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Abstract: Within their niche, adipose-derived stem cells (ADSCs) are essential for homeostasis
as well as for regeneration. Therefore, the interest of physicians is to use ADSCs as a tool for
radiation oncology and regenerative medicine. To investigate related risks, this study analyses the
radiation response of adult stem cells isolated from the adipose tissue of the female breast. To avoid
donor-specific effects, ADSCs isolated from breast reduction mammoplasties of 10 donors were
pooled and used for the radiobiological analysis. The clonogenic survival fraction assay was used to
classify the radiation sensitivity in comparison to a more radiation-sensitive (ZR-75-1), moderately
sensitive (MCF-7), and resistant (MCF10A) cell lines. Afterwards, cytotoxicity and genotoxicity of
irradiation on ADSCs were investigated. On the basis of clonogenic cell survival rates of ADSCs
after irradiation, we assign ADSCs an intermediate radiation sensitivity. Furthermore, a high repair
capacity of double-strand breaks is related to an altered cell cycle arrest and increased expression of
cyclin-dependent kinase (CDK) inhibitor p21. ADSCs isolated from breast tissue exhibit intermediate
radiation sensitivity, caused by functional repair mechanisms. Therefore, we propose ADSCs to be a
promising tool in radiation oncology.
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1. Introduction

The stromal vascular fraction of adipose tissue (AT) represents a source of multipotent stem
cells called adipose-derived stem cells (ADSCs) [1,2]. Since their first isolation by Rodbell in 1964 [3],
advantages of ADSCs in clinical applications have become more present in the past years. First, in
contrast to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells are
naturally immune-compatible and there are no ethical issues related to their use. Second, AT as a source
of adult stem cells is easily accessible compared to the more invasive and severe pain-associated bone
marrow harvesting. In addition, AT from liposuctions or breast reductions is often discarded as medical
waste, so no additional surgery is required. Simultaneously, ADSCs and bone marrow-derived stem
cells (BMSCs) bear similar phenotypes, including their capacity to self-renew, specific panels of surface
proteins, and similar differentiation potentials [2,4,5]. Consequently, ADSCs seem to represent a more
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promising tool for regenerative therapies than BMSCs [6–8]. From this reasoning, the characterization
and usage of ADSCs for clinical applications have recently been the focus of research.

Some applications of AT have been routinely used for decades, such as mammary lipografting to
patients for breast reconstructive and cosmetic purposes [9]. However, to receive satisfying results,
several repetitions of the lipografting procedure have to be performed [9], because only about 30–40%
of the transplanted cells survive this procedure [10], due to the initially missing vasculature of the
transplant, which leads to the hypoxic situation and thus to the increased death rate of the cells within
the lipograft. One solution is proposed by the working group around Adachi, who achieved an
increase of MMP-2 (matrix metalloprotenase-2) and VEGF (vascular endothelial growth factor) by
low-dose irradiation (IR) of ADSCs; these signaling agents are known to increase angiogenesis in
target cells. This way, the IR procedure of ADSCs might improve the cell survival of the autologous
lipograft [11].

What has not yet been considered, however, is the risk of undesired side effects after radiation
treatment of ADSCs. Therefore, this study investigates the cytotoxic effects of radiation on pooled
ADSCs (pADSCs) as well as their repair capacity of DNA damage. In the course of radiation therapy,
high energy is transferred either directly onto DNA molecules or indirectly by producing free radicals,
which in turn affect the DNA strands. The result may also be lesions on the DNA bases or the sugar
backbone, but the main cause of cell death is double-strand breaks (DSBs) [12]. Therefore, repair
mechanisms of DSBs are crucial for cells to overcome radiation-induced cell lesions. Depending on the
extent of cell damage, either apoptosis or cell cycle arrest is initiated, whereby the latter is being used
to initiate repair mechanisms. In both directions, p53 was identified as the main regulator depending
on activated target genes. While p53 regulates apoptosis through transcriptional activation of the
bcl2 family members (bax, noxa, and puma) [13], the cell cycle arrest and the subsequent entry into
repair mechanisms is targeted through the cyclin-dependent kinase (CDK) inhibitor p21 [14]. Those
repair pathways have already been confirmed for mouse and human BMSCs [15,16] as well as for
ADSCs isolated from the mouse [17]. Whether, as expected, similar radiation-induced mechanisms are
functional in human breast-derived ADSCs, is to be investigated within this study.

