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Microbiome disturbance and resilience dynamics of
the upper respiratory tract during influenza A virus
infection
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Infection with influenza can be aggravated by bacterial co-infections, which often results in

disease exacerbation. The effects of influenza infection on the upper respiratory tract (URT)

microbiome are largely unknown. Here, we report a longitudinal study to assess the temporal

dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and

ferrets. Uninfected human patients and ferret URT microbiomes have stable healthy ecostate

communities both within and between individuals. In contrast, infected patients and ferrets

exhibit large changes in bacterial community composition over time and between individuals.

The unhealthy ecostates of infected individuals progress towards the healthy ecostate,

coinciding with viral clearance and recovery. Pseudomonadales associate statistically with the

disturbed microbiomes of infected individuals. The dynamic and resilient microbiome during

influenza virus infection in multiple hosts provides a compelling rationale for the maintenance

of the microbiome homeostasis as a potential therapeutic target to prevent IAV associated

bacterial co-infections.
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Influenza A virus (IAV) is a highly infectious upper respiratory
tract (URT) disease in humans and animals caused by a
negative-sense segmented RNA virus. It is recognized as a

major public health concern resulting yearly in significant disease
and economic burden. Frequent nucleotide substitutions lead to
changes on the hemagglutinin and neuraminidase glycoproteins
on the surface of IAV particles (also known as antigenic drift)
that contribute to the need for continuous vaccine updates. This
evolutionary arms race between vaccine design and viral mutation
contributes to annual influenza epidemics worldwide, which on
average results in 3–5 million cases of severe illness and up to
291,000 to 646,000 deaths annually1. The modular architecture of
the segmented IAV genome allows for genetic re-assortment
(antigenic shift) with other divergent IAVs, resulting in the
sporadic emergence of novel viruses capable of causing large
epidemics or pandemics. Circulation of a new IAV in the naive
human population has caused pandemics in the past resulting in
significant morbidity and mortality, the most notable in 1918 and
1919, when the Spanish flu killed ~20 to 50 million people
worldwide2. Retrospective analyses of autopsy specimens from
the 1918 pandemic revealed the prevalence of secondary super-
infection caused by URT bacteria3–5. However, the role of bac-
terial co-infection in disease prognosis is not only confined to
pandemics; bacterial and virus co-infection during seasonal
influenza epidemics are commonly associated with increase
hospital admissions, severe disease, and deaths6,7.

Although the microbiome of non-diseased individuals is rela-
tively stable, IAV infection has been shown to increase the
diversity of bacterial taxa that are present in the URT8. Specifi-
cally, IAV can cause changes in the relative abundances of Sta-
phylococcus and Bacteroides genera9, as well as Haemophilus,
Fusobacteria, and other taxa10. Temporary disturbances to the
microbiome due to the changes in the local epithelia during acute
or chronic conditions has also been reported as a predisposing
factor for infections11–14. The observed diversity in the human
URT microbiome, together with its role in immunity and sus-
ceptibility to pathogens has been described previously11,15,16.
Other studies have reported that the URT microbiome may also
play a beneficial role in modulating the inflammatory response
induced during IAV infection16,17. In addition, the intestinal
microbiome composition has been shown to positively regulate
the toll-like receptor 7 signaling pathway following infection with
IAV18. Nonetheless, the exact mechanisms by which prior
infection with IAV increase susceptibility to a secondary bacterial
infection have not been determined. Importantly, the effect of
IAV replication and induction of innate immune response on
the composition of the human or animal URT microbiome
remains to be elucidated and analyzed in depth on a community
wide scale.

Humans and ferrets share similar lung physiology, and both
are known to be susceptible and transmit the same strains of the
IAVs19,20. This has made the ferrets an ideal model to study the
dynamics of IAV infection in URT. However, it is unknown
whether there is similarity between the ferret and human URT
microbiome in terms of composition and its temporal dynamics
and modulation upon IAV infection. In this study, we examine
the longitudinal diversity of the URT microbiome of influenza-
infected and uninfected human cohorts, as well as control
uninfected and experimentally infected ferrets. These experiments
reveal a strong consistency in the microbiome composition and
dynamics between the two host systems, demonstrating that
experimentally infected ferrets recapitulate closely the modulation
of the microbiome observed in naturally infected humans. Our
results suggest that microbiome disturbance and resilience
dynamics may be critical to addressing the bacterial co-infections
associated with influenza-derived morbidity.

Results
Effects of influenza on the human URT microbiome dynamics.
In order to determine if the human microbiome structure is
modulated by the IAV infection, we established a human cohort
study and obtained nasopharyngeal swabs at multiple time points
after the initial influenza-prompted hospital visits (days 1–37
after initial onset of symptoms) from 28 human subjects recruited
during 2011 and 2012. As healthy controls, we included nasal
swab samples taken at six time points (days 1, 2, 3, 5, 7, and 28)
from 22 healthy human subjects free of any respiratory infections
(Supplementary Table 1). At the extreme age ranges, the case and
controls were not age balanced, with a lack of healthy controls for
the nine cases older than 65 years in age and the two cases that
were younger than 5 years in age. Our goal was to assess and
compare the temporal microbiome biodiversity in response to
ecological disturbances of the URT caused by viral infection.

The dynamics and relative abundances of bacteria in the URT
microbiome were examined by pyrosequencing of the V1–V3
region of the 16S rRNA, which yielded a total of 2.3 million
sequences, which clustered into 707 operational taxonomic units
(OTUs) (Table 1). The count abundance data for the OTUs was
normalized to account for the sampling process and the library
size, as confounding factors for the beta-diversity analyses. In
addition, OTUs with counts <5 were removed to avoid inflating
the importance of any contaminant sequences that might be
present in the data. This resulted in over 90% of the reads mapped
back to the OTUs (Table 1). Metric multidimensional scaling of
the beta-diversity explains 38.5% of the variability across the first
three components (Fig. 1). The plot shows that the IAV infection
status has a strong influence on the ordination of the samples, as
measured by the Bray–Curtis metric (ANOSIM R= 0.696, p-
value < 0.001). The uninfected and infected communities cluster
away from each other (Fig. 1). Of interest, the microbiome for the
IAV-infected cohort is more dynamic than that of the uninfected
IAV-free cohort, validating the Anna Karenina principle of
microbiomes21, which refers to the notion that there is much
more variability in the microbial communities of infected
(dysbiotic) individuals than in healthy individuals. The nasophar-
yngeal samples from infected humans demonstrated higher
diversity between infection states than within them (Supplemen-
tary Fig. 1). The t-statistic for the “All within infection” versus “All
between infection” for the human data set was−144.78, and the p-
value was also significant (Supplementary Table 2), which
indicates that IAV infection in humans results in the clustering
of microbiomes according to infection status.

