SDNs); green computing; energy-awareness;
IoT; reinforcement learning; random neural networks; QoS optimization; artificial intelligence

1. Introduction

Fog computing is the decentralized computing structures which are located close to
the IoT devices that generate data, and the Cloud servers that will ultimately store the
data [1,2]. As such, it is a particularly useful paradigm for the Internet of Things (IoT) [3–6].
The Fog can support virtualized services for IoT clients, and effectively meet the wide
variations of workload over time, offering the fast dynamic allocation of IoT and other
clients to services.

The best way to balance load so as to offer low latency in such systems has long been
considered in the context of distributed systems [7–12] and in autonomic communica-
tions [13] with regard to the Quality of Service (QoS). The allocation of tasks to different
Cloud virtual machines, with the objective of minimizing response times, was considered
in [14] using Reinforcement Learning (RL) [15] and deep learning [16]. Similarly, RL has
been used to offer QoS in software-defined networks (SDNs) [17,18]. However, the increas-
ing complexity of such systems raises issues about how several interacting optimization
criteria, including QoS, power consumption [19] and security can be handled in a unified
manner [20–22].

Fortunately, the increased availability of SDNs and their programmability offers
a framework for implementing lightweight dynamic control schemes [23,24] that can
combine the allocation of client requests to specific services located at certain servers, with
the issue of establishing the connection between a specific client and a server through a

Sensors 2021, 21, 3105. https://doi.org/10.3390/s21093105 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4854-4256
https://orcid.org/0000-0001-9688-2201
https://orcid.org/0000-0003-0551-6746
https://orcid.org/0000-0002-8331-9599
https://orcid.org/0000-0003-2494-6856
https://doi.org/10.3390/s21093105
https://doi.org/10.3390/s21093105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093105
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093105?type=check_update&version=2

Sensors 2021, 21, 3105 2 of 18

network. SDN provides major advantages for the IoT, since the connection of IoT devices
to Fog nodes can be handled by the SDN controller, since the open flow protocol [25]
provides the required tool for routing, including the possibility of connecting each user or
client request to a corresponding server. Furthermore, the centralization of control in the
SDN architecture makes it easier to gather and efficiently utilize data regarding QoS and
power usage.

Indeed, this is the basic idea addressed in this paper: since a client’s request must be
connected to the service requested by the client, we used the source-to-destination routing
capability of an SDN controller to create the connection which assigns the device where the
client resides, to the server which hosts the service. However, in addition, we implemented
a reinforcement learning-based “self-aware” technique within the SDN controller to make
the best choice for the server where the service is located, so as to minimize a composite
cost or goal function which aims to minimize both the response time of the request and the
energy consumption in the SDN network.

1.1. Optimization Techniques for SDN Networks and the Fog

Fog computing has come to the forefront due to the need of moving data and services
closer to the end users to attempt to provide low latency and fast access as compared
to remote Cloud systems, in practical contexts such as mobile networks, the IoT and
intelligent vehicle systems [6]. Many of the related research issues were discussed in a
recent survey [26]. The basic techniques involved include the need to balance QoS, security
and reliability in the resulting hardware–software architectures [27].

Specifically for SDN, various design and optimization choices have been discussed
in a survey article [28], including issues of security and energy efficiency. The important
issue of authenticating the routing choices made in SDN controllers is discussed in [21].
A survey of research that links system deployment issues and optimization was presented
in [29].

In distributed systems and networks, the term “optimization” covers different ap-
proaches rather than a single view about how to address the issue. The traditional approach
in distributed system optimization [8] assumes that the system workload is perfectly known
in terms of deterministic quantities such as the average rates of request and average ex-
ecution or transfer times, or the total data transfer rates, leading to a cost function and a
non-linear minimization problem which is often combinatorially intractable and has to be
solved approximately.

Such approaches are typically validated by a comparison with the global optimum
in some cases, and via simulations in a variety of numerical examples, such as [30] where
the SDN networking aspects (i.e., but not the Fog aspects) are taken into consideration,
leading to a cost function including network delay and packet loss that helps find the best
paths which minimize the cost function. Since the exact solution is of high complexity, it is
typically replaced by a fast heuristic which is compared to the optimal to see whether it
provides satisfactory results when all the deterministic parameters are known in advance.
This approach was also developed in [31] for a case where failure probabilities are known,
energy (or power) consumption at Fog nodes is small when they are idle, leading to a
high complexity algorithm for exact optimization for packet loss and network forwarding
delay including Fog node power consumption, which is then simplified to obtain a fast
heuristic procedure.

This differs from our approach both in the optimization technique, which in our
case uses online measurement, and in the cost function. In our present paper, the cost
function includes the round-trip SDN network delay plus the service response time, and we
also include the measured power consumption in the network nodes, which is not at all
negligible when nodes are idle.

Another well-known approach to the optimization of networks and distributed sys-
tems is based on game theory [32]. Here, it is realistically assumed that the system param-
eters regarding users, such as traffic rates and workload parameters, are unknown and

Sensors 2021, 21, 3105 3 of 18

that different users will have different but unknown characteristics. The aim is then not to
formulate or seek a global optimum, but to find the network’s stable operating where a
change in strategy by an end user will not improve the user’s own outcome. Sometimes,
this approach is combined with mechanisms such as auctions, which offer fast decision
making when end users can express their needs in the form of a “bid”, and can have an
economic connotation such as price, or price related to performance [33,34].

Optimization related to the selection of the parameters of a stochastic model, such as a
queuing network, is yet another approach [35,36]. Although these models are stochastic and
have the advantage of offering analytical solutions in steady-state when simple assumptions
are made (such as Poisson arrivals and exponentially distributed service times), they
require the system parameters to be known, such as arrival rates and service times [37].
When the system under consideration is optimized in real time, the resulting analysis is
very difficult and difficult to exploit numerically even in simple cases [38,39].

However, another approach which we also follow is not to seek an a priori optimum,
but rather to introduce an adaptation algorithm into the system which attempts to reduce
the cost function at each step. A simple dynamic appoach to dealing with link failures in
SDNs through this approach can be found in [40]. In this approach, a goal or cost function
is defined, and online measurements are made so that at successive decision steps, network
paths are changed so as to reduce the value of the cost function [41]. The tool often used for
achieving this is reinforcement learning (RL) [15], which has also been applied to routing
in intercontinental overlay networks [42], showing significant performance improvements
over standard IP networks. As indicated earlier, another useful application of RL concerns
packet routing in SDN networks [18,43].

1.2. Content of This Paper

SDN controllers working with RL were described in [17] with regard to the quality of
service (QoS). The use of SDNs to optimize QoS and security was presented in [22].