Being aware of the extent of possible damages to ADSCs after beam exposure may also be
important for planning radiation treatment of patients, because they are crucial for the healing of
many tissue damages. Within their niche, ADSCs are essential for homeostasis of adipose tissue
through adipogenesis and angiogenesis. Activated by external signals, ADSCs are able to secrete
factors to induce adipose remodeling and neovascularization in damaged tissue [18–20]. Therefore,
the management of radiation therapies which do not cause extensive damage in ADSCs could reduce
the incidence of undesirable side effects.

Thus, the purpose of this study is to classify the radiation sensitivity of ADSCs isolated from the
breast and to clarify underlying mechanisms.

2. Results

2.1. Immunophenotype of pADSCs Does Not Change after IR with a Maximal Dose of 8 Gy

For this study, ADSCs were obtained from human reduction mammoplasties from healthy
female donors. As shown in a previous study, these cells are characterized by a spindle-shaped
and fibroblast-like morphology as well as their ability to adhere on plastics. Furthermore, the cells
exhibit a multilineage capacity and a specific panel of expressed and lacking surface antigens (CD29+,
CD90+, CD31−, CD34−, CD45−, CD106−) [21].

In this study, ADSCs isolated from 10 different donors were pooled (pADSCs) to avoid
donor-specific effects. Their growth kinetics, proliferation rate, survival fraction, and repair capacity of
DNA double-strand breaks after the irradiation procedure were comparable to the average of the single
analysis of each donor (Appendix A, Table A2, Figures A1–A4). However, it should be noted that slight
donor-specific differences exist in the growth rate of ADSCs. Therefore, pADSCs of a relatively high
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number of donors were chosen for pooling, and experiments were performed only a few doubling
times after cell pooling.

As a basis for this study, the immunophenotype of irradiated pADSCs was characterized by
expressed and lacking surface antigens. Seventy-two hours after IR with a dose of 2 or 8 Gy, pADSCs
constantly expressed CD29 (90.0% and 95.7%) and CD90 (96.2% and 96.5%) in nearly every way that
CD31 (1.3% and 2.4%), CD34 (4.3% and 6.6%), CD45 (0.6% and 0.7%), and CD106 (0.3% and 0.4%) were
not (Figure 1). No significant differences relative to unirradiated cells were detectable. In summary,
with a maximum IR dose of 8 Gy, the immunophenotype of pADSCs did not change after IR.
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Figure 1. Surface antigen expressions (CD29, CD31, CD34, CD45, CD90, and CD106) of pADSCs
72 h after being irradiated with 2 or 8 Gy. The expression values of isotype-matched control
immunoglobulin-labeled cells were deducted from determined expression levels of each surface
antigen, and unstained cells were also carried as controls. Data are presented as mean ± standard
deviation, n = 3.