Human URT dysbiosis is independent of clinical factors. To
complement the qualitative overview of the IAV-infected data

Table 1 Summary statistics for amplicon-based sequencing
of the V1–V3 region of the 16S rRNA gene.

Humans Ferrets

Total no. of samplesa 262 86
Influenza-negative
subjects

22 7

Influenza-positive
subjects

28 7

Total no. of reads 2,300,072 649,440
Total no. of OTUs 707 259
No. of reads mapped
to OTUs

2,111, 66 (91.8%) 514,099 (79.2%)

aAll human and ferret samples were extracted from nasal washes and nasopharyngeal swabs,
respectively, at several time points post symptom onset (humans) or post infection (ferret).
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points, we integrated additional clinical metadata including
gender, antibiotic usage, and age, and included details of the
amplification of IAV genomes from these samples to more
accurately classify these data points as either positive or unknown
for the presence of virus. Positive and unknown infected micro-
biomes were tested to determine if they were distinct enough to
cluster separately based on their beta-diversity. Analyses of the
beta-diversity metrics using PCoA, focusing just on the IAV-
infected samples, did not allow deriving any conclusions from
this analysis alone. In addition, the grouping of infected samples
based on gender did not show any significant association
(ANOSIM R= 0.01, p-value < 0.118 df 1), implying that there was
no significant effect of gender on the clustering of the samples
(Supplementary Table 3). When we used distances between the
samples as the response variable (ADONIS df 1, R2= 0.009), only
0.9% of the variation in the distances was explained when the
gender of the patients was accounted for as a predictor of the
model. Hence, sex could not be correlated with the microbiome of
the infected human samples. Age and effects of post visit anti-
biotic treatment on the microbiome trends were also examined.
Little association could be observed between post visit antibiotic
usage and clustering of the infected human samples in two sta-
tistical tests (ANOSIM df 1 R= 0.242, p-value < 0.001, and
ADONIS df 1, R2= 0.042), which was surprising. However, the
age of the patients seemed to have some influence on the sample
grouping when all 26 categorical values were taken into con-
sideration (ANOSIM df 37 R= 0.402, p-value < 0.001). The sta-
tistical analyses show that while the p-value was significant, the
clustering on the basis of age was only moderately strong
(ADONIS R2= 0.427, df 37; Supplementary Table 3). Since there
was no indication of this effect among IAV-infected patients in
the ordination plots (Supplementary Fig. 2), it is possible that the
significant p-value could be attributed to the high number of
samples or the differences in dispersion among the different
sample groupings, emphasizing the importance of considering in
the analysis both the p-value and the effect size. Finally, while

both vaccination status (ADONIS df 2 R2= 0.24, p-value < 0.001)
and viral subtype (ADONIS df 2 R2= 0.25, p-value < 0.001) were
examined and found to be significant, there was little indication
of a real grouping in the ordination plot (Supplementary Fig. 2).

Pseudomonas blooms during viral infection in the human
URT. We examined taxonomic profiles for all the infected and
healthy patients across all the time points using the taxa abun-
dance values for the top ten most prevalent taxa at the class level,
sorted by the most prevalent taxa in each cohort; Gammapro-
teobacteria in the infected patient cohort and Actinobacteria in
the healthy patient cohort (Fig. 2). All other taxa were pooled into
an additional taxon named “Other”. Pseudomonas was the most
abundant taxonomic group in all samples from influenza-infected
individuals (Fig. 2; and Supplementary Figs. 3 and 4). A phylo-
genetic inference places this OTU robustly as the genus Pseudo-
monas; however, this analysis cannot resolve the OTU to the
species level (Supplementary Fig. 5). Less-abundant phyla inclu-
ded Bacteroidetes, Firmicutes, Actinobacteria, and some other
families of Proteobacteria, like Rhodanobactereceae and Pasteur-
ellaceae (c. Gammaproteobacteria) and Brucellaceae of the Rhi-
zobiales order (c. Alphaproteobacteria). Pseudomonas was also
clearly identified as the predominant taxon when temporal
dynamic analyses were done on individuals independently
(Supplementary Fig. 6). As for the uninfected subjects, Actino-
bacteria was the most dominant taxon, and Pseudomonas was the
least-abundant taxonomic group present, also seen when indivi-
dual subjects were analyzed (Supplementary Fig. 6). Other
less-abundant phyla included Verrucomicrobia and within the
Proteobacteria, the Alphaproteobacteria, and Epsilonproteo-
bacteria classes.

IAV infection groups the human URT microbiome into ecos-
tates. Due to the dynamic nature of the human URT microbiome
during IAV infection, we hypothesized that infection perturbs the
microbiome structure resulting in distinct signature microbiomes
that differentiate infected from uninfected individuals. Thus, we
used the Infinite Dirichlet-multinomial Mixture Model (iDMM)
22, which is an extension of the Dirichlet-multinomial mixture
model (DMM)23 that helps understand and interpret taxon
abundance data by adding statistical validation if a taxa is asso-
ciated with a given case–control condition. This is an un-
supervised clustering method that applies Bayesian statistics to
quantitatively assess the data and accurately capture the features
that are present. Essentially, given a set of subsampled distribu-
tions, the iDMM model predicts the original number of full-size
distributions together with their composition. The nonparametric
nature of the iDMM model makes it ideal for understanding the
complex ecological data in this study, where the original number
of the sampled communities (known as ecostates) is unknown.

