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Abstract

Background: Cell division (mitosis) results in the equal segregation of chromosomes between two daughter cells.
The mitotic spindle plays a pivotal role in chromosome alignment and segregation during metaphase and anaphase.
Structural or functional errors of this spindle can cause aneuploidy, a hallmark of many cancers. To investigate if a given
protein associates with the mitotic spindle and regulates its assembly, stability, or function, fluorescence microscopy
can be performed to determine if disruption of that protein induces phenotypes indicative of spindle dysfunction.
Importantly, functional disruption of proteins with specific roles during mitosis can lead to cancer cell death by inducing
mitotic insult. However, there is a lack of automated computational tools to detect and quantify the effects of such
disruption on spindle integrity.

Results: We developed the image analysis software tool MatQuantify, which detects both large-scale and subtle structural
changes in the spindle or DNA and can be used to statistically compare the effects of different treatments. MatQuantify
can quantify various physical properties extracted from fluorescence microscopy images, such as area, lengths of various
components, perimeter, eccentricity, fractal dimension, satellite objects and orientation. It can also measure textual
properties including entropy, intensities and the standard deviation of intensities. Using MatQuantify, we studied the
effect of knocking down the protein clathrin heavy chain (CHC) on the mitotic spindle. We analysed 217 microscopy
images of untreated metaphase cells, 172 images of metaphase cells transfected with small interfering RNAs targeting
the luciferase gene (as a negative control), and 230 images of metaphase cells depleted of CHC. Using the quantified
data, we trained 23 supervised machine learning classification algorithms. The Support Vector Machine learning
algorithm was the most accurate method (accuracy: 85.1%; area under the curve: 0.92) for classifying a spindle image.
The Kruskal-Wallis and Tukey-Kramer tests demonstrated that solidity, compactness, eccentricity, extent, mean intensity
and number of satellite objects (multipolar spindles) significantly differed between CHC-depleted cells and untreated/
luciferase-knockdown cells.
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Conclusion: MatQuantify enables automated quantitative analysis of images of mitotic spindles. Using this tool, researchers
can unambiguously test if disruption of a protein-of-interest changes metaphase spindle maintenance and thereby affects
mitosis.
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Background
Mitosis is a multi-step process that normally results in the
equal segregation of chromosomal DNA and cytoplasmic
organelles between two daughter cells. The mitotic spindle,
a bipolar microtubule (MT)-based cellular structure, aligns
the duplicated chromosomes at the centre of the cell dur-
ing metaphase. Once correctly aligned, sister chromatids
are separated and moved to opposing spindle poles during
anaphase. Structural defects in the mitotic spindle can lead
to the unequal segregation of chromosomes, which in-
creases the oncogenic potential of the cell. The spindle as-
sembly checkpoint (SAC) is a signalling protein complex
that prevents this adverse situation by monitoring the
proper interaction of the mitotic spindle with chromo-
somes. It delays the onset of anaphase until all chromo-
somes are stably attached to the kinetochore fibres of the
spindle [1]. In addition to SAC proteins, other proteins as-
sociate with the spindle and regulate its assembly, stability
and function. Moreover, many additional proteins are
thought to play unknown roles in the formation and integ-
rity of the mitotic spindle. Thus, researchers are investigat-
ing a plethora of proteins for possible unidentified mitotic
roles. This might not only aid understanding of the mecha-
nisms that regulate cell division, but also help to identify
new targets via which cancer cell death can be induced
with increased efficacy. MT-targeting anti-cancer therapies
are currently in clinical use; however, they rarely com-
pletely eradicate neoplasms and are often hampered by is-
sues such as mitotic slippage, resistance and toxicity. Many
cells in the body do not divide or divide very rarely and
thus have an extremely long cell cycle. Mitotic inhibitors
would thus preferentially target cancer cells, which often
divide rapidly. A high mitotic index correlates with in-
creased malignancy. Cells are most vulnerable during mi-
tosis. Moreover, inhibitors of mitotic intermediates have
achieved promising results in clinical trials, demonstrating
high selectivity and sensitivity.
Using fluorescence microscopy and other methods, our

team has identified several proteins with mitotic roles.
This work has sometimes involved the manual analysis of
hundreds of images, which is laborious and time-
consuming. Additionally, most common image analysis
tools have been created for use in a range of applications
and lack the sensitivity to identify and characterise specific
features associated with mitotic cells. To solve this prob-
lem, we developed a novel set of algorithms, that we have

