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ABSTRACT In filamentous fungi, 1,8-dihydroxynaphthalene (DHN) melanin is a major
component of the extracellular matrix, endowing fungi with environmental tolerance
and some pathogenic species with pathogenicity. However, the subcellular location of
the melanin biosynthesis pathway components remains obscure. Using the gray mold
pathogen Botrytis cinerea, the DHN melanin intermediate scytalone was characterized
via phenotypic and chemical analysis of mutants, and the key enzymes participating in
melanin synthesis were fused with fluorescent proteins to observe their subcellular local-
izations. The Dbcscd1 mutant accumulated scytalone in the culture filtrate rather than in
mycelium. Excessive scytalone appears to be self-inhibitory to the fungus, leading to
repressed sclerotial germination and sporulation in the Dbcscd1 mutant. The BcBRN1/2
enzymes responsible for synthesizing scytalone were localized in endosomes and found
to be trafficked to the cell surface, accompanied by the accumulation of BcSCD1 pro-
teins in the cell wall. In contrast, the early-stage melanin synthesis enzymes BcPKS12/13
and BcYGH1 were localized in peroxisomes. Taken together, the results of this study
revealed the subcellular distribution of melanin biosynthetic enzymes in B. cinerea, indi-
cating that the encapsulation and externalization of the melanin synthetic enzymes
need to be delicately orchestrated to ensure enzymatic efficiency and protect itself from
the adverse effect of the toxic intermediate metabolite.

IMPORTANCE The devastating gray mold pathogen Botrytis cinerea propagates via
melanized conidia and sclerotia. This study reveals that the sclerotial germination of B.
cinerea is differentially affected by different enzymes in the melanin synthesis pathway.
Using gene knockout mutants and chemical analysis, we found that excessive accumu-
lation of the melanin intermediate scytalone is inhibitory to B. cinerea. Subcellular
localization analysis of the melanin synthesis enzymes of B. cinerea suggested two-
stage partitioning of the melanogenesis pathway: the intracellular stage involves the
steps until the intermediate scytalone was translocated to the cell surface, whereas
the extracellular stage comprises all the steps occurring in the wall from scytalone to
final melanin formation. These strategies make the fungus avert self-poisoning during
melanin production. This study opens avenues for better understanding the mecha-
nisms of secondary metabolite production in filamentous fungi.

KEYWORDS Botrytis cinerea, DHN melanin, scytalone, subcellular trafficking,
endosome, peroxisome

B otrytis cinerea is a typical necrotrophic plant pathogen with a wide host range that
causes severe economic losses to pre- and postharvest crops and, thus, is one of

the most notorious cosmopolitan phytopathogenic fungi (1). The control of this
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pathogen is very difficult due to the rapid evolution of resistance against the main
classes of fungicides (2, 3), diversified virulence strategies to actively promote plant
susceptibility, and high survivability under unfavorable environmental conditions
(4–6). Moreover, absolute resistance to B. cinerea is rarely found in host cultivars (7, 8).
Consequently, research focusing on the life cycle and pathogenicity mechanisms of B.
cinerea is essential for developing new disease management strategies.

During the growth season of host crops, B. cinerea can infect plant tissues and con-
sume plant nutrients to develop into mycelial biomass and propagating conidia, which
are dispersed for repeated infection cycles (9). Under unfavorable conditions, such as
the winter season, the fungus prefers to lurk in the host tissue or debris materials in
the form of sclerotia to resist environmental adversities (10). When suitable conditions
appear in the next spring, the sclerotia germinate and produce hyphae and asexual
conidia or cross with microconidia of the opposite mating type to develop into sexual
ascospores, thus initiating the infection cycles (9, 10). Interestingly, both conidia and
sclerotia of B. cinerea are characteristically gray to black pigmented as a result of mela-
nin accumulation.

Melanin is a macromolecular substance formed by polymerizing phenols or indole
monomers and complexing with saccharides or proteins. It is widely found in animals,
plants, and microorganisms (11). In fungi, various types of melanin have been identi-
fied, among which L-3,4-dihydroxyphenylalanine (L-DOPA) and 1,8-dihydroxynaphtha-
lene (1,8-DHN) melanin have been found in basidiomycetous and ascomycetous spe-
cies, respectively (12, 13). Fungal melanin can be formed by enzymatic reaction or
auto-oxidative polymerization in the medium, and granular aggregation of this poly-
mer can be observed on cell walls (14, 15).

Melanin mainly plays two roles in fungi: one is protecting fungi from various adver-
sities such as drying, extreme temperatures, free radicals, UV irradiation, ionizing radia-
tion, osmotic stress, and fungicides (12, 14, 16), and the other is acting as a virulence fac-
tor in certain pathogenic fungi (17–19). As for some phytopathogens, e.g., Magnaporthe
oryzae and Colletotrichum spp., melanization is a prerequisite for the infection structure
appressorium to accumulate very high turgor pressure to penetrate the host epidermis
(20–23). In some human-pathogenic fungi such as Cryptococcus neoformans (24, 25) and
Aspergillus fumigatus (26, 27), melanin in the cell wall protects from the attack of the
host immune system, thus ensuring the virulence of these pathogens. Moreover, a
human host C-type lectin receptor was found to recognize fungal DHN melanin as an
immunologically active component commonly found on fungi, indicating an essential
role in protective antifungal immunity in both mice and humans (28). Therefore, fungal
melanin could also be perceived as a molecular pattern of pathogens by their hosts.