The iDMM model was run over 2000 iterations over all data
points (50 patients at multiple time points), which collapsed the
data into a total of four ecostates (Table 2). Plotting the mean of
the likelihood ratio at each iteration showed that, 25 iterations
into the analysis, the maximum likelihood ratio converges for the
model. One of the four ecostates included all 127 uninfected data
points (or the healthy ecostate), while the 135 infected data points
were distributed across the three other ecostates (or unhealthy
ecostates). Interestingly, a few patients moved from the unhealthy
ecostates during acute influenza infection to the healthy ecostate
in the later time points. This suggests that the human microbiome
exhibits resilience but potentially a weak elasticity; however, this
could be due to the lack of a precise temporal control of the time
of infection.

PC1 (25.34%)

PC2 (7.21%)

PC3 (6.13%)

Flu negative (122)
P (41)
U (96)

Fig. 1 Diversity of the URT microbiome of human patients infected with
influenza A virus (IAV). Beta-diversity analysis for longitudinal
nasopharyngeal swab samples obtained from healthy and IAV-infected
individuals. Principal coordinates analysis (PCoA) of Bray–Curtis distances
was done for samples from humans, labeled as influenza positive in red (P,
indicating data points with positive IAV qRT-PCR detection), influenza
unknown in yellow (U, indicates time points from positive individuals that
were below the qRT-PCR detection limits at different time points after the
onset of symptoms), and uninfected samples in blue (Flu negative). The
total variability explained by all three principal coordinates (PCs) is shown
on the axes. Source data are provided as a Source Data file.
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We also identified a diagnostic OTU for each of these ecostates,
which is the OTU with the highest posterior-predictive
probability in the ecostate and therefore drives the clustering.
The iDMM analysis predicted the diagnostic OTU for the healthy
ecostate to be Otu000008 which belongs to the Flavobacteria class
(Cloacibacterium), with a posterior-predictive probability of 0.08,
followed by Otu000010 (Corynebacterium_1) and Otu000013
(Comamonadaceae), belonging to the class Actinobacteria and
Betaproteobacteria, respectively (Table 2). For the unhealthy

ecostates, Otu000003, Otu000004, and Otu000002 were diagnos-
tic for Ecostate 1, 2, and 3, respectively (Table 2). Ecostate 1 had
the largest number of infected data points (104), followed by
Ecostate 3 (20) and Ecostate 2 (8). Otu000003 and Otu000002
belong to the Pseudomonadaceae family (the latter being an
unclassified Pseudomonadaceae), with relatively high posterior
probabilities associated with each of them (Table 2). Otu000004
belonged to the Actinobacteria class, and was the diagnostic OTU
for Ecostate 2 with eight infected data points. The diagnostic
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Fig. 2 Comprehensive taxonomic breakdown for IAV-free (left) and IAV-infected (right) human subjects. a Each column is a specific sample. The plot
summarizes the relative taxonomic abundances at the class level for taxonomic groups that are present in >5% of the samples (see legend below), sorted
in decreasing order by the most abundant taxonomic group in each cohort. Gammaproteobacteria (Pseudomonas, orange) bloom is prevalent among the
infected patients (right), whereas Actinobacteria is the most abundant among healthy patients. b An order (left) and family (right) level breakdown of the
Gammaproteobacteria observed in infected patients. Source data are provided as a Source Data file.
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OTUs for all four ecostates for the human samples are also
among the first ten most abundant OTUs for the data.

A random-forest analysis was also used to identify predictive
features in the data. The method we developed iterates through
unique random-forest models (each seeded with a different
random state), and attempts to fit the model to a random subset
of the data with five samples removed from the training set (see
“Methods”). If the model could accurately predict all five of the
omitted samples during the cross-validation step, then its feature
importance vector (mean decrease gini index), including weights
for every OTU’s predictive capacity, was collected. The results
from the random-forest classification aligned with our diagnostic
iDMM OTU prediction in the human samples (Supplementary
Table 4). The analysis showed Otu000002 (unclassified Pseudo-
monadales) to be the most predictive of the IAV-infected
samples, followed by Otu000001 (Rhizobiales) and Otu000003
(Pseudomonas) with a maximum accuracy of 71%. When we
examined the taxonomy of Otu000001 in detail, it was classified
with 100% confidence down to Genus Ochrobactrum, at which
point the read length is unable to differentiate the species any
further. Nevertheless, the actual OTU sequence is 100% identical
to Ochrobactum anthropi, an opportunistic human pathogen24–
26. Similarly, the in depth analyzes of Otu000006 identified the
taxonomy of this OTU as uncultivated lineages of Rhodanobacter,
which have also been previously associated with human
respiratory tract microbiomes27. Comparison with our negative
controls confirmed that these were not contaminants and
supported the notion that Ochrobactrum was also diagnostic for
the infection state in humans, which is likely to be consistent with
the presence of O. anthropii or similar opportunistic species.

IAV infection modulates the ferret URT microbiome structure.
We hypothesized that IAV infection in ferrets will result in the
clustering of microbiomes according to infection status, as
observed during IAV infection in humans. Therefore, using the
well-established ferret model of IAV infection, we designed a
longitudinal study resembling the clinical specimens obtained
from human patients to obtain nasal wash samples from infected
animals. We collected nasal washes from seven uninfected ferrets
and seven ferrets infected with the A/Netherlands/602/2009
(H1N1) pandemic strain, at 0, 1, 3, 5, 7, and 14 days post
infection (dpi). The dynamics and relative abundances of bacteria
in the URT microbiome were examined by pyrosequencing of the
V1–V3 region of the 16S rRNA using similar thresholds for
length, and expected error as was chosen for the human data. A

total of 649,440 reads clustered into 259 (OTUs) with 79% of
reads mapping (Table 1). As before, the count abundance data for
the OTUs was normalized, and the low abundance taxa were
filtered out from the count data. Principal coordinates analysis
(PCoA) of beta-diversity between the healthy and IAV-infected
groups demonstrated variability consistent with the virus per-
turbing and modulating the microbiome structure (Fig. 3).
Infection status strongly influenced the ordination of the samples
as measured by the Bray–Curtis beta-diversity metric (R= 0.503,
p-value < 0.001). The IAV-negative and IAV-positive ferret
microbial communities formed discrete clusters, while samples
from the IAV-infected animals showed divergence from each
other (Fig. 3). By the final time point, day 14, the microbiome of
infected ferrets (light blue) was more similar to the day 0 samples
(lavender) and those of the uninfected controls (dark blue).