called MatQuantify, for automated assessment of the ef-
fects of disruption of a given protein on the mitotic
spindle.
We used MatQuantify to assess the effect of clathrin

heavy chain (CHC) depletion on the architecture of the
metaphase spindle. Clathrin, which plays a key role in
membrane trafficking during endocytosis and exocytosis, is
also important for the first stages of mitosis [2, 3]. This
protein complex comprises three heavy chains and three
light chains arranged in a trimer of three “legs” connected
at a central vertex. During the first stages of mitosis, cla-
thrin localises to the mitotic spindle. Transfection of small
interfering RNA (siRNA) against clathrin causes defects in
chromosome congression at the metaphase plane, resulting
in delays in mitosis [3–5]. It has been proposed that the
mitotic spindle is stabilised by a series of different types of
inter-MT bridges, which are thought to span kinetochore-
fibres and contribute to their stabilisation during chromo-
some movement. Clathrin, together with other proteins, is
thought to form one type of these bridges [4, 5].
MatQuantify was used to rapidly assess 619 fluorescence

microscopy images of mitotic spindles and accurately
identify changes in the spindle architecture of clathrin-de-
pleted cells.

Methods
Cell culture and siRNA transfection
HeLa cells were grown on glass coverslips in RPMI 1640
media (ThermoFisher Scientific) supplemented with 10%
foetal bovine serum (ThermoFisher Scientific) and 1%
penicillin-streptomycin (ThermoFisher Scientific) at 37 °
C in 5% CO2. Cells were transfected with 90 nM siRNA
duplexes the day after seeding using Lipofectamine 2000
(ThermoFisher Scientific) according to the manufac-
turer’s instructions. Fresh media was added after 6–8 h
and every 12–15 h thereafter, until cells were fixed.
siRNAs were purchased from SigmaAldrich and had the
following sequences: luciferase, 5′-CGUACGCGGAAU
ACUUCGAdTdT-3′ (sense), 5′-UCGAAGUAUUCCG
CGUACGdTdT-3′ (antisense) and CHC, 5′-GCAAUGA
GCUGUUUGAAGA-3′, 5′-UCUUCAAACAGCUCAU
UGC-3′ (antisense).

Immunofluorescence
72 h after transfection, cells were fixed for 4 min in
methanol cooled to −20 °C. Thereafter, samples were
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typically blocked in phosphate-buffered saline (PBS)
containing 3% bovine serum albumin for 40 min at room
temperature. Cells were then incubated with primary
antibodies for 60–90 min, washed four times with PBS,
labelled with Alexa Fluor-conjugated secondary anti-
bodies (ThermoFisher Scientific) diluted 1:500 for 30–
45 min, washed four times with PBS and mounted with
ProLong Gold (Life Technologies). Cells were labelled
with a mouse anti-CHC (610500, BD Biosciences) or a
rabbit anti-CHC (ab21679, Abcam) antibody diluted
1:200 together with an Alexa Fluor 488-conjugated anti-
α-tubulin antibody (322588, Life Technologies) and
1 μg/ml DAPI.

Microscopy
Fixed cells were imaged using an Olympus IX70
microscope equipped for optical sectioning microscopy
(DeltaVision, Applied Precision) with a 100× 1.4 NA
U-Plan S-Apo objective and a CCD camera (CoolSnapHQ2,
Roper Scientific). Standard filters (DAPI: 390/18, 435/48;
FITC: 475/28,522/36; TRITC: 543/27, 594/45 and Cy5:
632/22, 676/34) were used. Each z series (0.3 μm interval)

was acquired, deconvolved and projected using SoftWoRx
(Applied Precision). The pixel intensity ranged from 0
to 65,535. Images contained 1024 × 1024 pixels.

MatQuantify script
MatQuantify was written in MATLAB (MathWorks,
USA). The source code is available from http://matquan-
tify.sourceforge.net/. In addition, 619 RGB images of un-
treated, luciferase siRNA-treated and CHC-depleted cells
are available. MatQuantify processes all images in the
user-identified folder and writes computed measurements
to a text file. Any execution errors are logged in a separate
text file. The region of interest (ROI) for analysis was the
mitotic spindle or DNA. Images were converted to a bin-
ary format by the Otsu thresholding method [6]. Cellular
noise was removed by three strategies: i) small objects that
were joined by only 1 pixel were disintegrated, ii) objects
touching the border or in proximity to the border (within
3% of the total width of the image) were removed and iii)
objects comprising less than 25,000 pixels were removed
based on the observation that spindles and DNA are lar-
ger than this.