Our previous work that was presented at the Global Internet of Things Summit [44]
focused on the QoS of Fog services, and we designed and evaluated an SDN-based con-
troller for client–server task management to optimize the overall response time to service
requests. While our earlier work was limited to improving the response time of users’
requests from servers, the present work addresses power consumption as well as response
time minimization, expressed as a composite goal function. In addition, the text, figures
and measurements reported in the present paper are totally disjoint from the earlier paper.
In this paper:

1. We constructed a new objective or “goal function” for client-to-service allocation,
which combines the total response time experienced and measured at the client end
(including the round-trip network delay and the service time at the server), plus the
power consumed in the SDN network by the client request.

2. Since load-dependent power measurements of the actual “NUC” hardware [45] that
we use for each SDN switches is not available in the literature, we conducted accurate
power versus traffic load measurements with a specific Hall effect apparatus. We
note that the idle power consumption that we measured and report in Figure 1 is
not negligible. Indeed while the NUC peak power consumption at maximum load is
approximately 30 Watts, the idle consumption is approximately 20 Watts.

3. We detailed the adaptive control algorithm based on RL [15] and a random neural
network [46–48] that acts as an adaptic critic, using the real-time measurement of the
overall service response time, including the round-trip delay to send the request and
receive the result through the SDN network as well as the server response time for
processing the service request, and the traffic-driven power consumption in the SDN
network. Note that others have used the RNN as a tool for controlling the online
performance of packet networks and mobile networks [49–54].

4. This work extends on previous research that only addressed the network aspects with
regard to QoS [41] and QoS and security [55]. We discuss in detail the computational

Sensors 2021, 21, 3105 4 of 18

complexity of the algorithm and show that it is O(n2) where n is the number of
different possible connection paths between clients and services.

5. The RL algorithm is implemented in the SDN controller, and takes online decisions in
real time that minimize the composite goal function.

6. We show the effectiveness of our technique by exhibiting measurement results on a
multi-hop SDN network, together with client software requests and servers, with mul-
tiple users and multiple servers. Our experiments show in particular that our adaptive
controller achieves power savings of the order of 15% with a very moderate (but
consistent) less than 2% increase in average response time.

Thus, in Section 2 we discuss how an instance of a service is selected to satisfy the
request made by a user, when multiple instances of the available services are located at
different nodes of a Fog platform, and each of the servers that house the services may
be reached by one of several multi-hop paths in an SDN network. We also discuss its
implementation using a random neural network with reinforcement learning.

Section 3 discusses the issue of accurately measuring power consumption in routers
or switches, and describes the technique we used to acquire the measurement data. The re-
sulting measurements on the specific SDN switch used in this work are also presented.

Section 4 presents our experimental setting and summarizes the measurement results
concerning the RL-based control technique for allocating services to clients in the Fog,
using the SDN controller to set up the connections, while optimizing the goal function that
combines the response time and power consumption. Finally, Section 5 summarizes our
results and suggests directions for future work.

Figure 1. Measurement apparatus, based on the Hall effect, for power versus traffic characteristics of
NUC hardware used for each SDN switch.

2. The Decision System

The system considered is composed of a set F of Fog servers, where each server
f ∈ F = {1, ... |F|} supports any software service i ∈ S. We assume that each service is
available for execution at all of the Fog servers, but the extension to the case where each
Fog server only handles some of the services is straightforward.

We also have a set of users or clients U, where the u denotes a client u ∈ U =
{1, ... , |U|}. Clients will be located at different devices in the system, and we can imagine
(u, f) to be a pair of IP addresses. A client u requesting service i can be connected to a Fog
server f by some multi-hop path π(u, i, f) that originates at u and ends at f . We note that
even for a fixed Fog server f , there can be several distinct paths from u to f .

However, because the service i may be located at any Fog node, the set of paths that
u can use to reach i is in fact the set of all paths from u to all the servers F, which we

Sensors 2021, 21, 3105 5 of 18

denote by Π(u), and N(u) = |Π(u)| is the total number of paths connecting u to all the
Fog servers.

When the service i located at Fog server f is used to satisfy the request, we denote
by π(u, i, f) ∈ Π(u) the path used to transfer the request from u to service i. We assume
that the same path in reverse will be used to transfer the result back to the client u. Note
that the path is physically composed of a sequence of SDN switches, since we deal with a
SDN network.

In general, π(u, i, f) will not be selected “at random”, but rather it will be selected
based on the resulting QoS and network power consumption, hence:

• For each Fog node and client, we need to estimate the response time T1(u, i, f) which
is the overall time (including any waiting time) it takes the server f to service i for
client u.

• Similarly, for the specific path π(u, i, f), we will need to estimate the round-trip
transfer time T2(π(u, i, f)) for transferring the service request and any needed data
from u to the service i at f , and for transferring the results back from f to u.

• Finally, we will also require an estimate of the network power consumption E(π(u, i, f))
for the request of client u for service i, which includes the round-trip transfer associated
with the amount of data D(u, i) involved in the request, and the energy consumption
characteristics of the SDN switches on the path π(u, i, f).

Note that T1(u, i, f) does not depend on the path π(u, i, f); rather, it depends on
the request, the service, and the Fog node where the service is executed, i.e., (u, i, f).
On the other hand, T2(π(u, i, f)) depends on the path. Both can be estimated from past
measurements, as we performed in the RL-based control scheme described in Section 2.1.
From the above quantities, we can express the overall cost or goal function G(u, i, f):

G(u, i, f) = α[T1(u, i, f) + T2(π(u, i, f))] + (1− α)100.E(π(u, i, f)), (1)

where 0 ≤ α ≤ 1 is a constant that weighs the relative importance of the total delay and
power consumption within the overall cost, and the factor 100 is used to match the power
value in Atts with the delay metric in milliseconds.

For client u requesting service i, the optimum path π∗(u, i) which depends on u and i
that will be used is then determined as follows:

π∗(u, i) = arg min{G(u, i, f) : ∀π(u, i, f) ∈ Π(u)} . (2)

Notice that the choice of the optimum path also determines the choice of the corre-
sponding Fog server f in a unique manner. Thus, we reduced the problem of selecting a
Fog server to allocate a user’s request to:

• Selecting the optimum path in the network to connect a user to a specific Fog server
for a given service, since the choice of the path determines the choice of the Fog server
that is selected.

• Moreover, the practical consequence is that this can be implemented by an SDN
controller whose the normal function was to select a path in the network for a given
connection.