Quantitative metrics of diversity were used to compare the
microbiomes of influenza-infected and control ferrets. Beta-
diversity distance analyses (Supplementary Fig. 7) demonstrated
that ferret microbiomes had higher diversity between infection
states than within them. Student’s two sample two-sided t tests
confirmed that the diversity between the two states (infected and
uninfected) was statistically significant, with the microbiomes of
infected ferrets being more diverse (Supplementary Table 5). The
t-statistic for the “All within infection” versus “All between
infection” was −28.681 corresponding to a Bonferroni-corrected
parametric p-value of 8.85e-161 (Supplementary Table 5). The
PCoA and statistical analyses showed that infected ferrets have a
far more dynamic URT microbiome than that of the uninfected
group. A separate healthy baseline experiment was conducted, in
which we identified some divergence of the microbiomes in the
absence of infection, hence differences in the microbiome
structure of each animal was expected given the high level of
personalization, and that ferrets are outbred. Remarkably, 7/7 T
= 14 time points converged to the healthy microbiome, together
with 4/7 T= 0 time point samples. Overall, the quantitative
examination revealed that the range for infection-associated beta-
diversity was much lower in the ferret samples than it was from
human clinical samples.

IAV induces temporal changes in the ferret URT microbiome.
To assess the correlation of clinical symptoms over time during
acute IAV infection, we monitored the body weight of all ferrets
from 0 to 14 dpi, which demonstrated a clear weight loss among
the infected animals (Fig. 4a). As expected, the maximum weight
loss coincided with peak IAV titer from 3 to 5 dpi, and recovery
in body weight correlated with the lack of detectable virus after

Table 2 Diagnostic microbes for each ecostate from the 2000th iteration of the iDMM model for the infected and uninfected
humans.

Ecostate Final
distributiona

Original sample
distributionb

Diagnostic OTU Probability
associatedc

Taxonomy

1+ 2+ 3
(infected)

104 146 Otu000003 0.361568 Bacteria; Proteobacteria; Gammaproteobacteria;
Pseudomonadales; Pseudomonadaceae; Pseudomonas

8 Otu000004 0.4989514 Bacteria; Actinobacteria; Actinobacteria; Corynebacteriales;
Corynebacteriaceae; Corynebacterium_1

20 Otu000002 0.01584407 Bacteria; Proteobacteria; Gammaproteobacteria;
Pseudomonadales; unclassified

4 (healthy) 130 127 Otu000008 0.07636954 Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales;
Flavobacteriaceae; Cloacibacterium

aDistribution of samples within ecostates after running the iDMM model.
bDistribution of samples before running the iDMM model.
cBayesian posterior-predictive probabilities associated with the diagnostic microbe, which is the highest probability for that ecostate.
The number of iterations depends on the number of samples (273) present in the data. Source data are provided as a Source Data file.
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day 7 (Fig. 4b). To better visualize the temporal trajectory of the
ferret microbiome, the community composition for two
influenza-infected (with divergent baseline microbiomes) and one
uninfected ferret (ferret_595 and ferret_587, and ferret_592,
respectively) were examined with regards to their taxonomic
profiles across six different time points (Fig. 4c–e). At the order
level, the IAV-infected ferrets exhibited peak Pseudomonadales
abundance at days 5 and 7 dpi (Fig. 4c–g), which correlated with
maximal weight loss and peak viral titers (Fig. 4a, b), suggesting
the direct or indirect influence of the infection on the micro-
biome. A phylogenetic inference shows this OTU to be in the
order Pseudomonadales, but belonging to the genus Acinetobacter
(Supplementary Fig. 5). A few of the less-abundant phyla inclu-
ded Actinobacteria and Firmicutes (Supplementary Fig. 8). The
abundance of Pseudomonodales decreased over time in the
infected ferrets, reaching the basal abundance found in healthy
ferrets 14 dpi. For the uninfected ferrets, the microbiomes were
more stable and Clostridiales was the most abundant taxonomic
group, followed by Lactobacillales (light blue). Pseudomonadales
were among the least-abundant taxonomic group in the unin-
fected controls (Fig. 4e). This was also observed when we ana-
lyzed the microbiome abundance of each individual animal in
both infected and uninfected groups (Supplementary Fig. 9).
These results demonstrate that IAV infection induces a dynamic
modulation of the microbiome structure in the URT of ferrets,
which correlated with viral replication and pathogenesis.

IAV infection groups the ferret URT microbiome into ecos-
tates. Since the timing of infection was controlled in the ferret
experiment, we hypothesized that upon infection the microbiome
structure would be ordered into more defined ecostates for the
infected and uninfected animals. Hence, we run the iDMM model
over 1000 iterations, which collapsed the data into two ecostates.
The mean of the likelihood ratio at each iteration converged 70
iterations into the analysis, splitting into two ecostates until the
last iteration. Of interest, one of the two ecostates comprised all
the uninfected data points (or the healthy ecostate), while the
other contained most of the influenza-infected data points (the
unhealthy ecostate, Table 3). There were notable exceptions;
despite the perturbation caused by the infection, all day 14 sam-
ples in the infected cohort moved from the unhealthy ecostate to

the healthy ecostate, which is also shown in the ordination plot
(Fig. 3). The healthy ecostate also contained a few of the earlier
data points (day 0 and day 1) of the influenza-infected cohort,
indicating a temporal lag in changes to the ferret microbiome at
those time points when the IAV titer was submaximal (Fig. 4b).