In B. cinerea, it has been shown that 1,8-DHN melanin is synthesized via a polyketide
synthase (PKS) pathway (see Fig. S1 in the supplemental material). With acetyl coenzyme
A as a substrate, T4HN is synthesized by the polyketide synthase BcPKS12, or BcPKS13 to-
gether with BcYGH1, and T4HN is then reduced to scytalone by the action of the 1,3,6,8-
tetrahydroxynaphthalene (T4HN) reductase BcBRN1 or BcBRN2. Scytalone is dehydrated
into 1,3,8-trihydroxynaphthalene (T3HN) by scytalone dehydratase (BcSCD1), and T3HN is
reduced by BcBRN1/2 to form vermelone, which is dehydrated by BcSCD1 to form 1,8-
DHN (29). Although melanin seems to not be required for the virulence of B. cinerea, the
fungus accumulates melanin in conidia and sclerotia, suggesting that DHN melanin should
play roles in the formation of asexual reproductive structures. Additionally, it has been
found that a single-nucleotide deletion in the transcription factor gene Bcsmr1 caused scle-
rotial-melanogenesis deficiency in B. cinerea (30), and the melanin-deficient sclerotia were
more susceptible to mycoparasites than the wild type (WT) (31). However, the cytological
regulation mechanisms of melanin biosynthesis and subsequent cell wall deposition of
melanin remain to be clarified in B. cinerea.

In this study, we first performed phenotypic analysis of the nonmelanized sclero-
tium mutants Dbcpks12 and Dbcscd1. The results showed that only the Dbcscd1mutant
was deficient in sclerotium germination with sporogenesis, leading to the hypothesis
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of a side effect of DHN melanin intermediate accumulation. We further found that the
Dbcscd1mutant accumulated scytalone in the culture filtrate rather than the mycelium,
and excessive scytalone appears to be self-inhibitory to the fungus. Furthermore, we
report that there is compartmentalization of the melanin synthesis enzymes. These
findings revealed how the fungus orchestrates melanin biosynthesis and protects itself
from the toxic effect of the intermediate.

RESULTS
Sclerotial germination of B. cinerea is differentially affected by the loss of

different melanin synthesis genes. Sclerotia are important for B. cinerea to fulfill its
complete life cycle, and one characteristic of these structures is that they are highly
pigmented with melanin. To investigate the role of melanin synthesis in sclerotial per-
formances, the Dbcpks12 and Dbcscd1 mutants, both of which produce melanin-defi-
cient sclerotia (29), were analyzed in this study.

As one of the basic missions for sclerotia is to generate mycelium and conidia as ini-
tial infection sources in the new growth season after dormancy, we analyzed the ger-
mination of wild-type and mutant sclerotia and found remarkable differences between
the tested strains in sclerotial germination and conidial production by the mycelia
developed from the sclerotia (Fig. 1). Of note, germination and subsequent hyphal de-
velopment of Dbcscd1 sclerotia were significantly suppressed, in contrast to the wild-
type and the Dbcpks12 mutant sclerotia. Consequently, sporulation from the germinat-
ing sclerotia was also substantially reduced in the Dbcscd1mutant (Fig. 1B).

The sclerotial germination defects of the Dbcscd1 mutant were completely restored
by reintroducing the wild-type copy of Bcscd1 into the mutant (Fig. 1), suggesting that
the loss of Bcscd1 is indeed responsible for the attenuated germination of sclerotia.

FIG 1 (A) Sclerotia formed by the WT, Dbcscd1, and bcscd1com strains (top row) and their germination in
wetted sand soil after incubation for 1 month (bottom row). (B) Sclerotial germination is attenuated in
the Dbcscd1 strain but not in the Dbcpks12 strain. Bar, 1 cm.
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Although sclerotia of both the Dbcpks12 and Dbcscd1 mutants are deficient in melani-
zation, the Dbcpks12 sclerotia showed normal germination as for the wild type.
Notably, the Dbcscd1 mutant produced orange mycelium, showing reduced sporula-
tion both in culture and in plants (see Fig. S2 in the supplemental material). These data
led to the hypothesis that sclerotial germination with sporogenesis of B. cinerea is
affected not by the absence of melanin but by the interruption of certain key enzymes
of the melanin synthesis pathway.

Accumulation of scytalone in the Dbcscd1mutant impairs sclerotium germination
and sporulation. To define the defect in sclerotium germination of the Dbcscd1 mu-
tant, we attempted to extract the intermediate from both hyphal and culture filtrate
fractions of this fungus. First, crude extracts from 2-week-old cultures of the wild type
and three mutants (Dbcpks12, Dbcscd1, and bcscd1com) were analyzed by thin-layer
chromatography (TLC). No obvious metabolite was detected in the mycelial fraction of
all test strains; however, a strong signal was detected only in the culture filtrate fraction
of the Dbcscd1 mutant (Fig. 2A). This compound was further purified by column chro-
matography and identified as 3,6,8-trihydroxy-3,4-dihydronaphthalene-1(2-hydrogen)
phenol (scytalone) using nuclear magnetic resonance (NMR) and mass spectroscopic
analyses (Fig. S3 and S4). Coculturing of Dbcpks12 and Dbcscd1 mutant strains led to
sclerotial melanization of the Dbcpks12 but not the Dbcscd1 strain, suggesting that the
scytalone accumulated by the Dbcscd1 strain can be utilized by the Dbcpks12 strain to
restore its melanin synthesis in sclerotia (Fig. 2B). These results strongly suggested that
the melanin intermediate scytalone was secreted extracellularly and accumulated in
the Dbcscd1 cultures. Furthermore, it is validated that BcSCD1 functions downstream
of BcPKS12 in the melanin synthetic pathway.