2.1. Random Neural Network and Reinforcement Learning

The G(.) function (1) is learned or estimated by collecting measurements, and an
approximation for the optimum path (2) is selected through RL [15] using a distinct
random neural network (RNN) [46,56] that acts as an adaptive critic for each client–service
pair (u, i).

Each RNN (u, i) has as many neurons as there are paths from u to all the Fog servers,
i.e., N(u) = |Π(u)| neurons, so that the number does not depend on the service, but just
on the client u. Therefore, each neuron of RNN (u, i) has a state qπ(u, i) for each path

Sensors 2021, 21, 3105 6 of 18

π ∈ Π(u), which is the probability that the particular neuron is excited. The states satisfy
the standard RNN system of equations:

qπ(u, i) =
Λπ(u, i) + ∑π′∈Π(u) qπ′(u, i)W+

π′ ,π(u, i)

λπ(u, i) + rπ(u, i) + ∑π′∈Π(u) qπ′(u, i)W−π′ ,π(u, i)
, (3)

where:

W+
π,π(u, i) = W−π,π(u, i) = 0, ∀π ∈ Π(u), and (4)

rπ(u, i) = ∑
π′∈Π(u)

[W+
π,π′(u, i) + W−π,π′(u, i)], is the f iring rate o f neuron π . (5)

Equation (3) states that one RNN is associated with each client service pair (u, i),
and this RNN has one neuron associated with each distinct network path π that connects
u to i. Note that a path π may be used by several client–service pairs. The quantities
W+

π′ ,π(u, i) and W+
π′ ,π(u, i) are the excitatory and inhibitory weights from neuron π′ and π

in the RNN for the client–service pair (u, i).
The term qπ(u, i) is the probability that neuron π of the RNN (u, i) is excited, i.e.,

0 < qπ(u, i) < 1, and the expression (3) indicates that qπ(u, i) can be computed as the
ratio of excitatory (in the numerator) and inhibitory (in the denominator) signals that are
entering neuron π. The largest among all the qπ(u, i) for a given (u, i) represents the path
that will be chosen at a given decision step as indicated in (10). The excitation between
the different neurons is represented by the second term in the numerator of (3), while the
“competition” between the paths that one may choose is represented by the inhibitory term
(the third term) in the denominator. The numerator contains a positive term Λπ(u, i) which
ensures that the probabilities are also positive.

The expression (4) implies that neurons are not self-excitatory or self-inhibitory,
while (5) is the total firing rate rπ(u, i) of neuron π in the RNN for the client–service
pair (u, i).

We first initialized all the networks with probabilities qπ(u, i) = 0.5 so that initially
all the neurons are neutral with respect to the choice of path, by setting the weights to the
following values:

W+
π,π′(u, i) = W−π,π′(u, i) = w > 0 f or π, π′ (6)

rπ(u, i) = 2(N(u)− 1)w, λ = Λπ(u, i) = λπ(u, i), ∀ π, u, i, (7)

So that:

0.5 =
λ + 0.5(N(u)− 1)w
λ + 2.5(N(u)− 1)w

, or λ = 1.5(N(u)− 1)w, yielding qπ(u, i) = 0.5, f or any w > 0. (8)

The Reinforcement Learning Algorithm

The RL algorithm, which is shown below to be of complexity O(n2) in the number of
arithmetic operations executed after each service request is completed, where n is the total
number of possible connections from clients to services, proceeds as follows:

1. After server f is chosen to execute service i to satisfy the request of client u, the
resulting total client response time, i.e., the first term in Equation (1), is measured
from the simple difference of the time-stamp when the request is sent by the client and
the time-stamp when the result is received by the client. The traffic rate on the path
being used is also measured during the transfer of the request and the second term of
(1) is obtained from a table look-up of power consumption versus traffic rate. As a
result, the value of the goal function Gt(u, i, f) is computed with two multiplications
and one addition, from the measurement data regarding client response time and
path consumption.

Sensors 2021, 21, 3105 7 of 18

2. The historical value of the “reward”, defined as the inverse of the goal, i.e., [G(u, i, f)]−1,
defined as Θ(u, i, f) is updated:

Θt(u, i, f) = δ.Θt−1(u, i, f) + (1− δ)
1

Gt(u, i, f)
, (9)

where 0 < δ < 1 is used to give more or less importance to the recent measurements.
Note that this requires one division, two multiplications and one addition.

3. Subsequently, the RNN weights are updated:

do ∀π ∈ Π(u) : rπ(u, i)← ∑
π′∈Π(u)

[W+
π,π′ (u, l) + W−π,π′ (u, l)] ,

Requiring a total o f 2n(n− 1) additions f or n distinct paths i.e., O(n2)

I f [Gt(u, i, f)]−1 ≥ Θt−1(u, i, f) do ∀ π′ ∈ Π(u), π′ 6= π(u, i, f) :

(a) : W+
π′ ,π(u,i, f)(u, i)←W+

π′ ,π(u,i, f)(u, i) +
1

Gt(u, i, f)
,

Requiring (n− 1)[multiplications + divisions + additions] i.e., O(n),

(b)∀π 6= π(u, i, f), π 6= π′ : W−π′ ,π(u, i)←W−π′ ,π(u, i) +
1

(N(u)− 1)Gt(u, i, f)
,

Requiring (n− 1)(n− 2)[multiplications + divisions + additions] i.e., O(n2),

Else do ∀ π′ ∈ Π(u), π′ 6= π(u, i, f) :

(a′) W−
π′ ,π(u,i, f)(u, i)←W−

π′ ,π(u,i, f)(u, i) +
1

Gt(u, i, f)
,

Requiring (n− 1)[multiplications + divisions + additions] i.e., O(n),

(b′) ∀π 6= π(u, i, f), π 6= π′ : W+
π′ ,π(u, i)←W+

π′ ,π(u, i) +
1

(N(u)− 1)Gt(u, i, f)
,

Requiring (n− 1)(n− 2)[multiplications + divisions + additions] i.e., O(n2).

4. Then, to prevent the weights from constantly increasing:

do ∀π 6= π′ such that π, π′ ∈ Π(u) :

(c) W+
π,π′ (u, i)←W+

π,π′ (u, i)
rπ(u, i)

∑π′∈Π(u)[W
+
π,π′ (u, i) + W−π,π′ (u, i)]

,

(d) W−π,π′ (u, i)←W−π,π′ (u, i)
rπ(u, i)

∑π′∈Π(u)[W
+
π,π′ (u, i) + W−π,π′ (u, i)]

,

Requiring n(n− 1)[multiplications + divisions] and 2n(n− 1) additions i.e., O(n2).