The iDMM analysis for ferrets predicted the diagnostic OTU
for the unhealthy ecostate to be Otu000004 that belonged to the
Pseudomonadales order, with a posterior-predictive probability of
0.11 (Table 3), followed by Otu000003 with the next highest
predictive probability of 0.08, belonging more specifically to the
Pseudomonas genus (Supplementary Fig. 8). This is consistent
with the qualitative taxonomic profiling (Fig. 4). For the healthy
ecostate, Otu000001, which belongs to the Clostridia family, was
the diagnostic OTU with a posterior-predictive probability of 0.19
(Table 3). The posterior probabilities for each taxon were
calculated within each sample by observing the fraction of
simulated samples with more counts than the observed value. The
probabilities associated with the diagnostic OTUs can be thought
in terms of being relative to all taxa present. Similar to the human
data, the diagnostic OTUs for both ecostates are among the ten
most abundant OTUs for the data (Supplementary Fig. 8). This
was also confirmed when the microbiome for all ferrets from both
infected and uninfected groups was analyzed individually
(Supplementary Fig. 9), which indicates that Pseudomonadales
are not only predictive of the unhealthy ecostate but also undergo
the greatest temporal dynamic change during IAV infection. This
was confirmed when alpha-diversity analyses were conducted,
which showed a drastic decrease in diversity by day 7
(Supplementary Fig. 10). The results from the random-forest
analysis aligned well with the iDMM diagnostic OTU prediction
in that Otu000004 (Pseudomonadales) was the most predictive
attribute for the samples from IAV-infected ferrets, followed by
Otu000028 (Enterobacteriaceae) and Otu000017 (Bacillales), with
a maximum accuracy of 96% (Supplementary Table 6). Alto-
gether, these data indicate that IAV infection results in a nasal
bloom of multiple Pseudomonadales in the ferrets, displacing the
Clostridia associated with the healthy and stable ecostate.

Discussion
This longitudinal study describes taxonomic microbiome popu-
lation dynamics in the upper respiratory tract of humans and

Infected T = 0 (7)

Infected others (28)

Infected T = 14 (7)

Uninfected (42)

PC1 (24.62%)

PC2 (7.68%)

PC3 (6.16%)

Fig. 3 Diversity of the URT microbiome in ferrets during IAV infection. Beta-diversity analysis for longitudinal URT samples taken after experimental
infection with the A/Netherlands/602/09 H1N1 strain (Infected) or in control animals. Principal coordinates analysis (PCoA) of Bray–Curtis distances was
performed for all samples. Data points for uninfected ferrets are in blue, the T= 0 for the infected ferrets in lavender, the T= 14 for infected ferrets in cyan,
and all other infected time points were collected at 1–7 days post infection and shown are in red. The total variability explained by all three principal
coordinates (PCs) is shown on the axes. Each group of ferret was composed of seven animals. Source data are provided as a Source Data file.
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ferrets during IAV infection. Given the unequivocal association
between viral and bacterial co-infection and influenza disease
severity, there is a pressing need to better understand how per-
turbation of the host microbiome correlates with viral infections
that facilitate opportunistic co-infections. The nature of the 16S
sequencing approach taken, that is a loci-based population

survey, means that we can address taxonomy-centric ecological
principles of disturbance and resilience28,29 in the URT micro-
biome. Our results strongly suggest that the core URT micro-
biome is perturbed by IAV infection via direct and
uncharacterized indirect processes, which may in turn might
facilitate co-infections with bacterial pathogens causing increased
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hospitalizations and morbidity associated with IAV infection. In
addition, our results provide a clear approach for the design of
future studies explicitly examining the mechanistic links between
IAV and bacterial co-infection, along with the development of
therapeutic treatments aimed at the microbiome as a community.

Without disturbance or perturbation, the URT microbiome
was stable in both uninfected humans and ferrets. IAV does not
directly infect any microbiome constituents, yet infection disturbs
the healthy-state microbiome in both hosts in a statistically robust
manner. The microbiomes of infected (unhealthy) individuals or
animals were quite different from each other (Figs. 1 and 3).
However, in both hosts, unhealthy microbiomes were divergent
from the healthy microbiomes, and numerous community
assemblies were possible in the unhealthy state. This is a clear
demonstration of the Anna Karenina principle21, restated as “all
healthy microbiomes are the same, while unhealthy microbiomes
are unique.” This high diversity of unhealthy microbiomes during
early stages of acute infection is consistent with earlier studies8,
but here we demonstrate specifically that it can occur as a con-
sequence of an indirect disturbance such as IAV infection. In
agreement, in recent studies changes in the microbiome structure
were also reported in a household contact setting in secondary
cases of IAV infection30,31, and in a cohort of infected individuals
with either H3N2 Influenza Infection or individuals infected with
Influenza B32. We propose that the disturbance of the healthy
URT microbiome creates transient ecological niches for oppor-
tunistic bacterial pathogens. How viral infection induces a dis-
turbance in the microbiome requires further assessment.
Nevertheless, the host antiviral responses such as the induction of
interferon during IAV infection could contribute to the pertur-
bation of the microbiome in a dynamic manner, though this
requires host and microbiome metatranscriptomics or metapro-
teomics measurements in controlled experiments focused at the
onset of infection. Nevertheless, maximum disturbance correlated
with maximum viral loads and weight loss in the ferret model,
which suggests a close relationship between active infection,

disease, and disturbance of the microbiome, with kinetics that are
similar to the antiviral response induced during IAV infection33.
This is in contrast to a recent study of previously healthy indi-
viduals experimentally infected with a H3N2 influenza strain
from 2005, where no oropharyngeal microbiome changes were
reported34. This discrepancy might be due to the fundamentally
different nature of the oro- and nasopharyngeal microbiomes35,
to potential differences induced by natural versus experimental
infection in humans, or due to intrinsic differences induced by
different IAV subtypes. No significant influence of the host type
(age and sex) or behavior (antibiotic usage) was observed on the
temporal nature of the microbiome elasticity. However, more
statistical power would be needed to draw any further robust
associations from the data. This is particularly the case for our
cases under 5 years of age and greater than 65 years of age, for
which we lacked healthy age-matched controls. Hence, additional
human cohort studies to underpin the factors modulating
microbiome dynamics during IAV infection are warranted.