To investigate whether scytalone represses sclerotium germination and sporulation
in the Dbcscd1 mutant, the enzymatic activity of BRN1 and -2 (BRN1/2), which reduce
T4HN to scytalone, was blocked using the inhibitor tricyclazole (10mg/ml) during scle-
rotial germination. The results showed that in the wild-type and Dbcpks12 strains,
treatment with tricyclazole caused a color change in the mycelium and conidia gener-
ated from sclerotium germination but no significant change in the number of conidia
produced by each sclerotium (Fig. 3A to C). Interestingly, the germination defect of
Dbcscd1 sclerotia was partially restored by tricyclazole treatment (Fig. 3A to C). Since
inactivating BcBRN1/2 by tricyclazole could lead to a decrease of scytalone biosynthe-
sis in the Dbcscd1 mutant, it can be concluded that the sclerotium germination and
sporulation defects of the Dbcscd1 mutant are caused by the accumulation of the mel-
anin intermediate scytalone.

Scytalone accumulation is self-inhibitory to B. cinerea. To test whether scytalone
causes an adverse effect on the growth and development of B. cinerea, we carried out
spore germination assays in the presence of scytalone and found that 400mg/ml

FIG 2 A melanin intermediate is deposited by the Dbcscd1 mutant extracellularly. (A) Thin-layer chromatography
(TLC) analysis of crude extracts of hyphal homogenates and culture filtrates of the wild type (WT) and three mutant
strains of B. cinerea. The arrow indicates the strong signal detected in the culture filtrate of the Dbcscd1 mutant. (B)
The Dbcpks12 sclerotia gradually regained melanization when they were cocultured with the Dbcscd1 mutant,
suggesting that the compound secreted by the Dbcscd1 mutant was utilized by the Dbcpks12 mutant to remedy its
defect in melanin synthesis in sclerotia. Bar, 1 cm.
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scytalone was sufficient to suppress spore germination and germ tube elongation
(Fig. 3D and E). Thus, scytalone is inhibitory to B. cinerea. However, a discrepancy with
this inhibition is that in the Dbcscd1 mutant, there is no evidence for a defect in vege-
tative mycelium growth. To address this issue, TLC assays were conducted to analyze
the scytalone accumulation levels of the wild-type and Dbcscd1 mutant strains at dif-
ferent growth stages (Fig. 4). The results showed that scytalone could not be detected
in the Dbcscd1 mutant during early growth stages (before 5 days postinoculation
[dpi]), when the mycelium color appeared white as for the wild type (Fig. S2A). As the
cultures increased pigmentation during maturation (10 dpi), the extract from the
Dbcscd1 culture showed scytalone production via TLC analysis, and scytalone accumu-
lated further when cultures aged (15 dpi). In contrast, scytalone was not detected in
the extracts of the wild type throughout the tested growth stages. Therefore, the
Dbcscd1 strain showed a normal vegetative mycelium expansion rate during early

FIG 3 The melanin intermediate scytalone deposited by the Dbcscd1 mutant is inhibitory for
sclerotial and spore germination. (A) The sclerotial color of WT and Dbcscd1 strains was altered when
treated with the chemical inhibitor tricyclazole (50mg/ml), which is supposed to inactivate the activity
of the reductase BcBRN1/2 (bars, 1mm). (B) Treatment with tricyclazole derepressed sclerotial germination
of the Dbcscd1 mutant compared with the control group (CK) but caused no obvious effect on sclerotial
germination of the WT (bar, 1mm). (C) Spores produced by germinated sclerotia of the Dbcscd1 mutant
were significantly reduced compared with the WT, Dbcpks12, and complementation strains, and tricyclazole
treatment increased the spore quantity produced by Dbcscd1 sclerotia but caused no effect on the other
strains. (D and E) Feeding assay by the addition of scytalone (400mg/ml) reduces spore germination and
germ tube growth rates. CK, control check.
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growth stages and pathogenicity in host plants. In older cultures such as sporulating
colonies and matured sclerotia, excessive scytalone is likely to cause cytotoxic effects,
leading to defects in reproduction development.

The scytalone-synthesizing enzymes BcBRN1/2 are localized in subcellular
vesicles and trafficked to the cell wall. As scytalone accumulation is toxic to B. cin-
erea, our subsequent study focused on where scytalone is synthesized and how scyt-
alone is delivered extracellularly. In the B. cinerea genome, there are two homologue
genes, Bcbrn1 and Bcbrn2, both encoding 1,3,6,8-tetrahydroxynaphthalene (T4HN) re-
ductases that are responsible for synthesizing scytalone (29). The subcellular localiza-
tion of BcBRN1 was first examined using the WT1BcBRN1-GFP strain, in which BcBRN1
being tagged with GFP was expressed in the wild-type background. Microscopy analy-
sis revealed that in germinating conidia, the BcBRN1-GFP signal was detected in a
limited number of vesicle structures inside the cytoplasm. In the elongating hyphae,
however, fluorescence signals were observed in the following circumstances: (i)
throughout the cytoplasm in the hyphae, (ii) in randomly distributed punctate struc-
tures (mean diameter of 2.076 0.07mm [n=120]), (iii) in smaller punctate structures
(mean diameter of 1.546 0.07mm [n=120]) and arranged along the inner sides of the
hyphal lumen, and (iv) fused with the hyphal periphery (Fig. 5A). These results suggest
that the subcellular localization of BcBRN1 is dynamic, implicating trafficking from the
cytoplasm to the cell surface via vesicles.