5. Finally, with these updated values of the weights, we compute all the qπ(u, i) using
the system of Equation (3), which is a fixed point iteration of complexity O(n2).

6. Then, we obtain the new value of the best choice of path for the request from client u
for service i, including the path itself and the Fog server at the end of the path:

π∗(u, i, f ∗) = arg max{ qπ(u,i, f)(u, i) : π(u, i, f) ∈ Π(u) } , (10)

which uses (n− 1) comparison operations if we use Bubblesort, or O(log n) if we use
a more sophisticated sorting algorithm.

The goal function includes the end-to-end response time (including round-trip net-
work delay and the service time needed to satisfy the request), plus the path power
consumption. Path power consumption is the sum of the power consumption on each node
in the path, and the node power consumption is computed from the value of the traffic
that a request generates. The end-to-end response time is measured constantly each time
a specific source-destination path is used, since it includes both the network round-trip
delay and the destination server’s service time for the client. When a decision has to be

Sensors 2021, 21, 3105 8 of 18

taken, the source is known and the decision is then to select both the destination (where
the service is resident) and the path which minimizes the goal function.

The algorithm that we described is run on the SDN controller to find the path
π∗(u, i, f ∗) and determines the Fog node f ∗ in (10), so that the service request of the
client u for service i can be satisfied.

3. Linking Network Power Consumption to SDN Switch Traffic Rate

The total energy consumption E(π(u, i, f)) for the network connection of client u from
service i at Fog node f , using the network path π(u, f) in the expression (1) is estimated as
the sum of the energy consumption of each network switch (i.e., SDN router) x on path
π(u, f), which transfers a total of D(u, i) packets in either direction when the request from
u is made and satisfied by i at Fog node f :

E(π(u, i, f)) = ∑
x∈π(u,i, f)

D(u, i).
Px(τx)

τx
, (11)

where τx ≥ 0 is the total traffic rate in Mb/s that is being carried by node x, and Px(τx)
is the power (in watts) consumed at the network switch x when it carries a traffic rate τx.
An example of Px(τx) versus τx is shown in Figure 2. Note that in the expression for the
energy consumption (11), the term:

Px(τx)

τx
, τx ∈ [0,+∞], (12)

is given in Joules/Mb due to the fact that power is measured in Watts, or Joules/second,
while the traffic rate τx is measured in Mb/s, so that the expression (12) is in Joules/Mb.
Since D(u, i) is the total amount of data in Mb transferred back and forth, the expression (11)
is in Joules.

Figure 2. The dependence of the instantaneous power consumption on the traffic load of an Intel
NUC that is used as a SDN switch or router. The y axis is the power consumption in Watts, averaged
over 30 distinct measurements, against the traffic values provided in the x axis in Mb/s.

Another metric of interest is the energy consumption increment (ECI) of the SDN
switch x, measured in Joules per Mb, which indicates the additional energy consumption

Sensors 2021, 21, 3105 9 of 18

per unit of data transferred. The ECI can be obtained directly from Px(τx) by calculating
its derivative:

ECIx(τx) =
dPx(τx)

dτx
, τx ∈ [0,+∞], (13)

and a measured experimental example is shown in Figure 3 in Watts per Mb/s, or equiva-
lently in Joules per Mb.

Figure 3. The increment in the amount of energy in Joules per Mb transported through a NUC acting
as a SDN switch (shown on the y axis), as a function of the ongoing traffic rate in Mb/s passing
through the NUC (shown on the x axis). This curve shows that if we operate the NUC at the left-hand
side of the peak of the curve, increasing the traffic will also increase the energy per unit traffic, while
if the NUC is operated at the right-hand side of the peak, then as we add on more traffic through the
NUC, the energy per Mb actually decreases.

Measuring the Power Characteristic of the SDN Switches

The SDN switches (or forwarders) used in our experiments are Intel Next Unit Com-
puters (NUC) [45] that run Open vSwitch [25]. Although in this paper we only focus on
these devices, the approach we take can be applied to any other relevant network hardware.

The measurement of the instantaneous power drawn by a NUC during data transfer
was performed in the experimental setup shown in Figure 1. For each individual power
measurement, a fixed level of traffic in Mb/s was supplied by another NUC, to the NUC be-
ing measured acting as an SDN switch, and the experiment was carried out for successively
increasing traffic levels, as shown in Figure 2.

The electronic circuit which is used to condition the signal obtained from a sensor
which measures the current is based on precision operational amplifiers. The Hall effect-
based current sensor ACS712-05 (0–5 Ampères current range) is galvanically isolated from
the copper conduction path, integrated into the IC, which is used to pass the measured
current. This path was connected in series with the supply wire on the constant DC voltage
side at UDC = 19.5 V, of the AC adapter used for the NUC’s as shown in Figure 1. The output
signal from the sensor is amplified in a single-ended amplifier and then converted to the

Sensors 2021, 21, 3105 10 of 18

differential form. The instantaneous value of the measured power can then be found from
the following relationship:

P = UDC.i = UDC
Um

kuS
= AUm, in Watts , (14)

where S = 185 mV/A is the sensitivity of the current sensor, and A = UDC/(kuS) = 52.7 A
is a constant with ku = 2, which is related to the instrumentation, and Um is the measured
output voltage of the single-sided differential converter shown at “channel 1” of Figure 1,
which results from the Hall-effect measurement of the NUC input current.

In order to register the waveforms of the instantaneous power, a professional multi-
channel 16-bit resolution measurement card, installed on a PC computer, was used with
1 Khz sampling frequency. To synchronize the measurements, a photodetector was con-
nected to another channel of the measurement card in order to detect a change in the
brightness of the screen in the monitor connected to the transmitting NUC. Such a simple
solution enabled the generation of a marker signaling the start of a test procedure, pro-
viding galvanic isolation at the same time. To reduce the effect of noise and interference,
thirty separate measurements were repeated for the power consumption as a function
of incoming and outgoing traffic, and the results are summarized in Figure 2. Then, we
extracted the difference of the energy consumption between the basic level for zero traffic
and the value for a given traffic level, and the increase in energy consumption per traffic
volume in Mb is presented in Figure 3.

4. The Test-Bed and the Experimental Results

The test-bed that is used for our experiments is shown in Figure 4. It is a network of
five SDN switches plus an SDN controller shown in red. All five SDN switches are installed
in NUC [45] machines running OpenVSwitch version 2.12.0, on of Linux Kali version
2020.2, kernel version SMP Debian 5.5.17-1kali1 (21 April 2020). The SDN controller is a
separate NUC machine which only runs the ONOS SDN controller software utilizing the
Open-Flow Protocol version 13+ [57]. Prior work on similar test-bed organizations can be
found in [17].