2.2. pADSCs Exhibit Intermediate Radiation Sensitivity

In order to classify the radiation sensitivity of ADSCs, the radiation-sensitive breast cancer
cell line ZR-75-1, the more moderately sensitive breast cancer cell line MCF-7 [22], and the rather
radiation-resistant cell line MCF10A [22] were tested for their clonogenic survival fraction (SF) parallel
to the analysis of pADSCs. The observed SF of the reference cell lines (Figure 2) are consistent with
published data [22,23]. Additionally, we tested the nontumorigenic epithelial cell line MCF10A in
order to compare the radiation sensitivity of pADSCs with a normal adjacent cell type. In general,
the number of ZR-75-1, MCF-7, MCF10A, and pADSCs colonies decreased with increasing IR dose,
whereby the survival curve of pADSCs runs between that of MCF10A and MCF-7 cells. An already
low-dose IR of 0.5 Gy leads to a reduction of pADSC SF to 88 ± 9%. After IR with a dose range of
4 to 8 Gy, pADSCs and MCF-7 cells show comparable SFs, whereas pADSCs are less affected than
MCF-7 cells after low-dose irradiation of 2 Gy (Appendix A, Table A1). It should be emphasized that
such an irradiation dose of 2 Gy is of particular clinical importance, since it is used for conventionally
fractionated whole-breast irradiation of early stage breast cancer patients. Compared to MCF-7 cells
and pADSCs, the nontumorigenic epithelial cell line MCF10A is rather radiation-resistant and the
tumorigenic cell line ZR-75-1 is rather radiation-sensitive. Altogether, pADSCs exhibit intermediate
radiation sensitivity.
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Figure 2. Colony-forming efficiency assay of pooled adipose-derived stem cells (pADSCs) in
comparison to MCF-7, MCF10A, and ZR-75-1 cells. ADSCs of 10 donors were pooled and, like
ZR-75-1, MCF-7, and MCF10A cells, seeded 24 h before the IR procedure, where 0 Gy was defined
as the control. The cells were stained by crystal violet to visualize formed colonies. The cell survival
fractions (SF) of the different experimental approaches were normalized to those of unirradiated
cells; n = 5 (MCF-7 cells and ZR-75-1 cells), n = 4 (pADSCs), or n = 3 (MCF10A cells) presented as
mean± standard deviation. Asterisks illustrate significance: ** p < 0.01; *** p < 0.002 (one sample t-test).

2.3. Irradiation Alters Cell Cycle Progression of pADSCs, Whereby p21 Was Identified as a Possible Mediator

2.3.1. Irradiation Inhibits the Proliferation of pADSCs Even at Moderate Doses

As early as an IR dose of 2 Gy, the proliferation rates of pADSCs and MCF10A cells are significantly
reduced, whereas an effect in MCF-7 cells could not be detected until a dose of 6 Gy (Figure 3).
In contrast, the more radiation-resistant MCF10A cells react similarly to pADSCs, with an increasing
inhibition of the proliferation rate with increasing IR dose, although the extent of this effect varies.
The lowest inhibition was recorded for the tumorigenic MCF-7 cells, which were identified as a more
radiation-sensitive cell line in the previous colony-forming units assay (see Section 2.2). Declining
proliferation rates can be caused by two factors: (1) Irradiation causes apoptosis, so that the cell
can no longer reproduce; (2) the repair of radiation-induced DNA damage is associated with the
short-term stop of cell cycle progression and the transition to the cell cycle arrest. Therefore, relatively
constant proliferation rates and low survival fractions can be explained by late or inefficient DNA
repair mechanisms.

Altogether, pADSCs showed the strongest decrease in proliferation rate after IR. The reason for
this could be an early initiation of apoptosis or the cell cycle arrest, the latter being associated with the
introduction of DNA repair mechanisms.

2.3.2. Irradiation Exposure Induces the ADSCs to Move from the S-Phase into Cell Cycle Arrest

In response to IR, short-term effects on the cell cycle progression were detectable in pADSCs
(Figure 4B, left). While the percentages of unirradiated cells in G1, S, and M phases were 73%, 6%,
and 22%, respectively, a significant decrease to 2% of cells in the S-phase was observed 24 h after IR
with application of 2 to 8 Gy, whereas the percentage of cells in G0/G1 phases numerically increased
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(2 Gy: 86%, 4 Gy: 86%, 6 Gy: 85%, 8 Gy: 85%). This indicates that the G0/G1 cell cycle checkpoint is
functional in pADSCs that enter G1 cell cycle arrest. At a later time point of 72 h after IR, differences
between irradiated and unirradiated cells are no longer detectable as early DNA repair mechanisms
might be completed (Figure 4B, right).Int. J. Mol. Sci. 2017, 18, x FOR PEER REVIEW  5 of 15 
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Figure 3. Proliferation rate of MCF-7 cells, pADSCs, and MCF10A cells within 48 h after the irradiation
procedure. Cell proliferation was measured using a BrdU ELISA colorimetric assay. Results are
illustrated as mean ± standard deviation (SD, n = 3). Asterisks illustrate significance: * p < 0.02;
** p < 0.01; *** p < 0.002 (one sample t-test).
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Figure 4. Effect of irradiation on cell cycle progression after an incubation time of 24 and 72 h.
Distribution of cells in cell cycle phases (G0/G1, S and G2/M) and cells with degraded cell DNA
(subG1) was determined by flow cytometry using propidium iodide (PI) to measure the DNA content
of each cell. (A) Exemplary histograms of cell cycle assay by flow cytometry of unirradiated (0 Gy) and
irradiated pADSCs (0.25, 1, 2, 4, and 6 Gy), 24 h after the irradiation procedure; on the right corner of
each image, results are illustrated as mean ± standard deviation (SD, n = 3); (B) Graphical illustration
of cell cycle distribution of unirradiated and irradiated cells; asterisks illustrate significant differences
to unirradiated cells (control): * p < 0.05; ** p < 0.01; *** p < 0.001 (students t-test and two-way ANOVA
with Bonferroni post-hoc test).
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2.3.3. The Protein p21 Could Be One Mediator of Observed Cell Cycle Progressions

