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Abstract: Many older adults lack the capacity to stand up again after a fall. Therefore, to analyse
falls it is relevant to understand recovery patterns, including successful and failed attempts to get up
from the floor in general. This study analysed different kinematic features of standing up from the
floor. We used inertial sensors to describe the kinematics of lie-to-stand transfer patterns of younger
and healthy older adults. Fourteen younger (20–50 years of age, 50% men) and 10 healthy older
community dwellers (≥60 years; 50% men) conducted four lie-to-stand transfers from different initial
lying postures. The analysed temporal, kinematic, and elliptic fitting complexity measures of transfer
performance were significantly different between younger and older subjects (i.e., transfer duration,
angular velocity (RMS), maximum vertical acceleration, maximum vertical velocity, smoothness,
fluency, ellipse width, angle between ellipses). These results show the feasibility and potential
of analysing kinematic features to describe the lie-to-stand transfer performance, to help design
interventions and detection approaches to prevent long lies after falls. It is possible to describe
age-related differences in lie-to-stand transfer performance using inertial sensors. The kinematic
analysis remains to be tested on patterns after real-world falls.

Keywords: recovery; lie-to-standing transfer; inertial sensors; signal analysis; kinematic analysis;
fall detection

1. Background

Many older adults lack the capacity to stand up again after a fall [1]. Consequently, these people
often remain on the floor, incapacitated for a long time, causing serious medical problems such as renal
failure, pneumonia, dehydration or even death [2,3]. Clinicians and health-care providers have a strong
interest in further investigating the circumstances of long-lies. One aspect is to develop autonomous
technologies to detect these incidents [4] and to enable an accurate rescue chain [5]. Another aspect is
to find indicators for a high risk of long lying periods after falling, to prevent these critical incidents by
exercise interventions such as the backward chaining technique [6]. Thus, assessing standing up from
a lying position could be a valuable approach. In a previous study [7] we described typical movement
components and showed differences in terms of movement fragmentation during lie-to-stand transfers
(LTS) of younger and older adults observed from video analyses. We expect that such differences will
be reflected in a sensor based kinematic analysis of LTS which could help to assess the performance of
lie-to-stand transfers. This could further help to identify people unable to stand up on their own and

Sensors 2016, 16, 1277; doi:10.3390/s16081277 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1277 2 of 11

contribute to an understanding of successful recovery patterns after real-world falls. It was shown
previously [4,8–12] that postural transitions from lying to sitting or standing postures can be detected
from inertial sensors worn at the trunk. However, kinematic analysis to objectively describe and assess
LTS performance from inertial sensor signals is yet to be investigated. Hence, this study aimed to assess
selected kinematic features previously used for analysis of sit-to-stand transfers [13,14], such as vertical
acceleration and rotational speed, and describe age-related differences during simulated LTS, based
on inertial sensor signals collected with sensors worn at the trunk. A novel quantitative kinematic
measure using a least square elliptic fitting method [15] was proposed to describe the complexity of
individual movement patterns underlying LTS.

2. Methods

Fourteen younger subjects (50% men) between 20 and 50 years of age and 10 healthy older
community dwellers (≥60 years; 50% men) were included in this study. All participants were able
to repeatedly stand up without help. Each participant was asked to conduct four LTS starting from
different initial lying postures on the floor (lying on the back, front and both sides). The transfers
were initiated voluntarily by the subjects who were asked to end the transfers in an erect standing
position without considerable body movement. Kinematic data were recorded with Opal sensors
(Figure 1, APDM, Portland, OR, USA) located on the trunk, including accelerometers, gyroscopes and
magnetometers sampled at 128 Hz.
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performing movements. Periods of static posture were defined as listed in Table 1. 

Figure 1. Wearable sensors fixed to the sternum and the L5 position. Medio-lateral axis (ML),
anterior-posterior axis (AP), superior-inferior axis (SI).

After processing the raw data output from the Opals, thresholds based on the average standard
deviation were calculated from the three axes of the accelerometer and gyroscope signals recorded
at the sternum and the L5 position from all subjects, to mark active periods (i.e., LTS). In a second
step, the signals were filtered for periods including static postures where the subjects rested without
performing movements. Periods of static posture were defined as listed in Table 1.



Sensors 2016, 16, 1277 3 of 11

Table 1. Definitions for static posture periods.