To determine whether BcBRN1-labeled vesicles represent endosomes from the endo-
membrane system (32), two endosome-specific proteins of B. cinerea (BcRAB5 and BcRAB7)
were fused with red fluorescent protein (RFP) to test whether they colocalized with BcBRN1-
GFP. Consequently, WT1Bcbrn1-GFP1Bcrab5-RFP and WT1Bcbrn1-GFP1Bcrab7-RFP strains
were obtained and further analyzed. In both conidia and hyphae, BcBRN1-GFP appeared at
almost the same sites as BcRAB5-RFP and BcRAB7-RFP, and line scan analyses of the fluores-
cence signal intensities indicated that the relative localizations of GFP (green) and RFP (red)
signals well overlapped each other (Fig. 5B and C). Moreover, as BcBRN1 and BcBRN2 are ho-
mologous proteins involved in DHN melanin synthesis in B. cinerea, the WT1Bcbrn1-
GFP1Bcbrn2-RFP strain was observed by fluorescence microscopy. Figure 5D shows that the
BcBRN1-GFP and BcBRN2-RFP signals colocalized in the same intracellular vesicle structures.
To rule out GFP signal bleed-through in the RFP channel for the dually tagged strains, we
constructed strains harboring either GFP (WT-GFP) or RFP (WT-RFP) and detected the fluores-
cence signal in dual channels. In elongating hyphae, no RFP signals were visualized for the

FIG 4 The melanin intermediate scytalone is accumulated in old but not young cultures of the Dbcscd1
mutant. (A) Pigmentation patterns of culture filtrates of the wild type (WT) and the Dbcscd1 mutant were
compared at a series of growth stages. (B) TLC analysis of the crude extracts from culture filtrates of the
wild type and the Dbcscd1 mutant at a series of growth stages. “S” represents the loading of standard
scytalone.
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WT-GFP strain, and no GFP signals were observed for the WT-RFP strain (Fig. S5). Therefore,
the colocalizations between BcBRN1/2 and the endosome markers were authentic.

Moreover, staining assays with specific dyes indicated that the vesicles labeled with
BcBRN1-GFP were spherical and colocalized with the FM4-64 fluorescence signal,
which is indicative of endosome vesicles (Fig. 6A). Additionally, the BcBRN1-GFP-la-
beled subcellular spaces were clearly distinguishable from the vacuoles, which were
stained with neutral red (Fig. 6B).

Scytalone accumulation leads to an increased number of BcBRN1/2-labeled
vesicles in the cytoplasm. As the intermediate scytalone is secreted outside the cells,
the number and distribution of vesicles containing the scytalone synthesis enzyme
BcBRN1 were further analyzed. Considering that the deletion of Bcscd1 resulted in the
accumulation of scytalone, constructs expressing BcBRN1-GFP driven by the native
promoter were transfected into both the wild-type and Dbcscd1 strains to trace the
change in the number of BcBRN1-GFP-labeled vesicles. In the WT1Bcbrn1-GFP strain,
the vesicles showing a BcBRN1-GFP signal were distributed in the mycelia, with an av-
erage density of 30 fluorescent vesicles per 100mm hyphae (Fig. 7). In contrast, the

FIG 5 Localization of the reductases BcBRN1/2. (A) The fluorescence signal of GFP-labeled BcBRN1 in the
WT1BcBRN1-GFP strain appeared at various subcellular sites in conidia and hyphae at different growth stages.
DIC, differential interference contrast. (B to D) Simultaneous detection of GFP and RFP fluorescence in conidia
and hyphae of the WT1BcBRN1-GFP1BcRAB5-RFP (B), WT1BcBRN1-GFP1BcRAB7-RFP (C), and WT1BcBRN1-
GFP1BcBRN2-RFP (D) strains. Line scan graphs were generated at the indicated positions to show the relative
localization of GFP (green) and RFP (red) signals. Conidia and hyphae were photographed 0 and 2 days after
incubation, respectively. Bars, 10mm (A) and 5mm (B to D).
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BcBRN1-GFP-marked vesicles in mycelia of the Dbcscd1 mutant were even more
densely distributed, with an average of 46 fluorescent vesicles per 100mm hyphae.
Moreover, upon treatment with 10 mg/ml tricyclazole, the fluorescent vesicles were
sharply reduced in both the WT1Bcbrn1-GFP and Dbcscd11Bcbrn1-GFP strains to simi-
lar levels (about 12 to 15 per 100mm hyphae) (Fig. 7). These data suggested that more
BcBRN1/2-labeled vesicles in the Dbcscd1 mutant are associated with its extracellular
secretion of the intermediate product scytalone.

The localization of other melanin synthetic enzymes defines distinctive subcellular
compartmentalization and trafficking in B. cinerea. The polyketide synthases BcPKS12/
13 and the hydrolase BcYGH1 have been defined as upstream steps of the melanin bio-
synthetic pathway (29). To investigate the subcellular localization of BcPKS12/13 and
BcYGH1, we generated transgenic strains in which BcPKS13-GFP, BcPKS12-GFP, and
BcYGH1-GFP were individually driven by their own promoters and expressed in the WT

FIG 6 Relative localization analysis with BcBRN1-GFP and FM4-64 or neutral red staining signals. (A) The
endocytic pathway was traced using FM4-64 in the WT1BcBRN1-GFP strain. Staining periods in minutes are
given at the top. The dye entered the plasma membranes (5min), and subsequently, plasma membrane-
conglutinated endocytic vesicles were observed (60min). Close views of the dotted rectangle areas indicated
by arrows are shown on the right side. In the hyphae, BcBRN1-GFP is localized within the spherical vesicles,
which can be partially colocalized with the endocytic vesicles. (B) Visualization of BcBRN1-GFP fluorescence and
neutral red staining signals in the WT1BcBRN1-GFP strain. Vacuoles stained with neutral red and observed by
DIC microscopy (black) are distinguishable from the vesicles localized with BcBRN1-GFP. Bars, 10mm.