The gene of the CDK inhibitor p21 is known to be a critical mediator of p53-dependent G1
arrest in tumor cells and the subsequent entry into repair mechanisms [24,25]. Here, we detected a
raise of the p21 gene expression in pADSCs after IR, whereby a direct linearity was observable with
increasing radiation dose (Figure 5). These effects are detectable both 24 h and 72 h after IR with a
time-dependent attenuation of p21 expression in pADSCs after 4 and 6 Gy IR (two-way ANOVA,
p < 0.001). Consequently, p21 could be one mediator of observed IR-dependent cell cycle progressions
in pADSCs, as already demonstrated in BMSCs [26].
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Figure 5. Influence of irradiation on gene expression of p21 in ADSC cells at different time points.
Using the ∆∆Ct method, data from three independent experiments were presented as mean of the
relative expression values ± standard deviation. Asterisks illustrate significance: * p < 0.05; ** p < 0.01;
*** p < 0.001.

2.4. pADSCs Possess a High Repair Capacity of DNA Double-Strand Breaks

As observed here, pADSCs exhibit intermediate radiation sensitivity. Subsequent analysis of
proliferation rate, cell cycle progression, and p21 expression suggest that relatively early repair
mechanisms are introduced into these cells. To further investigate this hypothesis, IR-induced DNA
damage was verified in the frequency of DSBs, both shortly after irradiation, to detect DNA damage,
and after an incubation time of 24 h after IR, to analyze their repair.

IR induced DSBs in pADSCs, whereby their occurrence increased in a linear way with increasing
radiation dose (Figure 6). After an incubation time of 24 h, the level of DSBs in pADSCs decreased
extremely, so that differences among unirradiated and 0.5 Gy-irradiated cells were not detectable.
Even the 6 Gy IR-induced γH2AX foci decreased in number from 48 to 6 per cell nucleus after 24 h
incubation. These findings implicate that the repair mechanisms of IR-induced DNA damage are
functional in pADSCs within a dose range of 0.5 to 6 Gy.
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Figure 6. dsDNA-damaging effects of irradiation (IR) on pADSCs and their repair capacity within
24 h. Phosphorylated H2AX (γH2AX) was used as a marker for DNA double-strand breaks (DSBs).
To determine γH2AX foci, cells were fixed 1 h or 24 h after IR and incubated with anti-γH2AX antibody
and IgG1 (red); DNA counterstaining with 4,6-diamidino-2-phenylindole (DAPI) (blue). (A) Exemplary
images of immunocytochemistry staining at different time points after IR. On the left corner of each
image, results are illustrated as mean ± standard deviation (SD, n = 3); (B) Graphical illustration of
mean number of γH2AX foci per cell; asterisks illustrate significant differences to unirradiated cells
(control): * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Discussion

In the present study, we demonstrate that ADSCs isolated from the breast adipose tissue exhibit
intermediate radiation sensitivity, as a result of early cell cycle arrest associated with increased p21
expression and fast DNA damage repair.