Code Static Posture Classification Arguments

(1) Standing (accSI < −5 m/s2) AND (accSI < accML) AND (accSI < accAP) AND (static posture = true)
(2) Lying on the back (accAP > 5 m/s2) AND (accAP > accSI) AND (accAP > accML) AND (static posture = true)
(3) Lying on the front (accAP < 5 m/s2) AND (accAP < accSI) AND (accAP < accML) AND (static posture = true)
(4) Lying on the left side (accML < −5 m/s2) AND (accML < accSI) AND (accML < accAP) AND (static posture = true)
(5) Lying on the right side (accML > −5 m/s2) AND (accML > accSI) AND (accML > accAP) AND (static posture = true)

Standing up from the floor was then classified with converse arguments, when a lying period (2, 3,
4 or 5) was followed by transfer movements and subsequent standing (1) as illustrated in Figure 2.
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The following kinematic and temporal features were extracted to describe LTS and quantify
age-related performance differences.

2.1. Transfer Duration

Based on the aforementioned classification system, start (Tstart) and end points (Tend) of the
transfers were calculated according to Equations (2) and (3) with anorm (t) being the time dependent
norm acceleration as defined in Equation (1). A standard deviation threshold of the resultant
acceleration (<0.15 m/s2) was obtained by visual inspection of all signals. For detection of the
end point of the transfer, the same value was obtained. Additionally, the standard deviation of the
angular velocity (0.1 rad/s) was included as a detection argument, in order to increase the robustness
of detection. The transfer duration was then calculated according to Equation (4):

anorm (t) =
√

aSI (t)
2 + aAP (t)2 + aML (t)

2 (1)

Tstart = {t, anorm (t)} < 0.15 m/s2 (2)

Tend = {t, anorm(t)} < 0.15 m/s2 ∧ω(t) < 0.1 rad/s (3)

Trising = Tend − Tstart (4)

2.2. Transfer Angular Velocity (Root Mean Square of Rotational Speed, RMS)

For each axis of rotation, the RMS of angular velocities were calculated according to
Equations (5)–(7), with the time dependent gyroscope signals of the single axes referred to as ω and the
sample frequency of the recordings as ƒS. The total RMS was calculated based on the arithmetic mean
of RMSSI, RMSAP, and RMSML. This value characterises the movement velocity during the transfer.
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RMSSI =

√√√√∑Tend
t=Tstart

ωSI(t)
2

fs·Trising
(5)

RMSAP =

√√√√∑Tend
t=Tstart

ωAP(t)
2

fs·Trising
(6)

RMSML =

√√√√∑Tend
t=Tstart

ωML(t)
2

fs·Trising
(7)

2.3. Vertical Acceleration

Based on the assumption that the horizontal acceleration component within transfers will be
rather small relative to the vertical component due to the contribution of gravity, which was shown
for sit-to-stand transfers in previous work [14]. Vertical acceleration for each time point (t) within the
LTS was estimated from the norm acceleration Equation (1) since it is strongly defined by the vertical
movement component. The residual of the norm acceleration was then calculated from the filtered
norm acceleration signal (2nd order Butterworth low-pass filter with cut-off frequency of 3 Hz) with
the gravity component (9.81 m/s2) being subtracted (Equation (8)). The maximum value extracted
from the time series of LTS of norm acceleration was then analysed.

avert norm(t) = anorm_ f iltered(t)− g (8)

2.4. Vertical Velocity

The vertical velocity of the trunk within the LTS was calculated by integrating the norm
acceleration according to Equation (9):

vvert =
Tend

∑
t=Tstart

avert norm(t) (9)

2.5. Jerk

Jerk was defined as the change in the acceleration signals calculated for each axis
Equations (10)–(12), for the interval between the start and the end of the transfers. Total Jerk (J)
was calculated based on the arithmetic mean of JSI, JAP, and JML; the maximum value of the Total Jerk
time series (JMax) was analysed:

JSI(k) = fs
aSI,k+1 − aSI,k−1

2
, with k = fsTstart, . . . , fsTend (10)

JAP(k) = fs
aAP,k+1 − aAP,k−1

2
, with k = fsTstart, . . . , fsTend (11)

JML(k) = fs
aML,k+1 − aML,k−1

2
, with k = fsTstart, . . . , fsTend (12)

3. Smoothness

Smoothness, calculated to describe whether the movement sequence was continuous and linear
within a clear direction, was presented as a measure for skilled coordinated movement in the work
of Bagalà and colleagues [13]. Therefore, according to the suggestion of Hogan and Sternad [16],
the jerk of the single axes was summed up and normalised by the transfer duration according to
Equations (13)–(15). Total Smoothness (S) was calculated based on the arithmetic mean of SSI, SAP, and
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SML. It was hypothesised that the smoothness in the younger age group will present higher values and
the range of variation will be greater in the older subject group due to greater heterogeneity.

