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A magma ocean origin to divergent redox
evolutions of rocky planetary bodies
and early atmospheres
Jie Deng 1,4✉, Zhixue Du 2✉, Bijaya B. Karki3, Dipta B. Ghosh3 & Kanani K. M. Lee 1,5

Magma oceans were once ubiquitous in the early solar system, setting up the initial condi-

tions for different evolutionary paths of planetary bodies. In particular, the redox conditions of

magma oceans may have profound influence on the redox state of subsequently formed

mantles and the overlying atmospheres. The relevant redox buffering reactions, however,

remain poorly constrained. Using first-principles simulations combined with thermodynamic

modeling, we show that magma oceans of Earth, Mars, and the Moon are likely characterized

with a vertical gradient in oxygen fugacity with deeper magma oceans invoking more oxi-

dizing surface conditions. This redox zonation may be the major cause for the Earth’s upper

mantle being more oxidized than Mars’ and the Moon’s. These contrasting redox profiles also

suggest that Earth’s early atmosphere was dominated by CO2 and H2O, in contrast to those

enriched in H2O and H2 for Mars, and H2 and CO for the Moon.
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The redox condition of planetary bodies influences their
chemical differentiation and governs the composition of
overlying atmospheres1–5. For instance, to understand how

bio-essential volatiles such as carbon and hydrogen were initially
incorporated near Earth’s surface requires knowledge about the
redox state during early stages of Earth’s history. A number of
studies have shown that the uppermost mantle of present-day
Earth is considerably oxidized (IW+ 3.5, that is, 3.5 log units
above the iron-wüstite buffer)6. Petrological evidence also sug-
gests that such oxidized conditions formed early, 4.3–4.4 Ga ago7.
Unlike Earth, the present-day Martian and Lunar mantles are
considered to be much more reduced (~IW− 1)8–11.

These contrasting oxidization states may have been set up
during the early phase of planetary formation when magma
oceans (MOs) could have existed3,12. Such an MO involved
mechanism has yet to be fully established because relevant redox
controlling reactions are still poorly constrained in realistic
magma ocean scenarios. Several studies have inferred the oxygen
fugacity (fO2

) profile of silicate melts at high pressures using the
experimental data at zero or relatively low pressures and is
applicable only for shallow magma oceans13,14. The oxygen
fugacity is a function of pressure, temperature, and composition,
thus likely varying greatly within MOs that could have extended
very deep, even covering the entire mantle regime.

Here, we study the redox controlling reactions in magma
oceans by simulating silicate melts containing ferrous and ferric
iron with first-principles molecular dynamics (FPMD) and per-
form thermodynamic modeling at pressures that cover the entire
Earth’s mantle and temperatures up to 5000 K. The results sug-
gest that ferric iron becomes increasingly energetically favor-
able with pressure mainly due to its small partial molar volume in
silicate melts under large compression. Consequently, the magma
oceans of Earth, Mars, and the Moon, if compositionally homo-
geneous due to vigorous mixing, would be characterized with a
vertical gradient in oxygen fugacity. Specifically, a deeper magma
ocean existing in the early Earth would have more oxidizing
surface conditions compared with those of smaller bodies like
Mars and the Moon. The contrasting surface conditions between
these planetary bodies suggest that the early atmosphere in
equilibrium with Earth’s surface may have been dominated by
CO2 and H2O, in contrast to those enriched in H2O and H2 for
Mars and H2 and CO for the Moon.

Results and discussion
Equations of state of silicate melts. At the base of a MO where
metallic melts may pond before sinking into the core15, the
oxygen fugacity is governed by the equilibrium between the
metallic and silicate melts, and can be directly calculated given
the compositions of these melts are known. Away from the base
where metallicmeltis absent due to its rapid sinking velocity16, the
MO redox state is controlled by the following redox buffering
reaction3,17:

FeO meltð Þ þ 1
4
O2 ¼ FeO1:5 meltð Þ ð1Þ

The thermodynamic behavior of the above reaction informs
how oxygen fugacity varies with temperature and pressure.
Taking the oxygen fugacity at the MO base as the boundary
condition, one may, in principle, obtain the oxygen fugacity
throughout the MO if the thermodynamic properties of the
reactants and products in Eq. 1 are known. One key-parameter is
the difference in molar volumes between FeO1.5 and FeO in the
melts, ΔV. Its value has been directly measured only at 1 bar18

and also inferred from experiments performed up to 23 GPa and
~2500 K12,13,18–23. However, these conditions are still far from
what are expected in MOs of Earth and Mars. Our goal is to

calculate ΔV as a function of pressure, temperature, and
composition so that we can constrain oxygen fugacity in the
redox buffering Eq. (1) under directly applicable conditions.
Moreover, we evaluate the MO redox states of Earth, Mars, and
the Moon in order to understand their oxidation conditions of
the present-day mantle and the chemistry of earliest atmosphere.

We first present the results from FPMD simulations of iron-
bearing MgSiO3 liquids with iron in different valence states at
2000–4000 K and up to 140 GPa (Methods). The calculated
pressure–volume–temperature (P–V–T) relationships can be
described with the following equation:

PðV ;TÞ ¼ P V ;T0ð Þ þ BTHðT � T0Þ ð2Þ
Here PðV ;T0Þ represents the reference isotherm at T0=

3000 K using a fourth-order Birch-Murnaghan equation of state.
The second term contains a thermal pressure coefficient,

BTH Vð Þ ¼ a � b V
V0

� �
þ c V

V0

� �2
� �

=1000 where a, b, and c are

constants for a given melt composition. The bulk moduli of
the Fe2+ -bearing melts are systematically larger than those of the
Fe3+ bearing melts (Supplementary Table 1). This means that the
Fe3+ bearing melts are more compressible at the conditions
investigated (Fig. 1), consistent with previous low-pressure
studies18,24.

Using the pressure–volume results of simulated silicate melts
for the same molar content of Fe3+ and Fe2+, we calculate the
difference in molar volume (ΔV) between FeO1.5 and FeO in the
melts as a function of pressure (Fig. 1). Our calculated value of
ΔV at zero pressure agrees well with existing experimental
data18,24 (Supplementary Fig. 1). As pressure increases, ΔV
decreases rapidly initially in the low-pressure regime. Thereafter,
ΔV increases slightly and then decreases gradually at higher
pressures. The predicted non-monotonicpressure trend weakens
at higher temperatures. For silicate melts of different iron
contents (i.e., 12.5 and 25 mol%), ΔV takes slightly different
values, showing a weak positive trend with iron content. This is
consistent with the observed weak dependency of ΔV on the melt
composition18. Our results thus show that ΔV remains positive at
all pressures up to 140 GPa irrespective of temperature and
composition. This finding contradicts previous inferences that ΔV
would keep on decreasing and eventually become negative within
the pressure range of Earth’s mantle3,12.

Previous models on ΔV either adopt a bulk modulus derivative
of 4 or use an equation of state fit to experimental data within a
limited pressure range12–14,23. We compare model values with
our calculated results for silicate melts of 12.5 mol% iron, as these
models are designed for Earth’s relevant composition (Supple-
mentary Fig. 1). At low pressures (<10 GPa), our results are in
good agreement with the recent model by ref. 12, both showing a
sharp decrease of ΔV at low pressures, whereas at higher
pressures, our results are in better line with other earlier
models13,14,23, all showing that ΔV gradually levels out. These
ΔV differences arise mainly due to the different pressure
dependencies of the incompressibility (Kʼ) of FeO1.5 and FeO in
silicate melts adopted by the previous studies. Our 4th order
Birch-Murnaghan fit yields a lightly larger Kʼ for FeO1.5 (4.6) than
that of FeO (3.3). Previous studies other than ref. 12 assume Kʼ of
FeO1.5 and FeO to be 4, thus exhibiting similar pressure
dependency of ΔV to our study. The contrasting behavior of
ΔV from ref. 12 is caused by drastically different Kʼ values, 1.3 and
8, respectively, for FeO1.5 and FeO. These extreme values of Kʼ are
not consistent with other experimental studies on silicate melts
for which Kʼ is 3–825,26 and on FeO liquid for which Kʼ is
3–427,28. The reason for this inconsistency is, however, unclear.
Our analysis of the coordination environment of iron in the
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silicate melts shows that the mean Fe–O coordination increases
rapidly initially with pressure and more gradually at pressures
beyond 40 GPa (Supplementary Fig. 2). This pressure trend is
similar to that of ΔV. This implies an inherent correlation
between the local iron-oxygen bonding environment in the
silicate melt and ΔV.