Fig. 1 Depletion of CHC results in the formation of aberrant spindles. a Fluorescence microscopy images of untreated HeLa cells and those treated
with luciferase-targeting siRNA (negative control) or CHC-targeting siRNA. Cells were stained with anti-α-tubulin and anti-CHC antibodies and DAPI.
Scale bar, 5 μm. b CHC-KD in HeLa cells was assessed by western blotting. α-Tubulin was used as a loading control
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Additional poles, referred to as ‘satellite objects’, were
also detected, which might be an additional spindle pole.
Due to their small sizes and frequent detachment from
the spindle body, the satellites were segmented accord-
ing to the following criteria: i) a satellite object must be
identified outside the initially detected spindle boundary
but within 200 pixels of the centre of the spindle, ii) the
extent value must be higher than 0.3 and iii) the total
pixel intensity within satellites was higher than 50,000.
Where an image contained more than one ROI, each

was treated as an independent object. A binary mask was
prepared and used to segment spindles from the original
greyscale image to perform intensity-based measurements.

Statistical analysis
MATLAB was employed to analyse the data and to train
machine learning algorithms. The normality of the quan-
tified data was analysed visually and using the one-
sample Kolmogorov-Smirnov test. The Kruskal-Wallis
test was used to statistically compare the groups.
Multiple testing correction was performed by the
Tukey-Kramer post hoc test.

Machine learning
Supervised machine learning is the ability of a computer to
learn from example datasets and classify the test (unseen)
data into the correct group. The Classification Learner App
of MATLAB has 23 machine learning algorithms grouped
into six classifier types: i) Decision Trees (Complex Tree,
Medium Tree and Simple Tree), ii) Discriminant Analysis
(Linear Discriminant and Quadratic Discriminant), iii)
Support Vector Machine (SVM) (Linear SVM, Quadratic
SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian
SVM and Coarse Gaussian SVM), iv) k-Nearest Neighbour
Classifiers (Fine KNN, Medium KNN, Coarse KNN, Cosine
KNN, Cubic KNN and Weighted KNN), v) Ensembles
Classifiers (Boosted Trees, Bagged Trees, Subspace
Discriminant, Subspace KNN and RUS Boosted Trees) and
vi) Logistic Regression. These algorithms were trained and
tested with their default settings to classify mitotic spindles.

Results
CHC functions in formation of the mitotic spindle and
stabilisation of kinetochore fibres [7]. Knockdown (KD)
of CHC causes spindle deformation and DNA misalign-
ment [8]. To identify the mitotic spindle properties that

a

b

Fig. 2 Example of binary spindle masks and intensities. a Binary masks of spindles shown in Fig. 1. b Histogram of grey-scale intensities in each of the
spindles shown in a
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are associated with CHC KD, we analysed 217 images of
mitotic spindles in untreated cells, 172 images of mitotic
spindles in cells transfected with siRNA targeting lucifer-
ase and 230 images of CHC-depleted cells. Figure 1a
shows representative mitotic spindles and DNA in these
three groups, while Fig. 1b shows western blotting con-
firming KD of CHC. The binary masks of the spindles
shown in Fig. 1a and the corresponding histograms of
grey-scale intensity values within the spindles are shown
in Fig. 2a and 2b, respectively. Cells transfected with
luciferase-targeting siRNA served as a negative control be-
cause HeLa cells do not express this gene and thus their
mitotic spindles were not expected to significantly differ
from those of untreated cells. We analysed all images with
an in-house-developed MATLAB script (MatQuantify) to
identify measurable characteristics that differed according
to whether CHC was knocked down and if these charac-
teristics could thus be used to stratify the groups of
images.
After reviewing the literature, we identified 19 proper-

ties that can be useful for defining any graphical shape,
as explained in Table 1. MatQuantify saves all measure-
ments to a tab-delimited text file. It took 5.3 min to
quantify the green channel (spindle) and red channel
(DNA) of 619 images using a single core of a 2.6 GHz i7
PC. The quantified data were further analysed in
MATLAB.