These results correspond to the hypothesis that adult stem cells are more resistant to IR than
embryonic stem cells. Nevertheless, tissue-specific differences exist, probably caused by disparities
in the expression of pro-apoptotic or anti-apoptotic proteins as well as cell cycle duration and p53
dynamics [27]. Whereas stem cells from the bone marrow are well characterized for their radiation
sensitivity [16], studies on ADSCs are lacking or are carried out with mice as the host [17]. In addition,
there are characteristic differences between adult stem cells isolated from adipose tissues of different
origins, including growth kinetics [28,29]—a factor that may be responsible for tissue-specific radiation
sensitivities [27]. From this reasoning, extensive analyses of underlying IR-induced mechanisms in
ADSCs from different origins have to be performed in the future to engineer reliable cellular therapy
options in radiation oncology.

To our knowledge, this is the first work that investigates the radiation response of ADSCs isolated
from the breast and thus provides the first insights into unwanted side effects of radiation therapy that
could result from damaged stem cells. Minimizing stem cell damage should be the aim of modern
radiotherapy in order to reduce undesirable side effects. Here, we detected a full repair of DSBs only
24 h after an irradiation dose of 0.5 Gy. Due to higher IR doses, a small number of residual DSBs were
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observed. Whether repetitions of this IR procedure in the course of fractionated radiation therapy
could be critical for the appropriate tissue is questionable. However, in BMSCs, fractionated doses of
IR seem to be rather protective [30].

Altogether, further investigations are needed to determine the long-term effects of IR on ADSCs
and especially the repeated IR procedure in the course of fractionated radiation therapy. Nevertheless,
this study highlights the intermediate resistance of ADSCs isolated from the breast and their functional
repair mechanism for IR-dependent damage.

In conclusion, ADSCs isolated from the breast seem to be capable for cellular therapy options in
radiation oncology and regenerative medicine before radiation therapy.

4. Materials and Methods

4.1. Cell Culture

4.1.1. Isolation of ADSCs

The isolation of ADSCs was performed with human reduction mammoplasties from healthy
female donors. This work was approved by the ethics committee at the University of Rostock, Germany
(registration-number: A201008). The protocol for the isolation of fat tissue has been developed and
optimized from previously described work [23,31]. Tissue samples were mechanically minced and
adipose tissue was washed three times with phosphate-buffered saline (PBS, PAN-Biotech GmbH,
Aidenbach, Germany) and centrifuged (250× g). After each centrifugation, the infranatant and
resultant pellet were removed. Samples were digested with 0.1% collagenase type I (100 U/mL, Gibco
Life Technologies, Darmstadt, Germany) and supplemented with penicillin/streptomycin (P/S, 1%;
100 × penicillin 10,000 U/mL, streptomycin 10,000 µg/mL, Sigma-Aldrich, Steinheim, Germany) on a
shaker at a low setting for 18 h at 37 ◦C. After complete dissociation, the tissue samples were washed
with an equal volume of Dulbecco’s modified Eagle medium and Kaighn’s modification of Ham’s
F12 (DMEM-F12 media, Life Technologies) and filtered through 100 µm strainers (Greiner Bio-One,
Frickenhausen, Germany). This was followed by a centrifugation step (190× g, 10 min, 37 ◦C) to
obtain the ADSC fraction. The supernatant was discarded and the pellet was resuspended in ADSC
culture medium containing DMEM-F12 supplemented with 10% fetal bovine serum Superior (FBS,
Biochrom AG, Berlin, Germany) and 1% P/S. Cells were cultured at 37 ◦C in the presence of 5% CO2

for 48 h in order to enable them to adhere. Afterwards, the non-adherent fraction was removed and
the remaining cells were washed twice with PBS before seeding. The medium was replaced once
every three days. When cells reached between 80% confluence, the medium was discarded, and cells
were washed twice with PBS and trypsinized with 0.25% trypsin/EDTA (PAA Laboratories, Cölbe,
Germany). The cell count was determined using a Coulter Z2 automated cell counter (Beckmann
Coulter GmbH, Krefeld, Germany). The cells (passage 1) were cryopreserved in ADSC culture medium
containing 10% dimethyl sulfoxide (DMSO; Merck, Darmstadt, Germany) and 20% FBS. Experiments
were performed in passages three to five.