We stress that our first-principles results make no assumption
on the value of Kʼ of FeO1.5 and FeO, so they are directly
applicable over the entire mantle regime of Earth. To explore this
implication further, we evaluate ΔV along two representative
magma ocean thermal profiles referred to as “cold” and “hot”
hereafter (Supplementary Fig. 3). The calculated ΔV varies
considerably but remains positive over wide ranges of pressure
and temperature of magma ocean relevance (Supplementary
Fig. 4), thus indicating a positive contribution of pressure to fO2

.

Redox profiles. Our calculated ΔV profiles along the magma
ocean thermal profiles are used to assess the redox state of magma
oceans of relevance to Earth, Mars, and the Moon. We assume
that the MOs are fully convective and well-mixed, resulting in a
homogeneous Fe3+ to the total Fe ratio (Fe3+/ΣFe)3. The ther-
modynamic relationship for the reaction (1) is

�ΔG0
r P0;Tð Þ þ R P

P0
ΔV P;Tð ÞdP

RT
¼ ln

Xmelt
FeO1:5

Xmelt
FeO

þ ln
γmelt
FeO1:5

γmelt
FeO

� 1
4
ln fO2

;

ð3Þ

where ΔG0
r P0;Tð Þ is the free energy of the reaction (Eq.(1)) at

reference pressure P0(1 bar) and temperature T, X and γ are the
molar fractions and activity coefficients of the Fe-oxide compo-
nent, respectively, fO2

is the oxygen fugacity, and R is the gas
constant. The above equation has been widely used in many
literatures3,12,13,23 and it suggests that the variation of fO2

with
pressure explicitly hinges on ΔV only. However, one should note
that ΔVðP;TÞ not only depends on pressure and temperature but
also implicitly on many extensive properties, including the con-
figuration entropy, and excess enthalpy. We first evaluate
ΔG0

r P0;Tð Þ for FeO1.5, FeO, and O2 as a function of temperature
(Supplementary Fig. 5 and Supplementary Note 1). We then

estimate the activity ratio ln
γmelt
FeO1:5

γmelt
FeO

by relating it to the interaction

parameters between all the components following ref. 19. More-
over, the experimental results on ferric iron content (Fe3+/ΣFe) at

various conditions (listed in Supplementary Table 2) are fit to the
Eq. (3) to resolve the interaction parameters (Supplementary
Table 3, Supplementary Fig. 6, Supplementary Note 2). We
explore four different methods to fit the interaction parameters,
but all models yield very similar redox profiles for MOs (Sup-
plementary Fig. 7). We choose the one with smallest reduced chi-
square as the best model and our predicted ferric iron contents
(shown in Supplementary Fig. 8) are broadly consistent with the
observations by both 1-bar experiments18–22 and the recent high-
pressure experiments12,13,23 (Supplementary Note 3).

The redox gradients in MOs of Earth, Mars, and the Moon are
calculated using Eq. (3) along a cold thermal profile where 2100 K
is assumed to be temperature at the surface (Fig. 2). Similar
results are obtained for a hot geotherm with the surface
temperature set at 2500 K (Supplementary Fig. 9).The uncertain-
ties of all the parameters in Eq. (3) are propagated to calculate the
oxygen fugacity using LMFIT package29. We use ΔV of 12.5 mol%
Fe in silicate melts as a representative value for Earth30 and the
Moon31 and that of 25 mol% Fe for Mars32. This assumption is
justified for given mantle compositions of these three planetary
bodies (Supplementary Table 4) because of relatively small effects
of iron content on ΔV (Fig. 1). We quantify the redox states in
terms of oxygen fugacity relative to IW buffers, that is, ΔIW=
logfO2

− IW, where the reference IW is taken from ref. 33. Since
the temperatures considered are higher than the temperature at
which this IW buffer is calibrated, we extrapolate this buffer
equation to high temperatures12,13. We also assume that the bases
of MOs are at depths of 55 GPa34, 14 GPa35, and 5 GPa36, and the
corresponding redox states (ΔIW) are −2, −1.5, and −2 for
Earth, Mars, and the Moon, respectively13. These redox values are
representatives for terrestrial bodies when the molten iron ponds
are assumed to be in local equilibrium with the overlaying MOs13.
The pressures considered here are based on the single stage model
and the complete equilibrium between the silicate melt and iron
melt. More general consideration of magma ocean depths is
discussed below.