SSI = Trising
3

Tend

∑
t=Tstart

|JSI(t)| (13)

SAP = Trising
3

Tend

∑
t=Tstart

|JAP(t)| (14)

SML = Trising
3

Tend

∑
t=Tstart

|JML(t)| (15)

3.1. Fluency

As a measure of the steadiness of bodily motions separated from gravity induced acceleration
components [13], the fluency was calculated based on the difference between the raw signals and
the filtered signals (second order Butterworth low-pass filter, cut-off frequency 3 Hz) for each axis of
acceleration according to Equations (16)–(18):

FlSI = Trising
2

Tend

∑
t=Tstart

|aSI(t)− aSI_ f iltered(t)| (16)

FlAP = Trising
2

Tend

∑
t=Tstart

|aAP(t)− aAP_ f iltered(t)| (17)

FlML = Trising
2

Tend

∑
t=Tstart

|aML(t)− aML_ f iltered(t)| (18)

The absolute difference was then summed up for, and normalised with, the transfer duration.
Total fluency (Fl) was calculated based on the arithmetic mean of the three axes FlSI, FlAP, and FlML.

3.2. Complexity of Movement Strategies (Elliptic Fitting)

In a first step, quaternion values were extracted from the sensor data delivered by the commercial
APDM sensor system using validated algorithms. Quaternions were then transformed into Euler
angles to define global sensor orientation. When the subject rested on the ground during the lying
components before initiating the transfers, Euler angles were set to zero. Subsequently, the change
of orientation within the different axes (SI, AP, ML) of the sensor located at the lower back (L5) was
calculated. Based on angular rotation plots of continuous movements of the complete LTS, a least
square elliptic fitting method [15] was used to describe the complexity of different transfer strategies
from lying to standing for each patient. This algorithm fits a 2D point cloud of angular rotation
around the ML, SI and AP axes into ellipses. It was hypothesised that the continuous trajectory of
angular rotation change within the LTS resembles an ellipse. Therefore, angular rotation was plotted in
pairwise combinations of all axes (ML-AP, ML-SI, SI-AP). Smaller width (length of transversal axis) and
height (length of longitudinal axis) of the ellipses sought to explain greater motion steadiness in terms
of rotational movement around the axes. The angle between the longitudinal axes of the ML-SI and the
ML-AP ellipses sought to explain the linearity of the movement (90◦ in linear movement patterns) and
reveal differences in complexity of transfer strategies. A stronger deviation from a linear 90◦ pattern in
older subjects was hypothesised. This hypothesis was based on different movement patterns within
the motion sequences of younger and older subjects standing up from the floor, including variable use
of rotational trunk movement observed from video-footage in a previous study of our group [7].
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All calculations were performed using MATLAB R2014a (The MathWorks, Inc., Natick, MA, USA).
Statistics were processed using SPSS 16 (SPSS Inc., Chicago, IL, USA). Due to the small sample size,
non-parametric statistics were applied. Wilcoxon tests were used to describe differences between
the younger and the older subject group. The study was approved by the Ethical Committee at the
University Hospital Tuebingen (No. 212/2013BO2). All participants gave written informed consent
prior to testing.

4. Results

Ninety-six LTS from different initial lying postures were classified from accelerometer and
gyroscope data from the trunk sensors for kinematic analysis. The analysed kinematic and temporal
parameters describing and assessing standing up from different lying postures (mean of standing up
from lying on the back, front and both sides), including transfer duration, transfer velocity, maximum
vertical acceleration and velocity as well as fluency and smoothness of movement, discriminated
between the younger and older subject group, independent of the sensor location at the trunk (L5 or
Sternum, Table 2). The calculations based on sternum sensor signals showed slightly different median
values compared to values detected from L5 sensor signals for all parameters.