FIG 7 Effect of scytalone accumulation on the density of BcBRN1-GFP-labeled vesicles. Shown are the
changes of BcBRN1-GFP-labeled vesicles in mycelia of the WT1BcBRN1-GFP and Dbcscd11BcBRN1-GFP
strains in the presence or absence of tricyclazole (T) (10mg/ml). Different letters represent significant
differences between columns (n=150; P, 0.05).
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background. In the mycelia of these strains, the fluorescence signals were localized in
small granular vesicles, with an average diameter of 0.876 0.04mm (n=120) (Fig. 8A).
When BcPKS13-GFP was coexpressed with BcRAB5-RFP, vesicles labeled with BcPKS13-
GFP were overall smaller than those labeled with BcRAB5-RFP, and these two fluores-
cence signals could be clearly distinguished (Fig. 8B). Since BcBRN1/2 have been dem-
onstrated to colocalize with the endosome markers (BcRAB5 and BcRAB7), these data
thus suggest that the vesicles carrying BcPKS13 are different from the BcBRN1/2-la-
beled endosomes.

Peroxisomes of fungi are involved in various secondary metabolite synthesis path-
ways (33). For example, the basic building block for the formation of fungal polyketi-
des, acetyl-CoA, can be formed by b-oxidation of fatty acids in peroxisomes (34). In
order to verify whether peroxisomes are involved in melanin synthesis, the peroxisome
membrane protein BcPEX3 was tagged with RFP and expressed in the background of
the WT-BcPKS12-GFP, WT-BcPKS13-GFP, and WT-BcYGH1-GFP strains. Figure 8C shows
that the peroxisomes labeled with BcPEX3-RFP in mycelia overlapped the subcellular
localization of BcPKS13-GFP, BcYGH1-GFP, and BcPKS12-GFP fluorescence signals, indi-
cating that these enzymes for early steps of melanin synthesis are enclosed in
peroxisomes.

Using the Dbcscd11Bcscd1-GFP strain, the subcellular localization of BcSCD1 was
also analyzed. Figure 9A shows positive BcSCD1-GFP signals around the surfaces of
conidia, hyphae, and infection cushions. To clarify whether BcSCD1-GFP is located on
the cell wall or cell membrane, cell wall digestion and regeneration treatments of coni-
dia were conducted. As shown in Fig. 9B, the BcSCD1-GFP fluorescence of conidia

FIG 8 Subcellular localization of enzymes at the early steps of melanin synthesis. (A) Subcellular localization of
BcPKS12, BcPKS13, and BcYGH1 in the hyphae of the WT1BcPKS12-GFP, WT1BcPKS13-GFP, and WT1BcYGH1-GFP
strains, respectively. (B) Relative localization of BcPKS13 and BcRAB5 in the WT1BcPKS13-GFP1BcRAB5-RFP strain.
(C) The peroxisome membrane protein BcPEX3 colocalizes with BcPKS12, BcPKS13, and BcYGH1 in the hyphae of
the WT1BcPKS12-GFP1BcPEX3-RFP, WT1BcPKS13-GFP1BcPEX3-RFP, and WT1BcYGH1-GFP1BcPEX3-RFP strains,
respectively. Bars, 10mm.
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disappeared after their cell wall was digested, and the fluorescence signals were recov-
ered after the protoplasts had regenerated the cell walls. From these data, it can be
concluded that BcSCD1-GFP is localized in the cell wall and not the cell membrane.
Additionally, the localization relationship between GFP-labeled BcSCD1 and RFP-la-
beled BcBRN2 was analyzed using the strain carrying these two fluorescently labeled
proteins. The BcSCD1-GFP and BcBRN2-RFP signals were not overlapping in the cyto-
plasm, but they colocalized on the cell wall (Fig. 10). These findings suggest that after
the intermediate scytalone is transported to the cell wall, the subsequent downstream
reactions catalyzed alternately by BcSCD1 and BcBRNs in the pathway should occur on
the cell surface.

DISCUSSION

As a DHN melanin-producing fungus, B. cinerea has a nonlinear DHN melanogenesis
pathway, with two polyketide synthases (PKSs), BcPKS12 and BcPKS13, which are
involved in melanogenesis in sclerotia and conidia, respectively. However, the pathway
downstream of the PKSs is shared in both reproduction structures (29). Although the
DHN biosynthetic pathway has been sketched in B. cinerea, where the enzymes
involved in this pathway function and how DHN melanin is transported to the cell wall
are open questions.

The established DHN melanin synthesis pathway in B. cinerea indicates that BcSCD1
is responsible for the conversion of scytalone to T3HN (29). This study revealed that
the Dbcscd1 mutant decreased conidium production and sporogenesis germination of

FIG 9 (A) Light and fluorescence microscopic views of spores, hyphae, and infection cushions of the
bcscd1com (Dbcscd11BcSCD1-GFP) strain. (B) Spores of the bcscd1com strain were subjected to cell wall
digestion and regeneration assays. The samples for analysis included spores, protoplasts, and recovered
spores obtained from the regenerated culture of protoplasts. Bars, 10mm (A) and 20mm (B).
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sclerotia. Mutation of Bcscd1 probably leads to the accumulation of scytalone in the
fungal culture. As expected, a compound abundantly produced by the Dbcscd1mutant
was identified as scytalone by NMR and mass spectrometry analyses. However, scyt-
alone was extracted only from the culture filtrate but not from the mycelium biomass,
suggesting that scytalone produced by the Dbcscd1 mutant is mainly secreted to the
extracellular space. The coculture assay with the Dbcscd1 and Dbcpks12 mutants
showed that the Dbcpks12 sclerotia were gradually melanized from the borderline
between the two colonies, further validating that scytalone is secreted extracellularly.
Functional analysis of the scytalone dehydratase orthologue in the anthracnose patho-
gen Colletotrichum gloeosporioides also supports the notion that the intermediate scyt-
alone is secreted extracellularly for further melanin synthesis (35).