Along both thermal profiles considered, the absolute oxygen
fugacities of the MOs of Earth, Mars, and the Moon all increase
with depth, though more gradually at greater depths (Supple-
mentary Fig. 9). This is expected because ΔV decreases with
increasing pressure and always remains positive over the
conditions we investigate. However, the relative oxygen fugacity
(ΔIW) first increases slightly with pressure by ~0.3 log unit in the
uppermost mantle and then gradually decreases with pressure
throughout the rest of mantle (Fig. 2). Our results show that the
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Fig. 1 Molar volume difference (ΔV) between FeO1.5 and FeO in silicate melts. The calculated ΔV is shown as a function of pressure at different
temperatures: a 12.5 mol% iron for Earth- and Moon-like magma ocean and b 25mol% iron for Mars-like magma ocean. Insets show the corresponding
pressure–volume relationships for melts containing 12.5 and 25mol% iron as Fe2+ (solid symbols and curves) and Fe3+ (open symbols and dashed
curves). Volumes are plotted along isotherms only to pressures where the simulated systems were in a liquid state. The 1σ standard deviation of ΔV is
~0.2–0.5 cm3 mol−1.
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upper mantle should have been relatively more oxidized.
Therefore, an oxidized upper mantle is a natural consequence
of a MO because the pressure- and temperature-dependent ΔV
and ΔG0

r P0;Tð Þ of the Eq. (3) make ferric iron increasingly stable
at greater depths even at relatively reduced conditions (this raises
Fe3+/ΣFe of silicate melts in equilibrium with metal alloy).
Additionally, our derived redox profiles of Earth, Mars, and the
Moon are nearly parallel owing to the similar ΔV values. They
show that Earth is ~2 log units more oxidized than Mars which,
in turn, is ~2 log units more oxidized than the Moon at the same
depth. This order of relative redox states of the MOs of the early
Earth, Mars, and the Moon coincides with that of their present-
day mantles, implying a possible inheritance of present-day
oxidation states of these planets from their early MOs.

The comparison between the predicted redox profile of the MO
with that of the present-day mantle for each planet informs us
how the MO stage influences the subsequent redox evolution of
each planet throughout its history. The oxidation state of the
uppermost mantle of the present-day Earth is near IW+ 3.537

and has remained constant within ∼1.0 log unit since at least the
early Archean6,7. Our predicted redox state of the uppermost MO
of Earth is at the lower bound of present-day values. Likewise, the
ferric iron content corresponding to this redox profile is 1.0–3.5%,
overlapping with the lower end of the present-day ferric iron
abundances of the upper mantle37. The predicted redox state and
ferric iron content suggest that Earth’s oxidizing uppermost
mantle is a natural outcome of the thermodynamic equilibrium
across the deep MO during the MO stage. Secondary contribu-
tions may arise from other mechanisms, including disproportio-
nation of Fe2+ in the lower mantle by crystallization of
bridgmanite38,39, and/or late accretion of oxidized materials40,41.
Compared to the silicate Earth, the Martian uppermost mantle

is less oxidized with fO2
~IW11,42, which is consistent with our

predicted redox state of the shallow Martian MO. This similarity
may suggest negligible effects of subsequent tectonic processes
and other oxidizing mechanisms mentioned above on the redox
state of the Martian mantle43. Lunar basalts record oxygen
fugacity ranging from IW to IW‒28–10 and our predicted redox
state falls into the lower end of the observed values. Our predicted
redox profiles differ considerably from those based on previous
models (Fig. 2). Previous models have generally predicted
relatively more reduced MOs of the Moon and Mars and either
very reducing13 or very oxidizing MO of Earth12. It is important
to note that the previously used data are limited with respect
to pressure and temperature, for example, up to 3 GPa and 1673
K23, 7 GPa and 2023 K13, and 23 GPa and 2300 K12 (Supple-
mentary Table 3).