Table 2. Basic quantitative parameters to describe standing up from different lying postures (back, front,
side left and right, mean of four transfers) from trunk sensors (L5, Sternum) in younger and
older subjects.

Feature Parameters Sensor
Young Subjects (n = 14) Older Subjects (n = 10)

p
Median (Q1–Q3 a) Min–Max Median (Q1–Q3 a) Min–Max

Transfer Duration (s)
L5 4.2 (3.8–5.2) 3.1–6.0 6.0 (5.5–7.0) 4.7–8.9 0.000
ST 4.5 (4.0–5.4) 3.3–6.4 6.3 (5.7–7.9) 5.1–9.9 0.000

Transfer Velocity b (◦/s)
L5 163.6 (139.5–178.4) 127.0–251.4 206.7 (169.2–236.3) 164.2–285.2 0.007
ST 210.3 (196.2–233.8) 163.1–293.3 272.6 (250.8–296.0) 219.7–395.6 0.001

Max. Vertical
Acceleration (m/s2)

L5 4.7 (4.1–6.1) 2.8–6.8 3.5 (2.6–4.5) 1.7–4.6 0.009
ST 5.9 (4.7–6.5) 4.1–8.7 3.6 (3.3–4.4) 2.0–4.7 0.000

Max. Vertical Velocity
(m/s)

L5 1.1 (0.9–1.2) 0.7–1.4 0.8 (0.6–1.0) 0.2–1.1 0.011
ST 1.2 (1.1–1.5) 0.9–2.0 1.0 (0.8–1.4) 0.6–1.4 0.036

Maximum Jerk (JMax)
(m/s3)

L5 67.0 (46.2–89.2) 36.4–383.3 41.0 (30.6–62.6) 18.3–99.2 0.056
ST 71.0 (44.2–107.6) 19.8–356.7 40.9 (34.8–61.2) 30.4–121.4 0.056

Smoothness (S) × 106 (m)
L5 5.9 (5.7–6.0) 5.3–6.5 6.4 (6.2–6.6) 6.1–6.9 0.000
ST 1.0 (0.7–1.7) 0.5–3.8 3.2 (2.4–7.8) 1.6–18.8 0.000

Fluency (Fl) × 103 (m)
L5 4.0 (3.8–4.1) 3.6–4.4 4.4 (4.2–4.5) 4.1–4.7 0.000
ST 12.4 (8.9–18.3) 7.0–32.2 30.9 (22.6–49.8) 17.8–100.5 0.000

a Interquartile range (quartile 25%–75%); b Total root mean square of rotational speed.

A significant difference in rotational transfer velocity (total root mean square of rotational speed,
RMS) between the age groups was found for the mean values of all positions (p = 0.001 Sternum,
p = 0.007 L5). The highest difference regarding the single lying postures before transfer initiation
was observed for standing up from lying on the back (92.0◦/s, older 291.0◦/s and younger 199◦/s)
measured at the sternum position. The lowest maximal vertical acceleration that was sufficient to
successfully stand up from the floor in older subjects in this study was at 1.8 m/s2 (from lying on the
back, Sternum) and 1.2 m/s2 (from lying on the back, L5). The lowest maximal vertical velocity was at
0.3 m/s (from lying on the left side, Sternum) and 0.3 m/s2 (from lying on the right side, L5).

Orientation data was available for n = 15 subjects (nine younger subjects, 6 older subjects).
Motion steadiness was higher in the younger subjects, as expressed in narrow ellipses compared to
the older subjects. Rotational movement in SI-AP axes hardly existed, hence, very small ellipses were
presented (Figure 3). In the older subjects more complex patterns, expressed by extensively broad and
high ellipses were observed, including also the SI-AP ellipse. The angle between the longitudinal axes
of the ML-SI and ML-AP ellipses was close to 90◦ in the younger subjects while the angle in the older
subjects was considerably smaller (roughly 45◦).
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using the ellipse fitting method, with ellipses indicating 2D plots of rotational movement around
combined axes (SI, AP, ML). Axes of ellipses: longitudinal blue = ML, transversal blue = I; longitudinal
yellow = SI, transversal yellow = AP; longitudinal green = ML, transversal green = AP.