Classification by machine learning
The measurements obtained from the three groups of
images were imported into MATLAB and combined into
a table datatype. KD of luciferase is not expected to ma-
jorly affect the mitotic spindle structure; therefore, for
this machine learning analysis, we labelled the quantified
data from luciferase-KD cells as “untreated”. We trained
23 machine learning algorithms on quantified data of
the spindle and DNA. The training data set comprised
80% of randomly selected data from both groups of im-
ages (untreated and CHC-depleted). The remaining 20%
of data from each of these groups were used to test the
model. In a comparison of the different algorithms, the
maximum classification accuracy based on DNA was al-
ways lower than 80%, while that based on the spindle
was mostly higher than 84%.
The SVM algorithm performed best in predicting the

class of a randomly selected spindle image. In the
receiver operating characteristic (ROC) plot, the area
under the curve was 0.92 (Fig. 3a). A confusion matrix
revealed that 48 of the 55 spindle images of CHC-KD
cells and 38 of the 45 spindle images of untreated cells
were classified correctly, meaning overall accuracy was
85.1% (Fig. 3b).
We statistically analysed the data to further understand

the properties associated with each group of cells. The

Table 1 MatQuantify measures 19 properties of a segmented ROI

No. Image property Definition

1 Area The number of pixels inside the region containing
the ROI (mitotic spindle).

2 Convex area The number of pixels inside the convex hull of an
ROI. This is the smallest convex polygon that
contains the region of interest.

3 Compactness The degree to which a shape is compact,
calculated using the
formula: Compactness ¼ Area

Perimeter2

4 Eccentricity An ROI can fit into an ellipse, and the roundness
of the ellipse is identified by its eccentricity. The
value ranges from 0 to 1. A value of 0
corresponds to a circle, while a line has an
eccentricity of 1.

5 Entropy A statistical measure of randomness characterises
the texture of an image. It can be defined as:
Entropy = − ∑ p. ∗ log 2(p)
.* syntax means that an element in the first matrix
is multiplied by the corresponding element in the
second matrix.

6 Euler number The number of objects in the region minus the
number of holes in those objects, where holes
are black pixels in the region of a binary image.

7 Fractal
dimension

Returns the Haussdorf fractal dimension of an
object represented by the binary image. Pixels
with non-zero intensity belong to an object and
pixels with zero intensity constitute the
background.

8 Intensity
(mean)

The mean intensity of all the grey-scale values in
an ROI.

9 Intensity
(median)

The median intensity of all the grey-scale values
in an ROI.

10 Intensity (total) The sum of all grey-scale values in an ROI.

11 Major axis
length

The length (in pixels) of the major axis of the
ellipse that completely encompasses the region.

12 Minor axis
length

The length (in pixels) of the minor axis of the
ellipse that completely encompasses the region.

13 Orientation The angle between the x-axis and the major axis
of the ellipse. The value ranges from −90° to 90°.

14 Percent density The number of pixels that have an intensity value
greater than 90% of the maximum pixel intensity
value divided by the total area (in pixels).

15 Perimeter The distance around the boundary of the region.

16 Solidity The proportion of pixels in the convex hull that
are also in the region.
Solidity ¼ Area

Convex Area

17 Standard
deviation

The standard deviation of all the grey-scale values
in an ROI.

18 Extent The ratio of the total pixels in an ROI to the total
pixels in the bounding box.
Extent ¼ Area of ROI

Area of Bounding Box
The bounding box is the smallest rectangle that
encompasses the region.

19 Satellites The number of satellite objects (additional poles)
identified by the algorithm.
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quantified properties did not follow a normal distribution
according to the Kolmogorov-Smirnov test. Therefore, we
used the non-parametric Kruskal-Wallis test followed by
the Tukey-Kramer post hoc test to identify statistical
differences among the three groups of cells.

Properties of mitotic spindles in CHC-KD cells are significantly
different from those in untreated and luciferase-KD cells
The multiple comparison test identified that the mean
ranks of solidity, compactness, eccentricity, extent, in-
tensity (mean and median) and satellite objects quanti-
fied from untreated and luciferase-KD cells overlapped.
These measurements significantly differed between
CHC-KD cells and untreated/luciferase-KD cells (Fig. 4).
The spread of the aforementioned measured quantities
was shown as box plots (Fig. 5) and is explained below.

Solidity
Solidity was calculated by dividing the area of the ROI by
the convex area (Table 1). This was the property that most
significantly differed between CHC-KD cells and untreated/
luciferase-KD cells (P = 2.03 × 10−28). Solidity was calcu-
lated from binary images. The values ranged from 0 to 1,
where solidity of 1 represented a convex shape.