The sole statistical exception to the high community diversity
of infected microbiomes was the increased relative abundance of
Pseudomonadales, regardless of age, sex, antibiotic treatment, or
even host organism. Yet, the bloom of Pseudomonadales is con-
sistent with previous reports in H1N1-infected patients9,15,36,37. It
must be noted that, while the DNA extraction method used could
result in a slight underrepresentation of Gram-positive bacteria,
this bias would be consistent across both infected and healthy
control samples. In our study, Pseudomonadales are present in
relatively low proportions in the healthy microbiome of these
host organisms. Therefore, their bloom might be due to a more
hostile environment for the other taxa or perhaps a more hos-
pitable environment for the Pseudomonadales, making this an
excellent candidate for future strain isolation, genome sequen-
cing, and transcriptional profiling. The differences in relative
abundance observed between the infected cohorts opens the
idea of using treatments capable of modulating the microbiome
back into the healthy ecostate38. Such a treatment would be

Fig. 4 Qualitative and quantitative representation of the temporal trajectory of the ferret microbiome. a Percent body weights of groups of seven ferrets
mock inoculated (uninfected) or intranasally infected with 1 × 106 pfu of influenza A/Neth/602/09 virus. Body weights were determined daily for 14 days,
and are represented as the average percent body weight compared with the initial weight of each animal on the day of inoculation and error bars are the
standard deviation for each time point. b Viral titers of nasal washes of ferrets infected with 1 × 106 pfu of A/Neth/602/09 virus. Nasal washes were
obtained on days 1, 3, 5, and 7 post infection, and are represented as the average viral titer of seven infected animals. Error bars indicate the standard
deviation for each time point. The limit of detection of the assay was 10 pfu/ml (dashed line). b–d Comprehensive taxonomic breakdown of two influenza-
infected, both representing divergent baseline microbiomes (c, d) and uninfected ferret (e), at different time points. Taxa abundance values for top ten
most prevalent taxa at the order level for different time points (0–14 dpi). Only taxa labels with a confidence score of >= 90% were retained in the
analysis. The remaining taxa are pooled into an additional taxon labeled “Other”. f, g The boxplots represent the relative Pseudomonas abundance across all
infected (f) and uninfected (g) ferrets (n= 7 for each). The box represents the interquartile range, the horizontal line within the box indicates the median
for each sample grouping, observations are indicated by dots, and the whiskers outside the box extend from the highest to the lowest observation
represented in the plot. Source data are provided as a Source Data file.

Table 3 Diagnostic microbes for each ecostate from the 1000th iteration of the iDMM model for the ferret samples.

Ecostate Total
samples

No. of samplesa T14
[T7+ T5+ T3+ T1] T0

Diagnostic OTU Probability
associatedb

Taxonomy

1 (healthy) 58 (42) 14 (7) 33 (28) 11 (7) Otu000001 0.1865749 Bacteria; Firmicutes; Clostridia; Clostridiales;
Peptostreptococcaceae; Romboutsia

2 (infected) 26 (42) 0 (7) 23 (28) 3 (7) Otu000004 0.1112045 Bacteria; Proteobacteria; Gammaproteobacteria;
Pseudomonadales; Moraxellaceae; Acinetobacter

aThe number of samples at final iteration for each time point in bold (original starting values in parentheses).
bBayesian posterior-predictive probabilities associated with the microbe, which is the highest probability for that ecostate.
The number of iterations depends on the total number of samples (84) present in the data. All later time point ferrets (T14) return to the healthy ecostate (1). Source data are provided as a Source
Data file.
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homologous to those proposed for perturbing or restoring the gut
microbiome39. Understanding how and why Pseudomonadales
succeed after disturbance will provide valuable information
for conducting future microbiome centric URT studies in a
controlled setting. It should be noted that the blooming Pseudo-
monads are not P. aeruginosa (Supplementary Fig. 5), and
understanding their functional potential and role requires shot-
gun metagenomics analyses for more detailed phylogenetic and
functional profiling.

In addition, in humans secondary Pseudomonas infections
have been extensively described before, and Pseudomonas infec-
tions have been specifically linked to nosocomial infections as a
result respiratory support treatments in hospital settings40–44. It is
currently unknown whether infection with other respiratory
viruses can also induce the modulation of the URT microbiome;
however, since severe viral infections often require respiratory
support, including intubation, it is likely that co-infection with
pathogens such as the Pseudomonadales could actually be favored
due to previous perturbations of the microbiome. Hence, addi-
tional associative studies to elucidate factors that modulate the
temporal change of the microbiome structure could also aid in
understanding the factors that promote or support secondary
bacterial colonization during severe respiratory viral infections.

In the ferret model, there is a clear demonstration of ecological
resilience in the URT microbiome; namely a return to the original
community after disturbance, a phenomenon also observed, albeit
less clearly, in the human samples, which had an unknown and
likely more diverse ecostate prior to infection. Similar observa-
tions have been reported in the human gut microbiome after the
disturbance associated with antibiotic treatment28, though our
findings expands it to the URT and the indirect effects of the IAV
infection. The controlled experiments with ferrets resulted in near
complete recovery. Human URT microbiomes do not unequi-
vocally show a return to the health state, but in several patients,
the microbiome returned to the healthy ecostate. Although it is
tempting to suggest that the ferret microbiome might have greater
elasticity (i.e., less time required for demonstration of resilience),
there are multiple potential reasons for the discrepancy between
ferrets and humans. For instance, the routes of and mode of
infection are different, with the ferrets receiving a high volume
containing a high titer dose intranasally, whereas human likely
get infected by the aerosol route at potentially lower titer. On the
other hand, considering metabolic rate relative to organism size,
the ferret may recover at a more rapid rate simply due to a higher
metabolism. More pertinently, the human cohort has an unde-
termined infection date, were infected by different viral strains
(and viral variants as determined by whole IAV genome
sequences) and had a selection bias towards phenotypically
responsive patients (e.g., symptomatic hospitalized patients),
where zero time (day 0) was the first day of symptom. Beyond the
potential differences in absolute temporal trends in microbiome
resilience and elasticity, the human and ferret microbiomes share
similar trends at the ecosystem and individual taxon level that
warrant further experimentation. The results here provide an
experimental baseline for examining both predictive and ther-
apeutic intervention focused experiments in the ferret model
system. For example, the presented hypothesis that IAV driven
microbiome disturbance increases the propensity for bacterial
pathogen co-infection can be robustly tested by bi-partite expo-
sures to viral, and then bacterial pathogens. The effects of lifestyle
(diet, smoking, exercise) and abiotic influences (humidity, tem-
perature) on the microbiome and its resilience should also be
examined, particularly with regards to temporal dynamics of
microbiome disturbance and recovery. Potential therapeutic