We also investigate the effects of varying depth of the MOs on
the redox states of the surface and equilibrium ferric iron content
(Fig. 3 and Supplementary Fig. 10). The redox states of the
MO bases (ΔIW) are assumed to be fixed at −2, −1.5, −2,
respectively, for Earth, Mars, and the Moon. A deeper MO
generally shifts upwards its oxygen fugacity profile at shallower
depths (Fig. 3a). The redox states and ferric iron contents of
the Lunar and Martian MOs are marginally affected due to
their small sizes. In contrast, the Earth’s MO may have reached
25–90 GPa based on moderately siderophile elements abun-
dances, assuming models for single or multi-stage core formation
with partial or complete equilibrium between impactor and proto
Earth34,44. The oxygen fugacity of Earth’s surface would decrease
by ~1.5 log units if the base of MO moved upwards from 55 GPa
to 25 GPa. Concurrently, Fe3+/ΣFe would also drop by a factor of
two. An even deeper magma ocean may induce the spin transition
of iron in the silicate melts. However, the effect of the spin
transition on the oxygen fugacity is shown to be insignificant
within the MO thermal profiles considered here (Methods and
Supplementary Fig. 11). Note our assumption that the ferric iron
distribution is homogeneous within the MO due to vigorous
convection. However, this ferric iron content profile likely evolves
during the solidification of the MO. The evolution is controlled
by how the MO crystallizes and the partitioning of iron species
between the melt and crystal, which are still poorly constrained.
Nevertheless, our study suggests that the whole mantles of Earth
and Mars could have been as enriched in ferric iron as the
present-day upper mantle since the MO stage.

Chemistry of early atmospheres. The redox states of the MOs
may have dictated the chemical speciation of the early atmo-
spheres. For simplicity, we consider a case where the early
atmosphere is at chemical equilibrium with the underlying MO3

and use the approach of ref. 45 to calculate the speciation of
volatiles. Based on our results shown in Fig. 3, the redox state at
the MO surface corresponds to ~IW+ 2 for Earth, ~IW− 0.3 for
Mars, and ~IW− 2 for the Moon. Assuming a simple C–O–H
atmosphere with a mass H/C ratio of 0.5 at 1 bar and 1800 K, we
show that the Earth’s early atmosphere would be enriched in H2O
(~70 mol%) and CO2 (~15 mol%) but depleted in CO and H2.
The early Martian atmosphere would consist of H2O and H2 in
almost equal amounts (each ~40mol%), ~15 mol% CO, and ~5
mol% CO2. In contrast, the early lunar atmosphere would be
enriched in H2 (>70 mol%) and CO (~20 mol%) and relatively
depleted in H2O (10 mol%)3,45 (Fig. 4). These early atmospheres
further evolve as the planets cool down. The speciation and mass
of the atmosphere would likely change over time due to the
thermodynamic re-equilibrium, hydrodynamic loss, as well as
subsequent degassing and ingassing/regassing. Nevertheless, these
distinct early atmospheric compositions may have fundamentally
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Fig. 2 Redox profiles of magma oceans (MOs) for Earth, Mars, and the
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– IW is shown as a function of
pressure along a cold thermal profile.The MO bases are taken to be at
depths corresponding to 55, 14, and 5 GPa with redox states (ΔIW) of −2,
−1.5, and −2 for Earth, Mars, and the Moon, respectively. The 1σ standard
deviation of the oxygen fugacity is ~0.5 log unit for this study (thick solid
curves). The previous model results from ref. 12 (dashed-dotted curves) and
ref. 23 (dotted curves) are also shown within their applicable ranges. For the
model of ref. 13 (dashed curves), we follow the model to extrapolate to 15
and 25 GPa to predict the oxygen fugacities of the Martian and Earth’s
MOs, respectively. The redox states of the present (upper) mantle of Earth,
Mars, and the Moon are displayed in horizontal bars55. See Supplementary
Fig. 9 for MO redox profiles along a hot thermal profile and Supplementary
Fig. 3 for the thermal profiles.
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influenced the subsequent evolution of these terrestrial planets,
including climate, magma ocean solidification, and the evolution
of surficial conditions3,46.