Compactness
Compactness is a function of the area and perimeter
(Table 1). The significantly lower compactness of CHC-KD
cells (P = 2.26 × 10−21) was associated with a larger perim-
eter. This relates to the rougher edges of spindles in these
cells due to stray MTs.

Eccentricity
Eccentricity ranged from 0 (circle) to 1 (line). The
eccentricity of spindles was significantly higher in CHC-KD
cells than in the other two groups (P = 6.37 × 10−17). This
indicates that spindles were more elliptical in CHC-KD
cells and more circular in non-treated cells.

Extent
The extent value of spindles was significantly lower in
CHC-KD cells than in luciferase-KD and untreated cells
(P = 1.02 × 10−16). Extent was calculated by dividing the
area of the ROI by the area of a bounding box, which was
the smallest rectangle that completely encompassed the
ROI. This indicates that spindles were more rectangular in
untreated and luciferase-KD cells than in CHC-KD cells.

Intensity (mean and median)
The means and medians of fluorescence intensities
within the ROIs (spindle or DNA) were calculated. The
mean (P = 7.54 × 10−07) and median (P = 1.43 × 10−07) in-
tensities were significantly lower in CHC-KD cells than
in luciferase-KD and untreated cells. This confirms the
finding of Giladi et al. [9] that the fluorescence intensity
is reduced in compromised mitotic spindles under the
influence of an electric field.

Satellite objects
Additional poles surrounding the spindle were counted.
The number of spindles with additional poles was sig-
nificantly higher in CHC-KD cells than in untreated and
luciferase-KD cells (P = 1.07 × 10−05).

a b

Fig. 3 ROC plot and confusion matrix for predictions of spindle class by a SVM learning algorithm. a ROC plot showing the output of the used
learning algorithm. SVM generated the largest Area Under the Curve (AUC) with a value of 0.92 and a true positive rate of 0.85 as marked by the
point (0.17, 0.87). b Confusion matrix: the value shown inside the green box is derived from a true prediction while the number inside the grey
box shows a false prediction
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Other measured properties
We did not expect luciferase-KD to affect the spindle
characteristics. However, multiple comparison testing re-
vealed that the mean ranks of widths, area, convex area,
fractal dimension and total intensity significantly differed
between the three groups (Fig. 6a). The comparison in-
tervals for Euler number, percent density, entropy,
standard deviation, spindle orientation and perimeter
measurements of CHC-KD cells overlapped with those
of untreated and/or luciferase-KD cells (Fig. 6b). These
measurements can be useful for other types of image
analyses [10]. Some of these measured properties are
easy to understand, such as area, perimeter and axis
widths. We will explain a few of the more complex mea-
surements in more detail.

Fractal dimension
The complexity of shape is measured by the fractal
dimension. We employed the fractal dimension algo-
rithm sourced from the MATLAB file exchange [11,
12]. The higher the fractal dimension, the more com-
plex an image is said to be. Our statistical analysis
(Kruskal-Wallis test followed by the Tukey-Kramer
post hoc test to correct for multiple testing) revealed that
fractal dimension significantly differed (P = 8.39 × 10−20)
between the three groups (Fig. 6). Many studies have
found that fractal dimension is an important indica-
tor to define shape [10]. Using the Mann-Whitney
test, we also confirmed that fractal dimension signifi-
cantly differed (P < 0.0001) between untreated and
CHC-KD cells.

Fig. 4 Mean ranks of CHC-KD cells significantly differ from those of untreated and luciferase-KD cells. The mean ranks of CHC-KD cells were signifi-
cantly different from those of untreated and luciferase-KD cells. Ranking by the Tukey-Kramer test revealed that the comparison intervals of
luciferase-KD cells overlapped with those of untreated cells, shown in grey
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Percent density
The percent density is measured by dividing the number
of pixels above a certain intensity threshold by the total
number of pixels in the ROI. We set this threshold to
90% of the maximum greyscale pixel intensity value.
This property was not significantly associated with
CHC-KD spindles, because the comparison interval of

CHC-KD cells overlapped with those of untreated
(Fig. 6b). However, others have successfully used this
metric to stratify images [13].