In Figure 4, two of the NUC machines, FD2, FD5, also act as Fog servers, each of
which supports all the services. Two other NUC machines, FD3, FD4, support the clients.
All NUC machines also act as SDN switches, including FD1, which is not used as a host for
services or clients. This topology has been selected to easily allow for our experiments. Any
client u in Figure 4 can connect to any service instance in the system. From the client’s point
of view, it does not matter where the service is deployed. Note that for any client–service
pair, there are multiple paths possible in the 5-node SDN switch topology.

At the client level, each service i is designated with a specific and unique dummy IP
address. When a client requests a specific service, the SDN controller designates on the fly
the current optimal server using the RL algorithm detailed in Section 2.1, and it also uses the
open-flow protocol to assign the appropriate path to the SDN switches that are concerned
by this decision. Details on the use of an SDN to implement both the network routing
and the software support for allocating service requests to specific service instances can be
found in our earlier conference paper [44].

Sensors 2021, 21, 3105 11 of 18

SDN Controller

CLIENT
CLIENT

CLIENT CLIENT

CLIENT
CLIENT

CLIENT CLIENT

SERVICE

SERVICE

SERVICE

SERVICE

SERVICE

SERVICE

Figure 4. The architecture that we used for the experiments is shown, including the clients and
services (resident on servers), plus the SDN network with a SDN controller and 5 SDN switches (the
round blue objects) with 8 links between the switches. All the SDN switches are implemented on
Intel NUCs. Two switches support the connections to services, while two other switches support the
connections to the clients.

In order to test the performance of the RL-based algorithm, we developed a set of
experiments where the instants at which the users or clients make requests, as well as
their selection of the service they request, is randomized, so as to decouple the behavior of
the workload from the control algorithm itself. Thus, each client Cu sends a request to a
randomly chosen service S1 or S2 at a random instant Tu,i which is uniformly distributed
in the time window [T0, T0 + Tmax] where Tmax = 10 s.

We distinguish between Type 1 clients which have a preference for service S1, and the
probability of choosing this service which is P1(S1) = 0.75, while Type 1 clients choose S2
with probability P1(S2) = 0.25. Type 2 clients prefer the second service with probability
P2(S2) = 0.75 and P1(S1) = 0.25. Recall that each instance of S1 and S2 is installed on all
servers, and that each server is able to process multiple requests simultaneously.

4.1. Experimental Results Regarding the Response Time Only

The following experiment was run to evaluate the effect of the RL-based control
algorithm of Section 2.1 with a simplified goal function (1) where we have set α = 1,
i.e., where energy consumption in the network is not taken into consideration:

1. In the time window (T0, T0 + Tmax), each client Cu sent one request to one service,
and all services are available and are responding as fast as they can. The resulting
response time for the m − th request which is satisfied for each user is denoted
Tm, m ≥ 1, from the instant when the user makes the request to the instant when the
response is received back at the use. The overall average value of the n requests that
are satisfied over the duration of the experiment is denoted:

T =
n

∑
m=1

Tm. (15)

Sensors 2021, 21, 3105 12 of 18

This experiment was repeated five times consecutively, and the overall average
response time, which is an “average of averages”, taking the average of the 5 values of
the individual average values T, is shown in Figure 5, in the part of the figure which
does not have a background color.

2. Secondly, the same experiment was run with a “stress test”, which is an additional
program that executes 50% of the services which have been chosen at random, and si-
multaneously increases the CPU utilization rate to 100%, resulting in a substantial
increase in the time required to process the corresponding service requests. Its effect
is shown with a red background in Figure 5. Interestingly, we notice that the effect of
the stress test is mostly seen at the beginning of the “red period”, due to the RL-based
adaptive control which dynamically shifts the load towards those service instances
which do not have an overload. However, since 50% of services are systematically
affected, we do have an increase in average response time. After the stress test ends,
everything goes back to the prior condition.

3. Thirdly, during the time span shown with an orange background in Figure 5, the links
between (FD2, FD3), (FD4, FD5) experience a major increase in delay caused by a
DDoS attack. As a result, the clients also experience a major increase in response time
due to the additional transfer delay of requests and of the corresponding responses.
Again, we observe that the worse effect is at the beginning of the “yellow period”,
since the RL-based adaptive control shifts the workload to the longer two-hop paths
that are not under attack. Obviously, an increase in response time still occurs because
of the longer paths, but it is not as bad as that at the beginning of the attack since the
RL-based control has been able to avoid the links which are under attack. After the
DDoS attack ends, the average response times fall back to “normal”.

4. The same results are shown in Figure 6 for each of the five distinct experiments,
and we see that each distinct experiment has a behavior that is very similar to the
average behavior shown in Figure 5.

Figure 5. The average response time experienced by all clients for the services, measured over some
1000 s, averaged over five distinct experiments with identical parameters.

Sensors 2021, 21, 3105 13 of 18

Figure 6. Individual variations in the average response time observed for each of the five distinct
experiments with identical parameters.

4.2. Experiments Concerning Energy Optimization

In the next set of experiments that we describe in this section, we used the full
expression in the goal function (1) with α = 0.3 so that the energy component of the goal
function is 70% of the total composite value. As shown in Figure 7, in different experiments
we vary the size of the data transferred by the client Cu to its corresponding service request
Si, so that we also vary the corresponding power consumption of the network according
to the characteristic shown in Figure 2 for each individual NUC-based SDN switch that is
traversed on each path.

We simplify the experiments by letting each client have exactly the same transfer rate
τr in Mb/s from client to server, whose value is shown on the x axis of Figure 7. Note that
the power consumption at each NUC used as a SDN switch can then be estimated from the
value of τr using the results in Figure 2.

For each value of throughput per client–server pair, and for each value of τr, we repeat
the following experiment 10 times, so that the results we report are an average over the
10 experiments for each τr. Each individual experiment is run as follows using the RL
control with the goal function (1) and α = 0.3, as well as (separately) by setting α = 1,
i.e., without energy optimization:

1. Each client Cu sends a request with a stream of data which is prepared so that its
throughput is τr, and τr is varied between 10 and 90 Mb/s, as shown by the x axis of
Figures 7 and 8.

2. Each client sends one request in the 10 s time window as described in the previous sec-
tion.

3. The actual throughput is measured at the SDN switches (NUCs) and the instantaneous
power consumption is computed from Figure 2.