To avoid donor depending effects of primary human cells, ADSCs of 10 different patients were
cultured and pooled. Therefor the abbreviation pADSCs (pooled ADSCs) is used in the following.

4.1.2. Cell Lines

For comparative purposes, two human breast cancer cell lines (MCF-7 and ZR-75-1) and the
non-tumorigenic epithelial breast cell line (MCF10A) were tested parallel to the radiation biologic
analyzes of pADSCs. The MCF-7 cells (HTB-22™) as well as the MCF10A cells (CRL-10317™) were
purchased from the ATCC and the ZR-75-1 cells from ECACC. MCF-7 cells were cultured in DMEM
(Lonza BioWhittaker, Verviers, Belgium) containing 1% P/S and 10% FBS at 37 ◦C with 5% CO2.
MCF10A cells were provided by Prof. Kevin Prise, Queen’s University Belfast, Ireland, and cultivated
using DMEM/F12 supplemented with 0.01% cholera toxin, 0.1% insulin, 0.05% hydrocortisone
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(all Sigma-Aldrich), and 1% P/S, 0.02% epidermal growth factor (EGF; Gibco/Life Technologies),
and 5% horse serum (Fisher Scientific, Schwerte, Germany) under 5% CO2 and at 37 ◦C. ZR-75-1 cells
were cultured in RPMI 1640 (PAN Biotech GmbH, Aidenbach, Germany) containing 10% FBS, 1% P/S,
and 0.2% sodium pyruvate (Gibco Life Technologies, Darmstadt, Germany).

4.1.3. Cell Maintenance

When cells reached between 80% confluence, the medium was discarded and cells were washed
twice with PBS. Afterwards, ADSCs and ZR-75-1 cells were detached by using 0.25% trypsin/EDTA;
MCF-7 and MCF10A cells by using 0.05% trypsin/EDTA.

4.2. Irradiation

The cells were irradiated 24 h after seeding using the Linac Siemens Oncor Expression (Healthcare
Sector Siemens AG, Erlangen, Germany) at a dose rate of 3.75 Gy/min. Used IR doses were 0.25, 0.5, 2,
4, 6, and 8 Gy, where 0 Gy was utilized as the control.

4.3. Expression Panel of Characteristical Surface Proteins

For analysis of mesenchymal surface markers, ADSCs in passages three to five were trypsinized,
washed with staining buffer (BD Pharmingen, BD Biosciences, Heidelberg, Germany), and stained with
the following antibodies: CD29-PE, CD34-PE, CD90-FITC (all BD Biosciences), CD31-PE, CD45-PE, and
CD106-PE (all Biolegend, London, UK) on ice and in the dark for 20 min. Fluorochrome-conjugated
isotype control antibodies (BD Biosciences) were used to determine the level of nonspecific binding.
Samples were washed (300× g, 4 ◦C, 5 min) and resuspended with staining buffer. The cells were
analyzed by flow cytometry directly after incubation with 7-aminoactinomycin (7-AAD, Biolegend) for
10 min on ice and protected by light (Cytomics FC 500, Beckmann Coulter, Krefeld, Germany). Positive
and negative events were calculated using the CXP™ software (Beckman Coulter) and gated for living
cells (negative for 7-AAD).

4.4. Cytotoxic Effects of Radiation

4.4.1. Cell Proliferation Assay

Changes in the cell proliferation rate after IR were assessed by intracellular bromodeoxyuridine
(BrdU) incorporation (Cell Proliferation ELISA, Roche Applied Science, Mannheim, Germany). For this
purpose, 2000 pADSCs as well as 1500 MCF-7 cells and 2500 MCF10A cells were seeded in quintuplicate
into 96-well plates (TPP Techno Plastic Products AG, Trasadingen, Switzerland). Those cell type-specific
seeding densities were determined previously in order to avoid influencing the proliferative behaviour
of cells by contact inhibition.

Radiation doses of 2, 4, 6, and 8 Gy were applied. After an incubation time of 48 h, which
corresponds approximately to the determined doubling time of pADSCs, the colorimetric cell
proliferation ELISA was performed according to the manufacturer’s instructions. In order to calculate
the relative BrdU incorporation, the measurements of unirradiated cells were defined as 100%
BrdU incorporation.