Discussion
Analysis of mitotic spindle shape and structure is important
for investigating spindle defects and dynamics. However, it

Fig. 5 Boxplots of significantly different CHC-KD properties in comparison to untreated/luciferase-KD mitotic spindles. P-values were calculated using
the Kruskal-Wallis test
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a

b

Fig. 6 Ranking of other (non)overlapping comparison intervals. a Ranking of the groups where comparison intervals did not overlap. b Ranking
of the CHC-KD group where in comparison intervals overlap with those from either the untreated or luciferase-KD cells or with the comparison in-
tervals from these both two control groups
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is a laborious, time-intensive and potentially error-prone
task when conducted manually. MatQuantify segments an
ROI (in this case, the mitotic spindle) and measures 19
characteristics to elucidate its important properties. We an-
ticipate that if a treatment visibly affects an ROI, quantified
data obtained using MatQuantify can be used to character-
ise the differences between untreated and treated cells.
We studied the effect of knocking down a mitosis-

related protein, CHC, on the structure of the mitotic
spindle. Six properties of the mitotic spindle significantly
differed between CHC-KD and untreated/luciferase-KD
cells. Five of these six properties (solidity, extent, eccen-
tricity, compactness and satellite objects) were related to
structural deformation of the spindle. Fluorescence in-
tensity, a non-structural property, was also significantly
reduced in compromised spindles, in line with a previ-
ous study [9]. Our study showed that image processing
with MatQuantify can identify structural changes in the
mitotic spindle induced by knocking down the mitosis--
related protein CHC.
All images were deconvolved after microscopy acquisi-

tion using the softWoRx tool. Deconvolution corrects for
blur, noise, scatter and glare. Therefore, we did not de-
noise pixel intensities within ROIs before calculating
intensity-related measurements. However, further denois-
ing can be achieved using median or Weiner filters, as we
showed in another biological application [14]. We did not
use absolute intensity values to calculate the image prop-
erties in Table 1, except for counting satellites. Thus, users
of MatQuantify might need to adjust this parameter ac-
cording to their experimental conditions. The spectral
characteristics, such as the lens magnification and filters,
and the collection efficiency of the fluorescence micro-
scope used, as well as the dye microenvironment and label
density, affect the absolute fluorescence intensity.
We employed the Kruskal-Wallis and Tukey-Kramer

post hoc tests instead of non-parametric t-tests, which
can be used to identify pair-wise statistical differences
between two groups. Our study included three groups,
while t-tests are only designed to compare two groups.
This can lead to misinterpretation of the data. For ex-
ample, using the Mann-Whitney test, which compares
ranks and cumulative distributions between two groups,
area and fractal dimension were found to significantly
differ (P < 0.0001) in pairwise comparisons between the
three groups. However, employing Kruskal-Wallis test
following by the Tukey-Kramer test showed that area
and fractal dimensions of CHC-KD group were not sig-
nificantly different from untreated/luciferase-KD groups.
Thus, this approach provides a better interpretation of
the data.
During image processing, we removed noise from the

surrounding area. However, this noise may have arisen
from important cellular structures in the immediate

vicinity of the spindle apparatus. A MT-independent
mechanism underlies the accumulation of important
proteins in the spindle envelope. Therefore, better visu-
alisation techniques are needed to analyse the crowded
region surrounding the spindle [15] and we expect to be
able to develop generic image processing tools such as
MatQuantify to analyse these structures.
We have shown that through machine learning algo-

rithms, the quantified data generated by MatQuantify can
be used to automatically classify an image into the ‘treated’
or ‘untreated’ group. We achieved 85% accuracy using
SVM, which we considered sufficient to demonstrate the
working of the method. The default parameters of SVM
worked well and the accuracy was not improved by modify-
ing the parameters. In the future, we aim to improve the ac-
curacy by combining the quantified DNA and spindle data.
Computer algorithms have been used to assess certain

aspects of the spindle structure such as orientation [16]
and MT dynamics [17]. However, there is no general tool
that can quantify changes in the spindle structure and
other cellular structures such as DNA. MatQuantify
segments an ROI based on its area and can therefore be
used to measure 19 structural properties of any organelle
at any magnification. The output is saved into a tab-
delimited text file, which can be imported into a database
for large-scale analysis [18]. The user needs to know the
size of their structure-of-interest, which can be worked
out by trial and error.

Conclusions
In summary, MatQuantify measures a number of proper-
ties of an ROI and enables investigators to rapidly analyse
fluorescence microscopy images in a high-throughput and
automated fashion. These measurements can then be used
in a machine learning approach to classify images on the
basis of perturbations to the mitotic spindle, in this case
due to KD of CHC. MatQuantify, and the classification
method in the study should be applicable to other situa-
tions, such as pharmacological interventions, electrical
fields and external radiation therapies that impact the
shape and structure of the mitotic spindle.
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