The vertical gradient in the MO redox state predicted here may
also apply to other rocky planets where MOs were once formed.
For example, Earth’s sister planet Venus is of similar size and has
similar iron content. The redox state of the post-MO upper
mantle of Venus, to first order, may be similar to that of Earth
and could be tested by future Venusian missions. In addition,
super-Earths close to their host stars may have MOs extended to
various depths and their atmospheres can potentially be
detected in the near future with space telescope missions47.

Methods
Computational details. First-principles molecular dynamics (FPMD) simulations
were carried out using the VASP software48 in the NVT-canonical ensemble with
temperature controlled by a Nosé thermostat49. The projector augmented wave

potentials50,51 were employed together with the generalized gradient approxima-
tion (GGA) to the exchange-correlation potential52. The plane-wave basis cutoff
was set at 400 eV and Brillouin zone sampling was performed at the Gamma point.
Pulay stress corrections were applied to the calculated pressures. We simulated
Mg14Fe2Si16O48(ferrous) and Mg14Fe2Si16O49(ferric) melts for 12.5 mol% iron and
Mg12Fe4Si16O48(ferrous) and Mg12Fe4Si16O50(ferric) melts for 25 mol% iron. Iron
was set to be in high-spin state in all simulations. At each volume, the system was
initially melted and thermalized at 6000 K, and then subsequently quenched down
to desired lower temperatures of 4000, 3000, 2500, and 2000 K. Simulations were
run for 10–30 picoseconds with time step of 1 femtosecond. Further details can be
found in ref. 53.

Calculation of volume difference (ΔV). The molar volume difference between
FeO1.5 and FeO defined as ΔV ¼ VFeO1:5

� VFeO is calculated as the volume dif-
ference between the ferric and ferrous iron-bearing silicate melts. Take the silicate
melt with 12.5 mol% iron as an example. The volumes of Mg14Fe2Si16O48 and
Mg14Fe2Si16O49 melts referred to as VMg14Fe2Si16O48

and VMg14Fe2Si16O49
, respectively,

are calculated at the same pressure and temperature conditions using the resolved
equation of state parameters (Supplementary Table 1). These volumes can be
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related to the partial volumes of components by:

VMg14Fe2Si16O48
¼ 14VMgSiO3

þ 2VFeO þ 2VSiO2
þ VE;reduced ð4Þ

and

VMg14Fe2Si16O49
¼ 14VMgSiO3

þ 2VFeO1:5
þ 2VSiO2

þ VE;oxidized; ð5Þ
where VE;reduced and VE;oxidized are the excess volumes for reduced and oxidized
systems, respectively, and are sensitive to the amount of iron. Several previous low-
pressure experiments show that the excess terms are small for silicate melts if
Na2O, Al2O3, and TiO2 components are absent18,24. In this case, we can approx-
imate ΔV by

ΔV ¼ VFeO1:5
� VFeO � VMg14Fe2Si16O49

� VMg14Fe2Si16O48

� �
=2 ð6Þ

Similarly, for 25 mol% iron content, we use

ΔV ¼ VFeO1:5
� VFeO � VMg12Fe4Si16O50

� VMg12Fe4Si16O48

� �
=4: ð7Þ

By using the above equation to calculate ΔV, we assume that VE;oxidized and
VE;reduced take small similar values so VE;oxidized � VE;reduced � 0. If VE;oxidized �
VE;reduced is a large non-zero value, one would expect that the ΔV differs
significantly between the two compositions considered (12.5 and 25 mol% iron in
silicate melts). However, our calculated results show that the ΔV values of 12.5 and
25 mol% iron contents differ slightly from each other and the difference diminishes
especially at high pressures, which justifies our assumptions.