Quantitative results of the ellipse fitting analysis are listed in Table 3. Both ellipse width and
height showed significantly higher values for the ML-SI as well as the SI-AP ellipses within the older
subject group, indicating the requirement to use more rotational movement strategies when standing
up from lying on the back. Furthermore, the deviation of the angle between the longitudinal axes of
the ML-SI and ML-AP ellipses from the optimal 90◦ angle was significantly higher in the older subject
group, indicating less linear movement patterns. This analysis showed the usefulness of the ellipse
measures, to discriminate between different levels of complexity in rising performances.

Table 3. Quantitative results of the ellipse fitting analysis of younger and older subjects standing up
from lying on the back.

Ellipse Fitting
Complexity Measures Axes

Younger Subjects (n = 9) Older SUBJECTS (n = 6)
p

Median (Q1–Q3) Min–Max Median (Q1–Q3) Min–Max

Ellipse Width (◦)
ML-AP 22.5 (10.1–28.0) 6.1–35.6 35.8 (26.1–58.3) 24.1–62.9 0.012
AP-SI 20.7 (8.1–25.9) 5.4–30.9 36.3 (31.0–61.6) 30.5–65.9 0.001
ML-SI 24.3 (14.7–42.8) 6.3–66.8 65.3 (58.4–73.4) 55.4–78.1 0.005

Ellipse Height (◦)
ML-AP 120.9 (103.1–136.6) 95.1–166.4 146.6 (127.5–170.1) 103.4–209.4 0.113
AP-SI 30.0 (16.7–58.7) 8.8–114.2 94.9 (84.0–144.8) 81.7–226.2 0.008
ML-SI 117.0 (100.1–128.0) 87.0–165.0 151.0 (134.2–205.0) 129.0–278.0 0.008

Deviation of angle
between ellipses from

90◦ (◦)

ML-SI to
ML-AP 7.0 (3.5–19.5) 2.0–38.0 41.5 (30.5–46.3) 29.0–50.0 0.002

p-Values based on Wilcoxon test.

5. Discussion

The selected kinematic and temporal parameters in this study described and discriminated the
LTS performance from different lying postures of younger and older subjects. Our findings confirmed
the feasibility to analyse different movement patterns underlying LTS for signals recorded with sensors
worn at the trunk. However, movement components in which the arms and legs were positioned
for supporting the body weight mostly contained small amounts of trunk movement, thus these
movements could not be recognised reliably.
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As shown in Table 2, significant differences between younger and older subjects were observed in
almost all performance parameters of LTS. These results give insight into biomechanical features when
standing up from lying on the floor. This may, within a certain scope, help to understand mechanisms
of successful recovery strategies after falls. Besides the development of more extensive fall detection
approaches, this could be helpful for physiotherapists to design tailored training interventions.
Interventions could for example include training of more rotational movement patterns that were
shown to be helpful for older people in standing up from the floor. Furthermore, quantification
and assessment of LTS performance addresses clinical interest for being a potential indicator for the
inability to stand up thus having a higher risk of long lies after falls. A simple and appropriate measure
to quantify the LTS performance of younger and older subjects was the transfer duration. The results
showed longer transfer durations at the sternum position compared to the L5 position. This can be
explained by using the same thresholds to define start and end points of transfers at both positions,
with the sternum positions being exposed to higher momentum and earlier movement initiation due
to the longer distance from the centre of mass. Though it was feasible to measure the transfer duration
at the L5 position, it is recommended to use a sensor worn at the sternum position for a more exact
estimation. Another reasonable modification of the estimation of the transfer duration might be the
use of individualised thresholds. Fixed thresholds were seen to negatively influence the precision in
estimating end-points of the transfers, due to more intense body sway, received by the trunk sensors
during stabilisation after righting up in older subjects. However, due to the limited dataset, the results
remain to be confirmed by further analysis including more subject data.