approaches involve thwarting the associated threat of opportu-
nistic bacterial pathogens or interventions focused on the bloom
of Pseudomonas, where probiotic treatments could be explored to
maintain the homeostasis as seen in the healthy individuals. Our
results are especially relevant in the context of secondary bacterial
infections following primary infection with IAV45. Multiple stu-
dies, including this one, have now shown that a subset of the taxa
that are most frequently associated with secondary infections
have increased relative abundance during IAV infection. It is
possible that such outcomes could be reduced by modulating the
host immune response during IAV infection17. Reducing the high
morbidity and mortality rates associated with such secondary
infections would improve quality of life and longevity while
simultaneously reducing healthcare costs40,46,47.

Methods
Human sample collection and study design. Patient clinical–epidemiological
data, along with nasopharyngeal swabs were collected after informed written
consent was obtained under protocols 11-116 and 16-066, reviewed and approved
by the Scientific Ethics Committee of the School of Medicine at Pontificia Uni-
versidad Catolica de Chile (PUC) before the start of sample collection. Between
July and August of 2011 and June and September of 2012 (during the Southern
Hemisphere autumn–winter season), a total of 146 nasopharyngeal swabs samples
were collected from 30 hospitalized patients in Santiago, Chile, diagnosed clinically
with influenza-like illness (ILI). Of the 30 patients in the study, 28 were confirmed
and subtyped as H1N1pdm09 or H3N2 Influenza through RT-PCR by the Clinical
Virology Laboratory at PUC. The remaining two patients could not be confirmed
as influenza positive by qRT-PCR, RT-PCR and/or the hemagglutination inhibition
(HI) assay, so they were not included in further analyses. Samples were also tested
against 13 other pathogens. In only two cases, we detected co-infections at the day
of recruitment, one patient had Rhinovirus and another had Respiratory Syncytial
virus; however, they tested negative in subsequent test. Between one and six
samples from the acute phase of infection were taken from each patient, together
with a sample up to 22 days post diagnosis (convalescence phase or healthy
baseline) from 14 out of the 28 individuals analyzed. Upon collection of all samples,
the timing of the infected cohort samples was established as the time in days since
the onset of symptoms. Control samples from 22 healthy individuals, confirmed as
negative against influenza A virus and 13 other common respiratory viruses, were
obtained at the outpatient clinic with the same criteria in March to June of 2014.
Epidemiological history, signs and symptoms, other diagnostics and treatments of
each patient were also collected during hospitalization as detailed in Supplementary
Table 3. Furthermore, 96.4% of patients received oseltamivir antiviral treatment,
and 89.3% received antibiotics originating from the families of the fluor-
oquinolones (levofloxacine, morifloxacine, or ciprofloxacine), 3rd-generation
cephalosporins (ceftriaxone or cefepime), carbapenems (meropenem or imipe-
nem), metrodinazole, cotrimoxazole, or vancomycin. These treatments where
supplied in a combination of 5 (4% of patients), 4 (8%), 3 (12%), 2 (40%), or one
(36%) antibiotics in a complete treatment (at least 7 days) or less. Severe infection
criteria were established in accordance with the hospitalization due to influenza
and/or derivation to critical care unit (which involves oxygen support or
mechanical ventilation and/or vasoactive drug administration) after symptoms
onset. The microbiome data analyzed were obtained from the nasopharyngeal
swabs of 28 infected subjects (13 male and 15 female), ages ranging from 1 year to
76 years, for a total of 121 samples. The naming convention of influenza A viruses
detected from patients are as follows: A/Santiago/pxdy/2011 or A/Santiago/pxdy/
2012 (p= patient and d= day). The negative controls analyzed in the study were
nasopharyngeal swabs taken from 22 healthy patients (10 males and 12 females),
ages ranging from 19 year to 65 years, most taken at all six time points (1, 2, 3, 5, 8,
and 28 post enrollment), for a total of 127 samples, which were negative for
influenza and other respiratory infections.

Ferret infection and sample collection. The animal experiments described here
were performed under protocols approved by the Icahn School of Medicine at
Mount Sinai Institutional Animal Care and Use Committee, adhering strictly to the
NIH Guide for the Care and Use of Laboratory Animals. Influenza-free and specific
pathogen-free 6-month-old female ferrets (Mustela putorious furo) were purchased
from Triple F Farms. The animal’s sera were confirmed to be negative against
circulating H1N1, H3N2, and B influenza viruses before they were shipped from
the company. Upon receipt, the animals were handled only by trained personnel
wearing an N95 mask (that prevents the transmission of airborne pathogens), and
were immediately housed individually in PlasLabs poultry incubators fitted with
high-efficiency particulate air (HEPA) filters to provide them with pathogen-free
air through out the experiment. Prior to the start of the experiment, the animals
were allowed to acclimate for 48 h before nasal inoculation. They were also
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provided with access to food and water ad libitum. All infections and nasal wash
samples were done on ferrets anesthetized with ketamine (25 mg/kg) and xylazine
(2 mg/kg) intramuscularly. A detailed time point study was conducted in ferrets
infected with 1 × 106 plaque-forming units diluted in a final volume of 0.5 ml of
sterile PBS per animal of the A/Netherlands/602/2009 H1N1 pandemic strain
through intranasal inoculation. Control animals were mock infected only with 0.5
ml of sterile PBS. Then nasal wash samples were taken from the seven uninfected
and seven infected animals. To study the effect of IAV infection on the URT
microbiome, samples were taken at six different time points: on day 0 (1 h post
inoculation) and then on days 1, 3, 5, 7, and 14 post infection (dpi). Body weights
were obtained for 14 consecutive days, and viral titers were determined by plaque
assay in MDCK cells as previously described48 for the first 7 dpi.