Besides being an intermediate for DHN melanin synthesis, scytalone has additional
functions. It has been reported that scytalone could cause toxic effects on grape
leaves, lettuce roots, and hypocotyls (36, 37). On the other hand, scytalone promoted
the growth of Arabidopsis thaliana root and grape calluses (38). This study revealed
that exogenously applied scytalone suppressed the germination of wild-type spores,
while treatment with tricyclazole, which is a specific inhibitor of BcBRN1/2 upstream of
BcSCD1 in the DHN melanin synthesis pathway (39), largely restored the germination
of Dbcscd1 sclerotia. These results suggest that scytalone is cytotoxic, and its accumu-
lation in the Dbcscd1 culture is responsible for suppressing sclerotial germination and
conidiation.

The biosynthesis of fungal secondary metabolites such as penicillin, aflatoxin, tri-
chothecenes, and deoxynivalenol (DON) toxins can be conducted in vesicular compart-
ments to avoid their self-toxicity (40). Given that the melanin intermediate scytalone is
self-toxic, enzymes for melanin synthesis could be compartmentalized at certain sub-
cellular sites. Indeed, enzymes involved in different steps of the biosynthesis of mela-
nin are targeted to multiple subcellular locations in B. cinerea. The polyketide synthases
BcPKS12/13 and the hydrolase BcYGH1 that act on the conversion of the precursor ace-
tyl-CoA into T4HN for the early steps of melanin synthesis were localized in the
BcPEX3-RFP-labeled peroxisomes. This is practicable as the peroxisomal b-oxidation of
fatty acids results in the formation of acetyl-CoA, which is the starting precursor for the
biosynthesis of fungal polyketides (34), in accordance with the findings that functional
peroxisomes and peroxisomal acetyl-CoA are essential for appressorial melanin synthe-
sis and host invasion by the rice blast fungus Magnaporthe grisea (41). Moreover, the
involvement of peroxisomes in secondary metabolism is common in fungi, including

FIG 10 Subcellular localization of BcSCD1-GFP and BRN2-RFP. Simultaneous detection of GFP-labeled BcSCD1 and
RFP-labeled BcBRN2 was conducted in growing hyphae of the Dbcscd11BcSCD1-GFP1BRN2-RFP strain. (A and B)
BRN2-RFP signals are present in the cytoplasm and subcellular vesicles, being distinguished from the location of the
BcSCD1-GFP signal on the cell wall. (C) BRN2-RFP and BcSCD1-GFP are colocalized on the cell wall. Bar, 10mm.
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aflatoxin production in Aspergillus parasiticus (40), penicillin production in Penicillium
chrysogenum (42), and aurofusarin (43) and DON toxin (44) production in Fusarium
graminearum.

The subsequent product of BcPKS12/13 and BcYGH1, T4HN, is catalyzed by the
T4HN reductases BcBRN1/2, leading to the intermediate scytalone (29). BcBRN1 and
BcBRN2 were shown to be closely colocalized in the cytoplasm and appeared in
membrane-enclosed vesicular structures stained by the fluorescent dye FM4-64.
Furthermore, these vesicles are indicative of endosomes due to the colocalization of
BcBRN1-GFP with the endosome markers BcRAB5-RFP and BcRAB7-RFP. Similarly, it is
reported that the homologue of T4HN reductase, the Arp2 of A. fumigatus, also locates
in endosomes (32).

Interestingly, melanin and melanogenesis in mammals are confined to a mem-
brane-bound organelle called a melanosome, which is a lysosome-related organelle
and is hypothesized to help sequester toxic intermediates and prevent oxidative stress
(45, 46). Thus, fungal melanin may be synthesized in internal vesicles akin to mamma-
lian melanosomes and transported to the cell wall. A recent study reveals that the DHN
pathway enzymes of Neurospora crassa are also localized to undetermined nonuniform
intracellular vesicles (47). Our studies uncovered that the biosynthesis of melanin involves
enzymes targeted to multiple subcellular locations, including peroxisomes and endo-
somes. This phenomenon is reminiscent of a report in Aspergillus nidulans that peroxi-
somes are tethered with early endosomes via the coiled-coil-domain-containing protein
PxdA (48). Considering the cytotoxic effect of scytalone produced by BcBRN1 and BcBRN2,
it is reasonable to assume that scytalone and its producing enzymes may be colocalized
within the same membranous vesicles, thus providing protection for the cell.

Additionally, we observed the dynamic subcellular localizations of BcBRN1-GFP and
BcBRN2-RFP. This changing localization pattern of BcBRN1 and BcBRN2 is attributed to
their actions on two steps in melanin synthesis, required for the early catalytic step
that converts T4HN to scytalone and the later step that converts T3HN to vermelone.
Downstream of BcBRN1 and BcBRN2 is the secreted dehydratase BcSCD1 that is re-
sponsible for catalyzing the steps of the conversion of scytalone to T3HN and verme-
lone to 1,8-DHN. According to the subcellular location of enzymes for melanin synthe-
sis and the cytotoxic effect of scytalone, melanin synthesis can apparently be divided
into intracellular and extracellular synthetic processes. The intracellular stage includes
all the steps until the intermediate scytalone is transported to the cell surface, whereas
the extracellular process encloses all the steps after scytalone production.