Beyond the temporal parameters, significant differences were observed for maximal vertical
acceleration and vertical velocity, likely explained by different movement patterns. Previous observations
from video-analyses [7] showed that older persons tend to reposition their hands and feet more
often than younger subjects during elevation movements, thus splitting up elevation into several
components. These broken movement patterns could be an explanation for lower vertical acceleration
and velocity values found in this study, which requires further analysis. Repositioning of the hands
and feet as seen from the video footage could not be reliably analysed from sensor signals in this
study. However, sensor analyses helped overcome subjective estimation of start and end positions
and gave insight into performance quality parameters. Maximum vertical acceleration measured at
the sternum position may be a valuable parameter to assess LTS performance. The norm acceleration
based method to calculate vertical acceleration and vertical velocity was deemed sufficient since the
horizontal acceleration did not affect the trend of the results, which was in line with the findings of
Zhang and colleagues on sit-to-stand transfers [14]. The lowest maximal vertical acceleration and
velocity values during LTS in older subjects presented in this study could serve as a reference for
further analysis to develop threshold based detection approaches of recovery after falls. However, the
presented values remain to be compared to those from real-world recovery patterns in older subjects
with impaired LTS capacity.

The motion sequences observed in the older subject group were significantly less fluent and
smooth than in the younger group, indicating more difficulties in performing steady movements.
Comparable results were outlined by Bagalà and colleagues [13] for older patients standing up from
lying on a hospital bed. Again, the much higher values calculated for the sternum sensor in comparison
to the L5 sensor probably resulted from higher sensitivity to upper trunk movement, as well as the
dependency on different transfer durations measured at the L5 compared to the sternum position.
It was further shown that older subjects stood up with significantly higher rotational transfer velocity
(RMS), especially when standing up from lying on the back, which was an indicator for an increase
in the use of rotational movement patterns in all three axes, possibly indicating compensational
movement patterns to prevent peak loads of the muscular system. The change of acceleration within
the movements, as indicated by the maximum jerk, only showed the tendency to differ but failed
to reach significance. This might on the one hand be the result of the low number of subjects but
may also be due to the uncertainty in whether maximum jerk was generated within the pre-elevation
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phase, which could contain higher rotational movement in older subjects, or within the elevation
phase. Bagalà and colleagues [13] instead showed good correlation between jerk, smoothness and
fluency. The difference could have resulted from the different conditions when standing up from
a higher levelled hospital bed, where it is unnecessary to intensively prepare for elevation involving
jerky movement behaviour. These findings suggest further kinematic analyses of separate movement
components, such as pre-elevation and elevation component as described in [7], are valuable.

As shown in Table 3, significant differences were observed between younger and older subjects
in terms of complexity of the movement patterns. Higher values were observed for the length and
width of the ellipses, indicating greater difficulty as described by the need to use more indirect
movement strategies including more turns around the longitudinal axis to prepare for elevation
in the older subjects. The shapes of the ellipses showed that younger subjects tended to use less
rotational trunk movement in the SI and AP axes and predominantly rotated around the ML axis.
In contrast, the older subjects tended to primarily rotate around the SI axis to roll into a side-lying
position, which was applied with a more complex movement pattern, as visualised with the trajectories
fitted into the ellipses (Figure 3). Similarly, the significantly different angles between the ML-SI and
ML-AP ellipses showed a decreased linearity of the motion sequence in the older subject group.
The presented ellipse-fitting measure was deemed a valid descriptor of complexity of the LTS
performance. However, it relied on the orientation estimation derived from the commercial APDM
sensor system. Further analysis has to be conducted to confirm the orientation estimation using
pre-defined methodology, such as an extended Kalman filter [17] or sensor fusion approach [18].
This will further help to define the acceleration and velocity of the trunk segment during different
phases of the LTS in the vertical direction, to improve the precision of norm acceleration based results.

A methodological limitation existed due to accelerometer drift, violating the calculation of
maximal vertical velocity. The drift was reduced by integrating the signals starting from the end-points
of the transfers. This method was chosen after observing that elevation phases, including maximal
vertical velocity, were mostly located at the end of the motion sequences. Furthermore, a linear drift
compensation method was used to calculate the transfer velocity, which seemed reasonable due to
rather short transfer intervals in this study. A further limitation was that the data set only included
voluntary healthy subjects and did not contain unsuccessful LTS attempts of older people or real-world
fall data. Therefore, it remains to be investigated whether the performance parameters, shown in
this study to describe and discriminate the performance of younger and older adults, are eligible to
identify a high risk for long lying. LTS were assessed with the subjects initially resting on the floor
without moving the trunk, which might not be representative for real-world recovery patterns after
a fall. Even within long lying periods, the faller might attempt to stand up or at least orient to a sitting
position several times without recovering successfully. Further kinematic analysis will be needed to
describe successful and unsuccessful recovery patterns after real-world falls. This will be the focus of
the FARSEEING group [19] who set up a real-world fall repository including data from inertial sensors.

