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DNA is present in the nucleus and mitochondria of eukaryotic cells. There are, however,
certain instances in which DNA emerges in the cytosol. The two major sources of cytosolic
DNA are self DNA that is leaked out from the nucleus or mitochondria, and non-self DNA
from DNA viruses. The cytosolic DNA triggers the host immune response. Recent studies
have identified two key molecules, cyclic GMP-AMP (cGAMP) synthase (cGAS) and
stimulator of interferon genes (STING) in this immune response. STING is an endoplasmic
reticulum (ER) protein. After STING binding to cGAMP, STING exits the ER and
translocates to the Golgi, where STING triggers the type I interferon- and
proinflammatory responses through the activation of interferon regulatory factor 3 (IRF3)
and nuclear factor-kappa B (NF-kB). STING also activates other cellular responses
including cell senescence, autophagy, and cell death. In this review, we focus on
emerging issues regarding the regulation of STING by membrane traffic, with a
particular focus on the retrograde membrane traffic from the Golgi to the ER. The
retrograde membrane traffic is recently shown by us and others to be critical for
silencing the STING signaling pathway and the defect in this traffic underlies the
pathogenesis of the COPA syndrome, a monogenic autoinflammatory disease caused
by missense mutations of coatomer protein complex subunit a (COP-a).

Keywords: STING, trans-Golgi network, palmitoylation, retrograde membrane traffic, COPA syndrome, SAVI, innate
immunity, STING regulation by membrane traffic
INTRODUCTION

The innate immune response is essential for efficient and rapid host defense against invading
pathogens. Invading pathogens are sensed by pattern recognition receptors (PRRs) in the host cell
(1, 2). PRRs include Toll-like receptors (3), RIG-I-like receptors (4), and nucleotide-binding domain
and leucine-rich repeat-containing receptors (5), C-type lectin receptors (CLRs) (6). They bind
microbial molecules such as CpG DNA, viral RNAs, and lipopolysaccharides. Activated PRRs
initiate a series of intercellular signaling events, leading to the production of type I interferons,
proinflammatory cytokines, and antiviral proteins that all coordinate to eliminate pathogens and
infected cells.

An ER-associated molecule referred to as STING (7), also known as MITA (8), ERIS (9), MPYS
(10), or TMEM173, has been shown to contribute to a sensing pathway that is critical for detecting
cytosolic DNA or cyclic dinucleotides (CDNs) (11) including cGAMP (12). CDN-bound STING
translocates from the ER to the Golgi, where STING recruits TBK1 (13, 14), which then
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phosphorylates IRF3. Phosphorylated IRF3 dimerizes and
translocates to the nucleus to induce transcription of genes that
encode type I interferons such as interferon-b (IFNb). STING also
induces proinflammatory response via NF-kB by the activation of
TBK1 and IKKϵ (15, 16). Inborn errors of innate immunity that is
linked to dysregulated activation of cGAS/STING/TBK1/IRF3 have
been described in multiple autoinflammatory or neurodegenerative
diseases [see the review by (17)], such as Aicardi-Gourieres
syndrome, systemic lupus erythematosus, Parkinson disease, and
amyotrophic lateral sclerosis. These findings underscore the critical
roles of the STING pathway in human pathophysiology.

Several PRRs including TLRs, CLRs, and STING are
transmembrane proteins. They localize at various organelles,
such as the plasma membrane (PM), late endosomes, recycling
endosomes (REs), and the ER. Upon binding to their ligands,
some PRRs relocate to other organelles by membrane traffic and
trigger the innate immunity signaling there. Not surprisingly,
impaired membrane traffic of PRRs often makes the host
susceptible to infection or prone to autoinflammatory diseases.
These findings emphasize the critical role of membrane traffic in
innate immunity. In this review, we focus on emerging issues
regarding the regulation of STING activity by membrane traffic,
with a particular focus on the membrane traffic between the ER
and the Golgi. This membrane traffic is recently shown to relate
to two autoinflammatory diseases, STING-associated
vasculopathy with onset in infancy (SAVI) (18, 19) and the
COPA syndrome (20), which is caused by missense mutations of
coatomer protein COP-a.
EXOCYTIC MEMBRANE TRAFFIC OF
STING FROM THE ER