It should be noted that the small excess volume is not conflicted with the large
Margules interaction parameters resolved for silicate melts. The excess volume is

thermodynamically defined as VE ¼ ∂Gmix
∂P

� �
T
¼ ∂Hmix

∂P

� �
T
, where Gmix and Hmix are

the Gibbs free energy and enthalpy of mixing, respectively; P is pressure; and T is
temperature. Hmix is a function of interaction parameter (W) and composition54.
For a binary system with endmember components A and B, Hmix=WXAXB, where
XA and XB are the molar fractions of A and B, respectively. Therefore, a small VE

requires that the pressure derivative of the interaction parameter to be small but
does not necessarily mean that the value of W is small. Indeed, both in this study
and many other studies13,23, W is assumed to be pressure independent, which is in
line with the assumption that VE is small.

Effects of spin transition of iron on ΔV and oxygen fugacity. Both ferric and
ferrous irons undergo electronic spin transitions at high pressure as predicted by a
recent FPMD study53. The high- to low-spin transition of Fe3+ and Fe2+ occurs
gradually over pressure intervals centered around 90 and 110 GPa, respectively, at
3000 K. These transition pressures are higher than the maximum pressures of the
magma oceans considered in this study (Fig. 2). As both Fe3+ and Fe2+ will be
mostly in high-spin (HS) state at relevant magma ocean pressures, we evaluate the
volume difference between FeO1.5 and FeO as ΔV ¼ VFeO1:5

HS � VFeO
HS . However,

all Fe3+ and Fe2+ will not undergo the HS-LS transition at a given condition. This
means that the spin transition-induced changes in volume also contribute to our
ΔV evaluation. We assess the spin effects on ΔV using the spin phase diagrams
from Karki et al.53. Considering exact HS and LS distributions for both ferrous and
ferric irons, we can evaluate the volume difference between FeO1.5 and FeO as

ΔVexact ¼ ðVFeO1:5
HS � VFeO

HS Þ � nFe
3þ

LS ðVFeO1:5
HS � VFeO1:5

LS Þ
þ nFe

2þ
LS ðVFeO

HS � VFeO
LS Þ;

ð8Þ

where VFeO1:5
HS � VFeO

HS ¼ ΔV has been rigorously constrained in this study. nFe
3þ

LS

and nFe
2þ

LS represent the fractions of Fe3+and Fe2+ in low-spin (LS) state, respec-
tively (satisfying the relations nFe

3þ
HS þ nFe

3þ
LS ¼ nFe

2þ
HS þ nFe

2þ
LS ¼ 1, where nFe

3þ
HS and

nFe
2þ

HS represent the corresponding HS fractions) and their values as a function of
pressure and temperature for silicate melt with 25% Fe can be found in ref. 53.
Karki et al.53 also evaluated the VFeO1:5

HS � VFeO1:5
LS and VFeO

HS � VFeO
LS to be constant

with respect to pressure within the computational uncertainties. At 3000 and 4000
K, VFeO1:5

HS � VFeO1:5
LS �1.25 cm3 mol−1and 1.00 cm3mol−1, respectively, and VFeO

HS �
VFeO
LS � 1.75 cm3 mol‒1 and 1.10 cm3 mol‒1, respectively53. We calculate the dif-

ference of ΔVexact and ΔV at 3000 and 4000 K as well as the difference of the
oxygen fugacity using these two volume differences (Supplementary Fig. 11).

At pressures less than 60 GPa, we find that the deviation of the volume
difference caused by considering the spin transition is less than 3%, so the oxygen
fugacity does not change much when spin effects are included (Supplementary
Fig. 11). With increasing pressure, the magnitude of (ΔVexact− ΔV) further
increases and bounces back at around 100 GPa, at which the fraction of low-spin
Fe3+ reaches around 50%. Note that at pressures greater than 80 GPa, the
temperature of the MO is around 3500 K for a cold thermal profile and continues
increasing with pressure. Therefore, the results at 4000 K are more relevant at these
pressures. Overall, neglecting the spin transition of Fe tends to overestimate the
oxygen fugacity, especially at high pressures. The maximum deviation occurs
around 120 GPa, which is ~0.6 log units, comparable to the uncertainties of our
model prediction (~0.5). Therefore, we consider the effects of spin transition of
iron on the redox state of MOs to be mostly insignificant.

Data availability
Authors can confirm that all relevant data are included in the paper and/or its
supplementary information files.
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