In summary, the present study addresses the significance of melanin synthesis in
the life cycle of B. cinerea and presents general subcellular locations for melanin syn-
thesis in this fungus (Fig. 11), primarily demonstrating that the early polyketide syn-
thase and hydrolase steps are located to the peroxisomes, which are subsequently con-
nected with the actions of T4HN reductases in endosomes. The product of T4HN
reductases, scytalone, is by unknown mechanisms delivered to the extracellular space
(cell wall) for subsequent synthesis reactions, most likely to avoid the toxic effects of
scytalone on fungal cells. Consequently, the steps after scytalone are located on the
cell wall, leading to the accumulation of the final melanin products there.

MATERIALS ANDMETHODS
Fungal strains and growth conditions. The B. cinerea strain B05.10 was used as the wild type and

as the recipient for mutant strain construction. The wild-type and mutant strains were cultured on com-
plete medium (CM) (that is, 30 g sucrose, 1 g KH2PO4, 0.5 g MgSO4·7H2O, 0.5 g KCl, 2 g NaNO3, 2.5 g N-Z
amine, 1 g yeast extract,10ml vitamin stock solution, and 0.2ml trace element solution in 1 liter of water,
with 20 g agar for solid medium) at 23°C under light illumination for sporulation and in the dark for scle-
rotium formation. Yeast-sugar-salt (YSS) medium [2 g of yeast extract, 10 g of glucose, 2 g of KH2PO4, 1.5
g of K2HPO4, 1 g of (NH4)2SO4, and 0.5 g of MgSO4·7H2O per liter] was used for culturing to obtain mela-
nin intermediate metabolites (49).

Generation of transgenic fungal mutant strains. The gene deletion cassette was constructed as
follows. First, the 59- and 39-flanking regions (;1 kb) of the target gene were amplified from genomic
DNA of the wild type using sequence-specific primer pairs. The amplified fragments were fused with the
hygromycin (Hyg) resistance gene (hyg) of pCAMBI1300 by fusion PCR (Fig. S6A in the supplemental
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material demonstrates an example of generating the Bcscd1 deletion cassette). The transformation was
mediated by polyethylene glycol on protoplasts, as previously reported for site-specific homologous
recombination (50). The mutant obtained was identified by diagnostic PCR using specific primer pairs
(Fig. S7). The primer pairs used are listed in Table S1.

Construction of fluorescence-labeled mutants. To construct a GFP-labeled fusion cassette, the
open reading frame (ORF) of the target gene (without the stop codon) together with its promoter region
was amplified. The resulting product was assembled with the GFP gene in the SacI/XhoI-digested pNR2
plasmid fragment using a one-step cloning kit (Yeasen, China). Figure S6B in the supplemental material
demonstrates an example of generating the Bcscd1-GFP fusion cassette. The recombinant plasmids were
transferred into Escherichia coli DH5a competent cells, and ampicillin-resistant clones were screened by
colony PCR and sequencing to obtain the correctly conjugated expression vector, which was subse-
quently transferred into the fungal protoplasts to obtain the strains with fluorescence-tagging signals.
Similarly, some target genes were fused with the mCherry red fluorescent protein gene (RFP) in the plas-
mid pNDF-OCT (Fig. S6C) (51). Cotransformation with various combinations of the RFP-labeled and GFP-
labeled cassettes into fungal protoplasts leads to the strains carrying two fluorescence-labeled proteins.
All fluorescence-labeled strains used in this study are listed in Table 1. All these strains have been
screened by PCR of target genes (Fig. S7) with the primers listed in Table S1.

Assay of spore and sclerotium development. The B. cinerea strains were cultured on CM at 23°C.
Mycelial plugs (mycelia on plate agar) were excised from the edge of their 2-day-old colonies by a 5-
mm-diameter cork borer, placed on fresh CM, and further cultured under light and dark conditions to
collect conidia and sclerotia, respectively. The numbers of conidia and sclerotia formed were calculated
10 days after incubation. Conidia were collected by flooding mycelial colonies with water containing
0.1% Tween 40, filtering the suspension through 4 layers of sterile medical gauze, and then centrifuging
the filtrate at 12,000 rpm for 5min. The precipitated conidia were resuspended with sterilized water, and
the number of conidia was counted using a hemocytometer.

Pathogenicity assay. Minimum Gamborg B5 (GB5; Coolaber, China) medium (0.6 g liter21 GB5 salts,
10mM glucose [pH 7.0]) was used for preparing spore suspensions for artificial inoculation in pathoge-
nicity assays (52). Ten-microliter spore suspensions (106 spores/ml) of the tested strains were placed on
detached tomato leaves (Solanum lycopersicum) and incubated in a damp chamber at 23°C. Thirty leaves
were used for inoculation with each fungal strain, and disease development was photorecorded at 2 or
4 days postinoculation (dpi). The decay area was measured by using ImageJ software (National Institutes
of Health, USA).