After the binding of STING to CDNs, STING relocates from the
ER to the Golgi (21, 22). Treatment with brefeldin A (BFA) or
expression of Shigella effector IpaJ, which inhibits the ER-to-
Golgi traffic, dampens the phosphorylation of IRF3 and
induction of IFNb, suggesting that the ER-to-Golgi traffic is
required for the STING signaling (13, 21, 23, 24). The ER-to-
Golgi traffic is facilitated by the coat protein complex-II (COP-
II), a protein complex that is responsible for creating membrane
vesicles (COP-II vesicles) that bud from the ER (25). Sar1 (a
small GTPase), Sec23/Sec24 (inner coat proteins), and Sec13/
Sec31 (outer coat proteins) are five cytosolic components of the
COP-II complex. Knockdown of Sar1A and Sar1B, two
mammalian Sar1 paralogs, inhibited the STING translocation
from the ER to the Golgi and the phosphorylation of IRF3,
indicating that the exit of STING from the ER with COP-II
vesicles is required for the STING signaling (14). The critical role
of COP-II-mediated transport of STING in the STING signaling
was corroborated by the experiments with knockdown of Sec13,
Sec23, Sec24, or Sec31 (26–28).

Several proteins associated with COP-II are also involved in the
STING signaling. Yip1 domain family (YIPF) proteins are multi-
spanning membrane proteins (29). Yeast Yip1p regulates COP-II
vesicle biogenesis (30). YIPF5 (a mammalian ortholog of yeast
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Yip1p) is responsible for cytosolic DNA-induced translocation of
STING from the ER and the induction of IFNb (27). The
transmembrane emp24 domain (TMED) family are single-
spanning transmembrane proteins and have emerged as critical
regulators of the early (ER-to-Golgi) and late (Golgi-to-plasma
membrane) exocytic pathways (31). Yeast Emp24p and Erv25p
belong to TMED family and both proteins recruit specific cargo
molecules into COP-II vesicles (32, 33). TMED2 (a mammalian
ortholog of yeast Emp24p) is required for herpes simplex virus
(HSV)-induced translocation of STING from the ER and the
STING signaling (26). TMED10 (a mammalian ortholog of yeast
Erv25p) also participates in the STING signaling (26).

The rhomboid family are evolutionary conserved
intramembrane proteases. Mammalian iRhom1 and iRhom2,
do not possess the protease activity and are hence dubbed
“inactive” rhomboid family members (34). iRhom2 localizes at
the ER and is essential for the translocation of a disintegrin and
metalloproteinase 17 (ADAM17) from the ER to the Golgi (35).
iRhom2 is required for HSV-induced translocation of STING
from the ER and the STING signaling (36). Recently, CxORF56,
or STING ER exit protein (STEEP), is shown to facilitate the
STING trafficking from the ER. After cGAMP stimulation,
STEEP stimulates phosphatidylinositol-3-phosphate [PtdIns(3)
P] synthesis in the ER membrane and induces membrane
curvature at the ER (37). Whether PI(3)P-dependent
membrane curvature formation promotes COP-II vesicle
biogenesis remains to be elucidated.

How does the binding of cGAMP to STING promote the
translocation of STING? One clue is provided by the cryo-
electron microscopy structure of cGAMP-bound STING (38).
The cGAMP binding causes a 180° rotation of the ligand-binding
domain of STING relative to its transmembrane domain (the
inset in Figure 1). This rotation affects a conformation of a loop
on the side of the ligand-binding-domain dimer, leading to the
formation of the STING oligomers. Another study suggests that
the oligomerization of STING requires Cys148-mediated
disulfide bridges (39). These conformational changes of STING
will expose and/or generate the binding interface(s) with the
COP-II components and/or the proteins that regulate COP-II
vesicle biogenesis.

All of the molecules described above are positive regulators of
the STING trafficking from the ER with COP-II vesicles.
Recently, the Ca2+ sensor stromal interaction molecule 1
(STIM1), an ER-resident protein, is shown to be a suppressor
of the STING signaling (40). STIM1 deficiency results in a low-
level induction of IFNb and a partial STING translocation to the
perinuclear compartment without cGAMP stimulation. The
induction of IFNb is abolished by concurrent knockout of
STING. Importantly, STIM1 binds STING under unstimulated
conditions, and its interaction with STING is reduced upon
cGAMP binding. Therefore, STIM1 serves as a tether to retain
STING at the ER under steady/unstimulated conditions. Thus,
there appears a “tug-of-war” of STING at the ER membrane
between the COP-II components and the tethering molecule(s),
and their power balance may be critical for STING dynamics.
The conformational change of STING upon cGAMP binding
May 2021 | Volume 12 | Article 646304