The results we observe in Figure 7, regarding the total average power consumption
(over the ten experiments), indicate that if we just try to minimize the response time only
with α = 1 (the red line), the obvious result is that total power consumption increases
substantially as compared to the case where we have α = 0.3, and both power and response
time are minimized (the blue line). However, what we point out in the “white area” of

Sensors 2021, 21, 3105 14 of 18

Figure 7 for the “blue line” is that the response time in the goal has little effect for smaller
values of τr, while when we increase τr above 50 Mb/s, the response time starts having a
significant effect on the goal function and therefore it forces the RL-based control to use
more power by selecting longer paths.

Figure 7. Instantaneous power consumption in the SDN switch part of the network, measured as
a function of the clients’ data throughput towards the servers which are supporting the services.
The power value is deduced from traffic measurements and from the power versus traffic data in
Figure 2. We see that when the RL controller takes power into account, a power savings of the order
of 15% occurs.

Figure 8. We observe the very significant stability of the average response time of the system over a
long period of 500 s, when either QoS optimization is, or QoS and energy optimization are conducted
by the RL-based control algorithm. This illustrates the ability of the RL control to react to changes in
load represented by ongoing requests by the clients to the services, maintaining the average response
time at a low level. We see that the reduction in power consumption observed in Figure 7 comes at
an increase of less than 2% (5 parts in 250) in the average response time.

Sensors 2021, 21, 3105 15 of 18

Note that the green selection on the Figure 7 only refers to the energy optimization.
This green selection shows where the QoS part of the optimization forced the energy
optimization to use another forwarder. We can observe it in this rapid jump of the measured
power usage.

The data from Figure 7 are supported by the average response time shown in Figure 8
over a long time period of 500 s under exactly the same conditions. We see that the average
response time is obviously higher if the optimization addresses both the response time and
power consumption (blue curve).

However, we also see (counter-intuitively) that the average response time is actually
lower (blue line) when τr > 50 Mb/s as compared to τr = 50 Mb/s, simply because the
response time portion of the goal used by the RL algorithm “kicks in” strongly when the
response time degrades, by selecting longer but less loaded paths in the network.

The variability of the paths used is shown in our measurements of Figure 9 which
clearly indicate that different clients will be adaptively using different paths (of different
lengths) in order to effect a dynamic online compromise between response time and
power consumption.

Figure 9. Measured relative frequency with which the optimization algorithm chooses the different
network paths in Figure 4.

5. Conclusions

In this paper, we extended our previous work on the dynamic QoS optimization of
a Fog network [44] in the presence of randomly changing workloads of users or clients
requesting services when a SDN is used to control the system.

The extension was to introduce the important issue of energy consumption. Com-
bining power with QoS, we detailed the manner in which reinforcement learning can be
used, together with random neural networks, to dynamically control the client-to-service
allocation process so as to minimize a composite goal function combining QoS and energy.

In order to address this issue, we needed to acquire accurate load dependent data on
the power consumption of SDN switches (or routers). Thus, as a first step, we measured the
power consumption of SDN switches to the traffic rate they carry, and reported the accurate

Sensors 2021, 21, 3105 16 of 18

power consumption characteristics of the routers which were not previously available in
the literature.

Using these results in a network-based interconnected test-bed of clients, servers,
SDN switches and a SDN controller, we reported the performance of the resulting system
both in terms of response time and power consumption. The results have shown how the
system adapts to carry out a trade-off between response and power optimization, as well
as the stability of the control scheme in the presence of long random sequences of service
requests over hundreds of seconds. Our experiments also reveal that, with the specific goal
function that we used that include power consumption, the power consumption of the
system during the experiments was reduced by approximately 15% with respect to the case
where only QoS was being optimized, while the average response time for the clients only
increased by 2%. This indicates that power savings can be made through control policies
such as ours, with little negative impact on QoS.

While this work addressed the combination of response time in the servers and the
network, and the power consumed in the network, it also poses the question of the electrical
power consumed in the servers. Thus, our future work will investigate a further level
of optimization, combining both network and server energy, together with network and
server QoS. Combining this with security issues will also be a further development of
this work.

Author Contributions: Conceptualization, E.G. and Z.F.; supervision, E.G.; methodology—routing
and network management, E.G., P.F. and M.N.; software and experiments—routing and server/service
management, P.F.; methodology, hardware and experiments—energy measurements, J.F. and J.C.;
writing—original draft preparation, E.G., M.N. and P.F.; writing—review and major editing, E.G.;
funding acquisition, E.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 research and innovation
programme SerIoT Project under GA No. 780139, and IoTAC Project under GA No. 952684.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Buyya, R.; Srirama, S.N.; Casale, G.; Calheiros, R.; Simmhan, Y.; Varghese, B.; Gelenbe, E.; Javadi, B.; Vaquero, L.M.; Netto, M.A.S.;

et al. A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade. ACM Comput. Surv. 2019,
51, 105:1–105:38. [CrossRef]

2. Levin, A.; Barabash, K.; Ben-Itzhak, S.G.; Schour, L. Networking Architecture for Seamless Cloud Interoperability. In Proceedings
of the 2015 IEEE 8th International Conference on Cloud Computing, New York, NY, USA, 27 June–2 July 2015; pp. 1021–1024.
[CrossRef]

3. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16. [CrossRef]

4. Mahmud, R.; Srirama, S.N.; Ramamohanarao, K.; Buyya, R. Profit-aware application placement for integrated Fog-Cloud
computing environments. J. Parallel Distrib. Comput. 2020, 135, 177–190. [CrossRef]

5. Radoslav, C. Cloud Computing Statistics 2019. Available online: https://techjury.net/blog/cloud-computing-statistics/#gref
(accessed on 23 March 2021).

6. Goasduff, L. Gartner Says 5.8 Billion Enterprise and Automotive IoT Endpoints Will Be in Use in 2020. Available online: https:
//www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io (accessed
on 23 March 2021).

7. Gelenbe, E.; Sevcik, K.C. Analysis of Update Synchronization for Multiple Copy Data Bases. IEEE Trans. Comput. 1979,
28, 737–747. [CrossRef]

8. Kim, C.; Kameda, H. An algorithm for optimal static load balancing in distributed computer systems. IEEE Trans. Comput. 1992,
41, 381–384.

9. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for the Bera erogeneous computing.
IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

http://doi.org/10.1145/3241737
http://dx.doi.org/10.1109/CLOUD.2015.141
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1016/j.jpdc.2019.10.001
https://techjury.net/blog/cloud-computing-statistics/#gref
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
http://dx.doi.org/10.1109/TC.1979.1675241
http://dx.doi.org/10.1109/71.993206

Sensors 2021, 21, 3105 17 of 18

10. Zhu, X.; Qin, X.; Qiu, M. Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters. IEEE Trans. Comput.
2011, 60, 800–812.