6. Conclusions

In conclusion, this study showed the feasibility of describing and discriminating the performance
kinematics of younger and older subjects standing up from the floor from different lying postures,
calculated from inertial sensor signals recorded at the trunk. The extracted kinematic features gave
insight into different movement patterns of LTS and could help to assess different recovery scenarios
after real-world falls, design interventions and develop detection approaches to prevent long lies
after falls.

Acknowledgments: The authors like to thank Kejia Wang for language editing of the manuscript.

Author Contributions: Lars Schwickert: design and conceptualisation of the study, analysis of the data, drafting
the manuscript; Ronald Boos: analysis of the data, revising the manuscript; Jochen Klenk: analysis of the data,
revising the manuscript; Alan Bourke: revising the manuscript. Clemens Becker: design and conceptualisation of
the study, revising the manuscript; Wiebren Zijlstra: conceptualising the study and revising the manuscript.



Sensors 2016, 16, 1277 10 of 11

Conflicts of Interest: The research leading to these results has been partly funded by the European Union—Seventh
Framework Programme (FP7/2007-2013) under grant agreement No.: 288940 (FARSEEING project. The authors
certify that there is no actual or potential conflict of interest in relation to this article. The companies participating
in the FARSEEING project had no influence on the writing of this manuscript and the presented results.

References

1. Gurley, R.J.; Lum, N.; Sande, M.; Lo, B.; Katz, M.H. Persons found in their homes helpless or dead. N. Engl.
J. Med. 1996, 334, 1710–1716. [CrossRef] [PubMed]

2. Fleming, J.; Brayne, C.; Cambridge City over-75 s Cohort (CC75C) Study Collaboration. Inability to get up
after falling, subsequent time on floor, and summoning help: Prospective cohort study in people over 90.
BMJ 2008, 337. [CrossRef] [PubMed]

3. Lord, S.R.; Sherrington, C.; Menz, H.B. Falls in Older People: Risk Factors and Strategies for Prevention.
Inj. Prev. 2003, 9, 93–94.

4. Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time
human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf.
Technol. Biomed. 2006, 10, 156–167. [CrossRef] [PubMed]

5. Redmond, S.J.; Zhang, Z.; Narayanan, M.R.; Lovell, N.H. Pilot evaluation of an unobtrusive system to detect
falls at nighttime. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1756–1759.

6. Hofmeyer, M.R.; Alexander, N.B.; Nyquist, L.V.; Medell, J.L.; Koreishi, A. Floor-rise strategy training in older
adults. J. Am. Geriatr. Soc. 2002, 50, 1702–1706. [CrossRef] [PubMed]

7. Schwickert, L.; Oberle, C.; Becker, C.; Lindemann, U.; Klenk, J.; Schwenk, M.; Bourke, A.K.; Zijlstra, W.
Model development to study strategies of younger and older adults getting up from the floor. Aging Clin.
Exp. Res. 2015, 28, 277–287. [CrossRef] [PubMed]

8. Najafi, B.; Aminian, K.; Paraschiv-Ionescu, A.; Loew, F.; Büla, C.J.; Robert, P. Ambulatory system for human
motion analysis using a kinematic sensor: Monitoring of daily physical activity in the elderly. IEEE Trans.
Biomed. Eng. 2003, 50, 711–723. [CrossRef] [PubMed]

9. Paraschiv-Ionescu, A.; Buchser, E.E.; Rutschmann, B.; Najafi, B.; Aminian, K. Ambulatory system for the
quantitative and qualitative analysis of gait and posture in chronic pain patients treated with spinal cord
stimulation. Gait Posture 2004, 20, 113–125. [CrossRef] [PubMed]

10. Allen, F.R.; Ambikairajah, E.; Lovell, N.H.; Celler, B.G. An adapted Gaussian mixture model approach to
accelerometry-based movement classification using time-domain features. In Proceedings of the 28th Annual
International IEEE Conference on Engineering in Medicine and Biology Society, New York, NY, USA,
30 August–3 September 2006; pp. 3600–3603.