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Taguchi et al. STING Regulation by Membrane Traffic
should influence the power balance, favoring the STING exit
from the ER with the COP-II components.
STING ACTIVATION AT THE GOLGI

As mentioned above, the trafficking of STING from the ER is
critical to activate the downstream signaling cascade. Recent
evidence suggests that palmitoylation of STING at the Golgi is
essential for activation of STING (13). Treatment of cells with
palmitoylation inhibitor 2-bromopalmitate (2-BP) inhibits type I
interferon response without affecting the trafficking of STING
from the ER. Mutation of two membrane-proximal Cys residues
(C88/91) suppresses palmitoylation, and this STING variant is
incapable of inducing STING-dependent signaling. The
significance of C88/91 in STING signaling is corroborated by
the recent findings of identification of STING inhibitors that
target C88/91 of STING (41–43). Of note, the scrutinization of
the Golgi with immunofluorescence microscopy suggests that the
activation of TBK1 occurs exclusively at the trans-Golgi network
(TGN) (13), a Golgi domain that is responsible for the sorting of
exocytic cargo molecules for delivery to the PM and endosomes.

Protein palmitoylation has been implicated in the assembly of
proteins (44) into lipid rafts, specific lipid microdomains that
contain cholesterol and sphingomyelin (SM). At the TGN,
cholesterol and SM generated by SM synthase 1 (the Golgi-
localized SM synthase) are suggested to form lipid rafts at the
TGN (45). C6-ceramide treatment interferes the integrity of lipid
rafts at the Golgi by producing short-chain SM (45). C6-
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ceramide inhibits the STING signaling without affecting the
relocation of STING from the ER or palmitoylation of STING
(13). Thus, we hypothesize that STING palmitoylation allows
STING to cluster in the lipid rafts at the TGN, facilitating the
recruitment of TBK1 and IRF3 onto STING. Given that STING
can cluster upon cGAMP binding (38), the clustering nature of
STING at the TGN may be qualitatively distinct from that of
cGAMP-bound STING at the ER, perhaps in the number and/or
the spatial arrangement of STING in the cluster.

An autoinflammatory syndrome termed STING-associated
vasculopathy with onset in infancy (SAVI) is caused by gain-of-
function mutations in STING (18, 19, 46, 47). The SAVI
mutations (V147L, N154S, V155M, C206Y, R281Q, and
R284G) cause constitutive activation of STING without
cGAMP stimulation. These SAVI variants do not stably
localize at the ER, instead localize at the perinuclear
compartments (13, 14). The suppression of ER-to-Golgi traffic
with BFA abolishes TBK1 binding to the SAVI variants (14). The
interferon response elicited by these SAVI variants is inhibited by
2-BP or an introduction of Cys88/91Ser mutation (13). These
results suggest that the constitutively active SAVI variants even
require the translocation from the ER and their palmitoylation at
the Golgi for their activity. The experimental 3D modeling of the
C-terminal cytosolic domain of STING predicts that the one of
the SAVI mutations, V155M, increases the stability of the STING
dimer (18). The structure of the SAVI variants may mimic that of
cGAMP-bound STING, therefore, the SAVI mutations may skew
STING affinity to the COP-II components (37), allowing the
SAVI variants to exit the ER without cGAMP binding.
FIGURE 1 | Exocytic membrane traffic of STING from the ER. STING localizes at the ER at the steady-state. Upon binding to CDNs, STING translocates from the
ER to the Golgi with COP-II vesicles. Several proteins (YIPF5, TMED2, TMED10, iRhom2, and STEEP) associated with the COP-II components are required for the
translocation of STING. After reaching the Golgi, STING undergoes palmitoylation and activate TBK1 at the trans-Golgi network.
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Several studies have suggested that the ER-Golgi intermediate
compartment (ERGIC) is the site of STING activation. ERGIC is a
complex membrane system that resides between the ER and the
Golgi. Conventionally, ERGIC is regarded as ERGIC-53 (p58)-
positive compartment. However, ERGIC-53 circulates between the
ER/ERGIC/the Golgi, the care has to be taken in interpreting co-
localization data of STING and ERGIC-53. As mentioned above,
pTBK1, the active form of TBK1, localizes exclusively at the TGN,
not at the rest of the Golgi domains (13), arguing against that the
ERGIC is the site of STING activation. The role of ERGIC in the
STING activation will be firmly demonstrated when one develops
the way to inhibit the “ERGIC-to-Golgi” membrane trafficking.
RETROGRADE MEMBRANE TRAFFIC OF
STING FROM THE GOLGI