11. Tian, W.; Zhao, Y.; Zhong, Y.; Xu, M.; Jing, C. A dynamic and integrated load-balancing scheduling algorithm for cloud
datacenters. In Proceedings of the 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, Beijing,
China, 15–17 September 2011; pp. 311–315.

12. Zhang, Z.; Zhang, X. A load balancing mechanism based on ant colony and complex network theory in open cloud computing
federation. In Proceedings of the 2010 The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan,
China, 30–31 May 2010; Volume 2, pp. 240–243.

13. Dobson, S.; Denazis, S.; Fernández, A.; Gaïti, D.; Gelenbe, E.; Massacci, F.; Nixon, P.; Saffre, F.; Schmidt, N.; Zambonelli, F. A
survey of autonomic communications. ACM Trans. Auton. Adapt. Syst. 2006, 1, 223–259. [CrossRef]

14. Wang, L.; Brun, O.; Gelenbe, E. Adaptive workload distribution for local and remote Clouds. In Proceedings of the 2016 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 3984–3988.

15. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.
16. Yin, Y. Deep Learning with the Random Neural Network and its Applications. arXiv 2018, arXiv:1810.08653,
17. François, F.; Gelenbe, E. Towards a cognitive routing engine for software defined networks. In Proceedings of the 2016 IEEE

International Conference on Communications (ICC), Kuala Lumpur, 22–27 May 2016; pp. 1–6. [CrossRef]
18. Xu, C.; Zhuang, W.; Zhang, H. A Deep-Reinforcement Learning Approach for SDN Routing Optimization. In Proceedings of the

4th International Conference on Computer Science and Application Engineering, CSAE 2020, Sanya, China, 19–21 October 2020.
[CrossRef]

19. Pernici, B.; Aiello, M.; Vom Brocke, J.; Donnellan, B.; Gelenbe, E.; Kretsis, M. What IS can do for environmental sustainability: A
report from CAiSE’11 panel on Green and sustainable IS. Commun. Assoc. Inf. Syst. 2012, 30, 18. [CrossRef]

20. Çaglayan, M.U. Some Current Cybersecurity Research in Europe. In Security in Computer and Information Sciences, Proceedings of
the First International ISCIS Security Workshop 2018, Euro-CYBERSEC 2018, London, UK, 26–27 February 2018; Revised Selected
Papers, Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 821,
pp. 1–10. [CrossRef]

21. Aytaç, S.; Ermis, O.; Çaglayan, M.U.; Alagöz, F. Authenticated Quality of Service Aware Routing in Software Defined Networks.
In Risks and Security of Internet and Systems, Proceedings of the 13th International Conference, CRiSIS 2018, Arcachon, France, 16–
18 October 2018; Revised Selected Papers, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018;
Volume 11391, pp. 110–127. [CrossRef]

22. Çaglayan, M.U. Performance, Energy Savings and Security: An Introduction. In Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems, Proceedings of the 28th International Symposium, MASCOTS 2020; Revised Selected Papers, Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12527, pp. 3–28. [CrossRef]

23. Bera, S.; Misra, S.; Vasilakos, A.V. Software-defined networking for Internet of Things: A survey. IEEE Internet Things J. 2017,
4, 1994–2008. [CrossRef]

24. Mambretti, J.; Chen, J.; Yeh, F. Next Generation Clouds, the Chameleon Cloud Testbed, and Software Defined Networking
(SDN). In Proceedings of the 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), Singapore,
26–27 October 2015; pp. 73–79. [CrossRef]

25. OpenFlow Switch Specification, 2015. Available online: https://opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1.5.1.pdf (accessed on 23 March 2021).

26. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey on Fog Computing:
State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 416–464. [CrossRef]

27. Kehagias, D.; Jankovic, M.; Siavvas, M.; Gelenbe, E. Investigating the Interaction between Energy Consumption, Quality of
Service, Reliability, Security, and Maintainability of Computer Systems and Networks. SN Comput. Sci. 2021, 2, 1–6.

28. Rawat, D.B.; Lenkala, S.R. Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Commun.
Surv. Tutor. 2017, 19, 325–346. [CrossRef]

29. Huang, X.; Cheng, S.; Cao, K.; Cong, P.; Wei, T.; Hu, S. A Survey of Deployment Solutions and Optimization Strategies for Hybrid
SDN Networks. IEEE Commun. Surv. Tutor. 2019, 21, 1483–1507. [CrossRef]

30. Tajiki, M.M.; Akbari, B.; Shojafar, M.; Mokari, N. Joint QoS and Congestion Control Based on Traffic Prediction in SDN. Appl. Sci.
2017, 7, 1265. [CrossRef]

31. Tajiki, M.M.; Shojafar, M.; Akbari, B.; Salsano, S.; Conti, M.; Singhal, M. Joint failure recovery, fault prevention, and energy-efficient
resource management for real-time SFC in fog-supported SDN. Comput. Netw. 2019, 162, 6. [CrossRef]

32. Ozdaglar, A.; Menache, I. Network Games: Theory, Models, and Dynamics; Morgan and Claypool: Williston, VT, USA, 2011.
[CrossRef]

33. Gelenbe, E. Analysis of single and networked auctions. ACM Trans. Internet Techn. 2009, 9, 8:1–8:24. [CrossRef]
34. Du, J.; Gelenbe, E.; Jiang, C.; Zhang, H.; Ren, Y. Contract design for traffic offloading and resource allocation in heterogeneous

ultra-dense networks. IEEE J. Sel. Areas Commun. 2017, 35, 2457–2467. [CrossRef]
35. Gelenbe, E.; Lent, R. Energy-QoS Trade-Offs in Mobile Service Selection. Future Internet 2013, 5, 128–139. [CrossRef]
36. Gelenbe, E.; Lent, R.; Douratsos, M. Choosing a Local or Remote Cloud. In Proceedings of the Second Symposium on Network