Assay of sclerotium germination.Mycelial plugs of the test strains were cultured on CM at 23°C for
21 days in the dark. Mature sclerotia were collected with sterile tweezers and rinsed with sterilized water.
The collected sclerotia of each strain were submerged in sterilized water in a six-well cell culture plate,
followed by incubation at 23°C under continuous blacklight (UV-A, Phi-7383; Philips) for 21 days. The
germination of sclerotia was monitored under a stereomicroscope and recorded by photography. The
conidia generated from 30 sclerotia for each treatment were individually collected with distilled water

FIG 11 Cytological regulation model for melanin synthesis in B. cinerea. N, nucleus; ER, endoplasmic reticulum;
Ps, peroxisome; EEs, early endosomes; LEs, late endosomes; AT4HN, 2-acetyl-1,3,6,8-tetrahydroxynaphthalene.
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containing 0.1% (vol/vol) Tween 40 and counted using a hemocytometer. Each experiment was
repeated three times.

Extraction and identification of melanin intermediates secreted in the medium. Fungal cultures
were extracted using a method described previously (53). Mycelial plugs of each strain were cultured in
liquid YSS medium for 15 days, and the collected hyphae were lyophilized and powdered by vigorous
shaking in a homogenizer with glass beads. The powders were immersed in a 0.2 M NaOH solution, and
subsequently, an equal volume of acetone was added and mixed evenly. After 24 h, acetone was elimi-
nated in a vacuum after acidification (pH 2) by HCl. The remaining solution was mixed with an equal vol-
ume of ethyl acetate for extraction. As for the culture filtrates, the solutions were adjusted to pH 2 by
HCl, followed by extraction with an equal volume of ethyl acetate in a similar way. The extracts from ei-
ther the mycelium biomass or the culture filtrate were dried and dissolved in ethyl acetate for TLC analy-
sis, which was conducted with a mixture solution of ethyl ether-normal hexane-formic acid (60:40:1, by
volume) as the mobile phase, followed by visualization under UV illumination or chromogenic reaction
with 1% FeCl3. The target chemical was purified by column chromatography, and the structure and mo-
lecular weight were identified by nuclear magnetic resonance spectrometry (Bruker 500) and high-reso-
lution mass spectrometry (Bruker MicroTOF-Q II LC MS) according to the instructions for the
instruments.

Detection of the subcellular localization of melanin synthesis enzymes. Conidia of the test strains
were suspended in GB5 liquid medium and adjusted to 105 spores/ml. An aliquot (20ml) of the spore
suspension was dropped onto a glass slide and then placed in a moistened box for germination. Spore
germination was observed by using a fluorescence microscope (Axio Imager Z2; Zeiss, Germany), using
its light, fluorescence, and light/fluorescence-merged fields. Neutral-density filter set D/A (d=25) was
used during microscopic analysis. The excitation/emission wavelengths used were 488 nm/500 to
550 nm for GFP and 561 nm/570 to 620 nm for RFP. Moreover, the endosomes were stained with FM4-64
(Molecular Probes, AAT Bioquest, USA) and visualized under a microscope via excitation/emission wave-
lengths of 561 nm/570 to 620 nm according to a method described previously (54). In order to track
vacuoles, the specific dye neutral red (CAS no. 553-24-2; Life Science Products & Services, China) was
applied, and the stained samples were analyzed under a light microscope (55).

Statistical analysis. Statistical data are expressed as means 6 standard errors (SE) from three repli-
cates. Results for the analytical determinations were subjected to analysis of variance (ANOVA). All analy-
ses were performed with SPSS software package v.17.0 (SPSS Inc., Chicago, IL, USA), using Tukey’s hon-
estly significant difference (HSD) test to examine if differences between groups of samples were
significant at a P value of ,0.05.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.1 MB.
FIG S2, TIF file, 2.1 MB.
FIG S3, TIF file, 0.7 MB.
FIG S4, TIF file, 0.9 MB.
FIG S5, TIF file, 0.6 MB.
FIG S6, TIF file, 0.5 MB.

TABLE 1 Fungal strains used in this study

Strain Description
B05.10 Wild-type strain
Dbcpks12 Bcpks12 deletion mutant
Dbcscd1 Bcscd1 deletion mutant
Dbcscd1-C-GFP Bcscd1 complementation mutant
WT1Bcbrn1-GFP Expressing BcBRN1-GFP in B05.10
Dbcscd11Bcbrn1-GFP Expressing BcBRN1-GFP in the Dbcscd1mutant
Dbcscd1-C-GFP1Bcbrn2-RFP Expressing BcSCD1-GFP and BcBRN2-RFP in the Dbcscd1mutant
WT1Bcbrn1-GFP1Bcrab5-RFP Expressing BcBRN1-GFP and BcRAB5-RFP in B05.10
WT1Bcbrn1-GFP1Bcrab7-RFP Expressing BcBRN1-GFP and BcRAB7-RFP in B05.10
WT1Bcbrn1-GFP1Bcbrn2-RFP Expressing BcBRN1-GFP and BcBRN2-RFP in B05.10
WT1Bcpks13-GFP Expressing BcPKS13-GFP in B05.10
WT1Bcpks12-GFP Expressing BcPKS13-GFP in B05.10
WT1Bcygh1-GFP Expressing BcPKS13-GFP in B05.10
WT1Bcpks13-GFP1Bcrab5-RFP Expressing BcPKS13-GFP and BcRAB5-RFP in B05.10
WT1Bcpks13-GFP1Bcpex3-RFP Expressing BcPKS13-GFP and BcPEX3-RFP in B05.10
WT1Bcpks12-GFP1Bcpex3-RFP Expressing BcPKS12-GFP and BcPEX3-RFP in B05.10
WT1Bcygh1-GFP1Bcpex3-RFP Expressing BcYGH1-GFP and BcPEX3-RFP in B05.10
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FIG S7, TIF file, 0.5 MB.
TABLE S1, DOCX file, 0.02 MB.
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