The COPA syndrome is a recently discovered monogenic
autoinflammatory/autoimmune disorder characterized by
interstitial lung disease and high expression of type I interferon-
stimulated genes (20, 48). The disease is caused by heterozygous
mutations of the COPA gene, encoding COP-a of the COP-I
complex. The COP-I complex mediates the retrograde membrane
transport from the Golgi to the endoplasmic reticulum (ER) via
COP-I vesicles (49, 50). All of the mutations lie in the N-terminal
WD40 domain of COP-a, which is implicated in the recognition
of cargo proteins (51). How the impaired retrograde transport
causes COPA syndrome remained largely unknown.
Frontiers in Immunology | www.frontiersin.org 4
Recently, four groups provide the evidence that COPA syndrome
is caused by constitutive activation of STING, being accompanied
with a loss of the ER localization of STING (52, 53).With the disease-
causative COP-a variants, STING is not able to be retrieved back to
the ER from the Golgi because of the impaired COP-I transport. The
forced Golgi localization of STING leads to the activation of STING
at the TGN (54). COP-a binds C-terminal di-lysine motifs (KKXX
and KXKXX) of its cargo proteins (49, 55, 56). Since STING does not
have these motifs, we reason the presence of adapter protein(s) that
links STING anda-COP. Bymass spectrometric analysis, we identify
18 proteins with these motifs. Knockdown of Surf4, not that of the
other 17 proteins, relocates STING from the ER to the Golgi and
results in the emergence of p-TBK1 (54). STING/Surf4/COP-a
complex is disrupted in the presence of the disease-causative COP-a
variant. These results suggest that Surf4/a-COP axis is essential to
maintain the steady-state localization of STING to the ER.
Intriguingly, the binding of the SAVI variants to Surf4 is reduced
(54). The reduced binding may partly explain the aberrant
localization of the SAVI variants to the Golgi.

Several neurodegenerative diseases are linked to COP-I
dysfunction. Mutations in Scy1-like 1 (Scyl1) in mice cause
motor neuron degeneration and cerebellar atrophy (57, 58).
Scyl1 binds to COP-b subunit of the COP-I complex and
knockdown of Scyl1 disrupts COPI-mediated retrograde traffic
from the Golgi to the ER (59). Golgi brefeldin A-resistant
guanine nucleotide exchange factor 1 (GBF1) is a guanine-
nucleotide exchange factor for ADP-ribosylation factor family
of small GTPases (60). GBF1 is involved in the formation of
FIGURE 2 | The retrograde membrane traffic retrieves STING from the Golgi to the ER. The retrograde membrane traffic from the Golgi to the ER, which is mediated
by COP-I vesicles, suppresses STING activation, by preventing STING from reaching the TGN. Surf4 functions as an adaptor to link STING and a-COP. STIM1
serves as a tether to retain STING at the ER.
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COP-I vesicles, maintenance, and function of the Golgi. The
pathogenic variants of GBF-1 are recently found in individuals
affected by distal hereditary motor neuropathies (HMNs) and
axonal Charcot-Marie-Tooth neuropathy (CMT2) (61). It is
tempting to speculate that STING is constitutively activated in
these neurodegenerative diseases, as in the COPA syndrome,
contributing in part to their pathogenesis.
CONCLUDING REMARKS

During the last several years, substantial progress has been
achieved in the molecular mechanism underlying the cGAS/
STING pathway, one of the critical innate immune signaling
pathways. The activity of STING is now revealed to be strictly
regulated by membrane trafficking. The exocytic membrane
traffic from the ER, which is mediated by COP-II vesicles,
promotes STING activation. In contrast, the retrograde
membrane traffic from the Golgi to the ER, which is mediated
by COP-I vesicles, suppresses STING activation, by preventing
STING from reaching the TGN. Thus, recent studies on the
COPA syndrome demonstrate another “tug-of-war” of STING
between the ER and the Golgi, which involves the COP-II- and
COP-I-mediated membrane transports (Figure 2).
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Despite these advances, critical questions remain unanswered,
such as the nature of palmitoylated STING, the nature of STING
oligomers, the molecular mechanism underlying TBK1
recruitment to STING, and the regulators of post-Golgi
membrane trafficking of STING to lysosomes. These studies
are anticipated to make broad conceptual contributions to cell
biology (membrane traffic and signaling), biochemistry (protein
lipidation), and innate immunity (autoinflammatory diseases).
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