11. Khan, A.M.; Lee, Y.-K.; Lee, S.Y.; Kim, T.-S. A triaxial accelerometer-based physical-activity recognition via
augmented-signal features and a hierarchical recognizer. IEEE Trans Inf. Technol. Biomed. 2010, 14, 1166–1172.
[CrossRef] [PubMed]

12. Mortazavi, B.; Nemati, E.; VanderWall, K.; Flores-Rodriguez, H.G.; Cai, J.Y.J.; Lucier, J.; Naeim, A.;
Sarrafzadeh, M. Can Smartwatches Replace Smartphones for Posture Tracking? Sensors 2015, 15, 26783–26800.
[CrossRef] [PubMed]

13. Bagalà, F.; Klenk, J.; Cappello, A.; Chiari, L.; Becker, C.; Lindemann, U. Quantitative description of the
lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 2013,
21, 624–633. [CrossRef] [PubMed]

14. Zhang, W.; Regterschot, G.; Schaabova, H.; Baldus, H.; Zijlstra, W. Test-Retest Reliability of a Pendant-Worn
Sensor Device in Measuring Chair Rise Performance in Older Persons. Sensors 2014, 14, 8705–8717. [CrossRef]
[PubMed]

15. Fitzgibbon, A.; Pilu, M.; Fisher, R.B. Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell.
1999, 21, 476–480. [CrossRef]

16. Hogan, N.; Sternad, D. Sensitivity of Smoothness Measures to Movement Duration, Amplitude, and Arrests.
J. Mot. Behav. 2009, 41, 529–534. [CrossRef] [PubMed]

17. Sabatini, A.M. Kalman-filter-based orientation determination using inertial/magnetic sensors: Observability
analysis and performance evaluation. Sensors 2011, 11, 9182–9206. [CrossRef] [PubMed]

http://dx.doi.org/10.1056/NEJM199606273342606
http://www.ncbi.nlm.nih.gov/pubmed/8637517
http://dx.doi.org/10.1136/bmj.a2227
http://www.ncbi.nlm.nih.gov/pubmed/19015185
http://dx.doi.org/10.1109/TITB.2005.856864
http://www.ncbi.nlm.nih.gov/pubmed/16445260
http://dx.doi.org/10.1046/j.1532-5415.2002.50463.x
http://www.ncbi.nlm.nih.gov/pubmed/12366625
http://dx.doi.org/10.1007/s40520-015-0397-1
http://www.ncbi.nlm.nih.gov/pubmed/26130427
http://dx.doi.org/10.1109/TBME.2003.812189
http://www.ncbi.nlm.nih.gov/pubmed/12814238
http://dx.doi.org/10.1016/j.gaitpost.2003.07.005
http://www.ncbi.nlm.nih.gov/pubmed/15336280
http://dx.doi.org/10.1109/TITB.2010.2051955
http://www.ncbi.nlm.nih.gov/pubmed/20529753
http://dx.doi.org/10.3390/s151026783
http://www.ncbi.nlm.nih.gov/pubmed/26506354
http://dx.doi.org/10.1109/TNSRE.2012.2230189
http://www.ncbi.nlm.nih.gov/pubmed/23221832
http://dx.doi.org/10.3390/s140508705
http://www.ncbi.nlm.nih.gov/pubmed/24841248
http://dx.doi.org/10.1109/34.765658
http://dx.doi.org/10.3200/35-09-004-RC
http://www.ncbi.nlm.nih.gov/pubmed/19892658
http://dx.doi.org/10.3390/s111009182
http://www.ncbi.nlm.nih.gov/pubmed/22163689


Sensors 2016, 16, 1277 11 of 11

18. Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a Good Attitude: A Quaternion-Based Orientation Filter for
IMUs and MARGs. Sensors 2015, 15, 19302–19330. [CrossRef] [PubMed]

19. FARSEEING. Available online: www.farseeingresearch.eu (accessed on 11 August 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s150819302
http://www.ncbi.nlm.nih.gov/pubmed/26258778
www.farseeingresearch.eu
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Background 
	Methods 
	Transfer Duration 
	Transfer Angular Velocity (Root Mean Square of Rotational Speed, RMS) 
	Vertical Acceleration 
	Vertical Velocity 
	Jerk 

	Smoothness 
	Fluency 
	Complexity of Movement Strategies (Elliptic Fitting) 

	Results 
	Discussion 
	Conclusions 