Cloud Computing and Applications, NCCA 2012, London, UK, 3–4 December 2012; pp. 25–30. [CrossRef]

http://dx.doi.org/10.1145/1186778.1186782
http://dx.doi.org/10.1109/ICC.2016.7511138
http://dx.doi.org/10.1145/3424978.3425004
http://dx.doi.org/10.17705/1CAIS.03018
http://dx.doi.org/10.1007/978-3-319-95189-8_1
http://dx.doi.org/10.1007/978-3-030-12143-3_10
http://dx.doi.org/10.1007/978-3-030-68110-4_1
http://dx.doi.org/10.1109/JIOT.2017.2746186
http://dx.doi.org/10.1109/ICCCRI.2015.10
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/10.1109/COMST.2016.2618874
http://dx.doi.org/10.1109/COMST.2018.2871061
http://dx.doi.org/10.3390/app7121265
http://dx.doi.org/10.1016/j.comnet.2019.07.006
http://dx.doi.org/10.2200/S00330ED1V01Y201101CNT009
http://dx.doi.org/10.1145/1516539.1516543
http://dx.doi.org/10.1109/JSAC.2017.2760459
http://dx.doi.org/10.3390/fi5020128
http://dx.doi.org/10.1109/NCCA.2012.16

Sensors 2021, 21, 3105 18 of 18

37. Gelenbe, E.; Mitrani, I. Analysis and Synthesis of Computer Systems; World Scientific: Singapore, 2010; Volume 4.
38. Foley, R.; McDonald, D. Join the shortest queue: Stability and exact asymptotics. Ann. Appl. Probab. 2001, 11, 569–607. [CrossRef]
39. Fayolle, G. Functional Equations as an Important Analytic Method in Stochastic Modelling and in Combinatorics. Markov Process.

Relat. Fields 2018, 24, 811–846.
40. Paris, S.; Paschos, G.S.; Leguay, J. Dynamic control for failure recovery and flow reconfiguration in SDN. In Proceedings of the

2016 12th International Conference on the Design of Reliable Communication Networks (DRCN), Paris, France, 15–17 March
2016; pp. 152–159. [CrossRef]

41. Gelenbe, E. Steps toward self-aware networks. Commun. ACM 2009, 52, 66–75. [CrossRef]
42. Brun, O.; Wang, L.; Gelenbe, E. Big data for autonomic intercontinental overlays. IEEE J. Sel. Areas Commun. 2016, 34, 575–583.

[CrossRef]
43. Majdoub, M.; Kamel, A.E.; Youssef, H. Routing Optimization in SDN using Scalable Load Prediction. In Proceedings of the 2019

Global Information Infrastructure and Networking Symposium (GIIS), Paris, France, 18–20 December 2019; pp. 1–6. [CrossRef]
44. Fröhlich, P.; Gelenbe, E.; Nowak, M.P. Smart SDN Management of Fog Services. In Proceedings of the 2020 Global Internet of

Things Summit (GIoTS), Dublin, Ireland, 3 June 2020; pp. 1–6. [CrossRef]
45. Intel. NUC—Small Form Factor Mini PC. 2021. Available online: https://en.wikipedia.org/wiki/Next-Unit-of-Computing

(accessed on 23 March 2021).
46. Gelenbe, E. Random neural networks with negative and positive signals and product form solution. Neural Comput. 1989,

1, 502–510. [CrossRef]
47. Sakellari, G. The cognitive packet network: A survey. Comput. J. 2010, 53, 268–279. [CrossRef]
48. Basterrech, S.; Rubino, G. A Tutorial about Random Neural Networks in Supervised Learning. Neural Netw. World 2016, 25,

457–499. [CrossRef]
49. Mohamed, S.; Rubino, G.; Varela, M. Performance evaluation of real-time speech through a packet network: a random neural

networks-based approach. Perform. Eval. 2004, 57, 141–161. [CrossRef]
50. Cramer, C.E.; Gelenbe, E. Video quality and traffic QoS in learning-based subsampled and receiver-interpolated video sequences.

IEEE J. Sel. Areas Commun. 2000, 18, 150–167. [CrossRef]
51. Sakellari, G. Performance evaluation of the Cognitive Packet Network in the presence of network worms. Perform. Eval. 2011,

68, 927–937. [CrossRef]
52. Adeel, A.; Larijani, H.; Ahmadinia, A. Resource Management and Inter-Cell-Interference Coordination in LTE Uplink System

Using Random Neural Network and Optimization. IEEE Access 2015, 3, 1963–1979. [CrossRef]
53. Adeel, A.; Larijani, H.; Ahmadinia, A. Random neural network based novel decision making framework for optimized and

autonomous power control in LTE uplink system. Phys. Commun. 2016, 19, 106–117. [CrossRef]
54. Adeel, A.; Larijani, H.; Ahmadinia, A. Random neural network based cognitive engines for adaptive modulation and coding in

LTE downlink systems. Comput. Electr. Eng. 2017, 57, 336–350. [CrossRef]
55. Gelenbe, E.; Domanska, J.; Fröhlich, P.; Nowak, M.P.; Nowak, S. Self-Aware Networks that Optimize Security, QoS, and Energy.

Proc. IEEE 2020, 108, 1150–1167. [CrossRef]
56. Gelenbe, E.; Stafylopatis, A. Global behavior of homogeneous random neural systems. Appl. Math. Model. 1991, 15, 534–541.

[CrossRef]
57. ONOS. Home Page of ONOS Project—Open Source SDN Controller. 2021. Available online: https://onosproject.org

(accessed on 23 March 2021).

http://dx.doi.org/10.1214/aoap/1015345342
http://dx.doi.org/10.1109/DRCN.2016.7470850
http://dx.doi.org/10.1145/1538788.1538809
http://dx.doi.org/10.1109/JSAC.2016.2525518
http://dx.doi.org/10.1109/GIIS48668.2019.9044960
http://dx.doi.org/10.1109/GIOTS49054.2020.9119542
https://en.wikipedia.org/wiki/Next-Unit-of-Computing
http://dx.doi.org/10.1162/neco.1989.1.4.502
http://dx.doi.org/10.1093/comjnl/bxp053
http://dx.doi.org/10.14311/NNW.2015.25.024
http://dx.doi.org/10.1016/j.peva.2003.10.007
http://dx.doi.org/10.1109/49.824788
http://dx.doi.org/10.1016/j.peva.2011.03.005
http://dx.doi.org/10.1109/ACCESS.2015.2489865
http://dx.doi.org/10.1016/j.phycom.2015.11.004
http://dx.doi.org/10.1016/j.compeleceng.2016.11.005
http://dx.doi.org/10.1109/JPROC.2020.2992559
http://dx.doi.org/10.1016/0307-904X(91)90055-T
https://onosproject.org

	Introduction
	Optimization Techniques for SDN Networks and the Fog
	Content of This Paper

	The Decision System
	Random Neural Network and Reinforcement Learning

	Linking Network Power Consumption to SDN Switch Traffic Rate
	The Test-Bed and the Experimental Results
	Experimental Results Regarding the Response Time Only
	Experiments Concerning Energy Optimization

	Conclusions
	References