Sample processing, and sequence analyses. All bacterial genomic DNA (gDNA)
extractions were performed using the Qiagen All Prep kit, and were subjected to
16S amplification using the HMP 16S sequencing protocol, and the amplicons were
sequenced using the Roche 454 Titanium pipeline49. Appropriate positive and
negative controls from amplification were also included. The V1–V3 hypervariable
regions were amplified for 16S profiling (forward primer: 27F 5′-AGAGTTT-
GATCCTGGCTCAG-3′ and reverse primer: 534R 5′-ATTACCGCGGCTGCTGG-
3′) of the 16S ribosomal RNA gene.

Data analysis. Reads were de-multiplexed according to barcodes followed by
trimming of both barcodes and adapter sequences. Following the initial processing
of the sequence data, sequences were combined, dereplicated, and aligned in
mothur (version 1.36.150) using the SILVA template51 (SSURef_NR99_123), and
the sequences were organized into clusters of representative sequences based on
taxonomy called operational taxonomic units (OTU) using the UPARSE pipeline52.
In the ferrets, all except two libraries generated more than 3000 reads per sample. A
total of 649,440 sequences were subsequently clustered into 259 OTUs with a
sequence similarity threshold of 97%50, a length threshold of 250 bp and an
expected error threshold of 0.15. For human samples, the distribution of reads per
sample was much more variable, with an average of ~10,000 reads per sample. A
handful of under-represented samples (below read threshold of 50 reads) were
removed prior to the downstream analyses. A total of 2,300,072 sequences were
sorted into 707 OTUs, using the same thresholds as above and the same down-
stream filtering of the OTUs and samples was performed in a similar manner.
Initial filtering of the samples ensured discarding samples containing less than five
sequences. Libraries were normalized using metagenomeSeq’s cumulative sum-
scaling method53 to account for library size acting as a confounding factor for the
beta-diversity analysis. In addition to discarding singletons, OTUs that were
observed fewer than five times in the count data were also filtered out to avoid the
inflation of any contaminants that might skew the diversity estimates.

Informatics. Beta-diversity metrics were calculated across all samples using the
Bray–Curtis dissimilarity index, and overall trends in the community composition
for ferrets and humans on the basis of presence or absence of the flu infection were
explored using Principal Coordinates Analysis (PCoA) in QIIME54 (version 1.9.1)
and then visualized in Emperor55 (version 0.9.51).

Taxonomic classification of the samples was done by classifying the
representative sequences from the OTUs using mothur and the SILVA database,
with a confidence threshold of 97%. The relative abundances for the taxonomic
profiles for each subject was calculated in QIIME using summarize_taxa.py. The
visualization of the top ten most prevalent taxa for each of the organisms was done
in R (version 3.2.2) using dplyr and reshape2 to manipulate the data and ggplot2
for generating the plots. Following the qualitative analysis of the data, we employed
an infinite dimensional generalization of the multinomial Dirichlet mixture model
(iDMM)22, which tries to model the original set of communities from the input
data with additional posterior-predictive probabilities (PPD) for statistical cutoffs.
The model was executed over 1000 iterations for all ferrets and 2000 iterations for
all human patients (regardless of infection state) since this parameter should
increase with the number of samples present in the data set. Scripts located at
https://github.com/jacobian1980/ecostates were improved by introducing a seed in
the beginning of the algorithm to improve the reproducibility of the model and
optimized the community number based on the PPDs, which compare empirically
observed data with the data that would be expected if the DMM were the correct
underlying model56,57. All downstream analyses with the communities, including
exploration of community membership, were performed in R. In addition, a
diagnostic OTU was computed for each ecostate, or sampled community, which is
the OTU with the highest posterior-predictive probability in the ecostate and
therefore drives the clustering. The quantitative portion of the analysis was
supplemented by performing random-forest classification on the data to confirm
the diagnostic results using Scikit-Learn (version 0.18.1) in Python (version 3.5.2)
from Continuum Analytics Anaconda Suite. The training data set included: a (n ×
m)-dimensional attribute matrix consisting of the relative abundance values for the
OTUs and the samples, where n and m refer to the number of samples and the
number of OTUs, respectively, and a (n)-dimensional vector relating each
observation to the two experimental states (positive and negative for the virus). The
average of the feature importance vectors from 20,000 models that could accurately

predict all five left-out samples (~85% accuracy) was computed to obtain a weight
for each OTU’s predictive capacity to classify the experimental state of each sample.
The hyperparameters for the random-forest model were 618 decision trees per
forest, gini index as impurity criterion, and the square root of the number of
features (OTUs in this case) to use for each split in the decision tree.

To further investigate the phylogenetic placement of the infected OTUs
observed in our study among known Pseudomonas/Acinetobacter strains found in
NCBI, we analyzed the infected OTUs (Otu000002_human, Otu000003_human
and Otu000004_ferret) using BLAST against the “16S ribosomal RNA sequences
(Bacteria and Archaea)” database and picked the top 25 reference hits that aligned
with 100% coverage to each query sequence. Additionally, a few Euryarchaeota
strains were also included as the outgroup. These reference sequences were then
trimmed to extract the V1–V3 region, aligned to the query OTU sequences using
clustalo (v 1.2.1), followed by phylogenetic tree building using RAxML (v 8.1.20)
for 100 bootstrap iterations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw amplicon sequence reads for this study have been deposited to Sequence Read
Archive (SRA) under accession number: SRP009696 [BioProject accession number:
PRJNA76689] for the ferrets and accession numbers: SRP092459 [BioProject accession
number: PRJNA240559] and SRP128464 [BioProject accession number: PRJNA240562]
for the infected and uninfected human subjects, respectively.
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