4.4.2. Colony-Forming Units Assay

To determine the long-term effect of IR on the cell survival, the colony-forming units assay was
performed. Therefore, pADSCs (1000 cells), MCF-7 (500 cells), MCF10A (1000 cells), and ZR-75-1 cells
cells (8000 cells) were seeded in triplicates in T25 flasks or 6-well plates (Greiner Bio One) and treated
with the radiation doses ranging from 0 Gy to 6 Gy. A full medium exchange with culture medium was
performed every three (ADSCs) or seven days (MCF-7, MCF10A, ZR-75-1). On day 7 (MCF10A), day 21
(ZR-75-1 cells), day 15 (MCF-7 cells), or on day 20 (pADSCs), the cells were stained by 1% crystal violet
(Serva Electrophoresis GmbH, Heidelberg, Germany) to visualize formed colonies. Colonies consisting



Int. J. Mol. Sci. 2018, 19, 1988 10 of 15

of at least 50 cells were counted by microscopy. The calculated plating efficiency (PE) and survival
fractions (SF) were evaluated using the data analysis and graphics software Origin 8.6.

4.5. Effects of Irradiation on Cell Cycle

4.5.1. Flow Cytometry

In order to analyze changes in cell cycle progression after IR, the DNA content in the cells was
determined by flow cytometry. Twenty-four hours after IR (0, 2, 4, 6, and 8 Gy), pADSCs were
harvested and fixed in 70% ice-cold ethanol at −20 ◦C overnight. Afterwards, the cells were incubated
in 1 mL RNase A (100 µg/mL) at 37 ◦C for 15 min and stained with 50 µg/mL propidium iodide
(Sigma Aldrich Chemie GmbH, Munich, Germany) at 4 ◦C overnight. Using Cytomic FC 500 flow
cytometer and CXP analysis software, the DNA content was determined and analyzed.

4.5.2. Real-Time Quantitative Reverse Transcription-PCR

400,000 of pADSCs were seeded in T75-flasks and irradiated 24 h later. Total RNA was isolated 24,
48, and 72 h after IR using a NucleoSpin® RNA kit (Macherey-Nagel, Düren, Germany). For cDNA
synthesis, the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Schwerte, Germany)
was used. The following Taq Man assays (Applied Biosystems®, Darmstadt, Germany) were used
for the gene expression analysis: tumour protein p21 (TP21; Hs01040810_m1) as gene of interest and
TATA-Box-Binding Protein (TBP; Hs00427620_m1) as internal control. Real-time quantitative reverse
transcription PCR was performed using a PCR cycler AB7300 (Applied Biosystems®, Life Technologies,
Darmstadt, Germany) under specific cycling conditions (1. 50 ◦C for 2 min, 1 cycle; 2. 95 ◦C for 10 min,
1 cycle; 3. 95 ◦C for 15 s to 60 ◦C for 1 min, 40 cycles). Every sample was tested in triplicate for three
independent experiments. A normalization of the relative quantitative values of mRNA for tumor
protein p21 (TP21) was performed to the endogenous control TBP via the ∆∆Ct method.

4.6. DNA Damaging Effects: Measurement of DNA Double-Strand Breaks (γH2AX Assay)

Twenty-four hours before IR, 35,000 pADSCs were seeded in duplicate in chamber slides (LabTek®,
Nunc, Roskilde, Denmark). After fixation with 2% formaldehyde and permeabilisation with 0.25%
Triton X-100 (both Sigma Aldrich Chemie GmbH), the cells were consecutively incubated 60 min with
anti-γH2AX antibody (1:500, clone JBW301, Merck Millipore) and Alexa Fluor 594 goat anti-mouse
IgG1 (1:400, Molecular Probes®/Life Technologies, Darmstadt, Germany) for 30 min. The slides were
mounted with Vectashield® containing anti-4′,6-diamidino-2-phenylindole (DAPI; Vector Laboratories,
Inc., Burlingame, CA, USA). The foci were visualised with an Eclipse TE300 inverted microscope
(Nikon, Tokyo, Japan). At a magnification of 1000×, the foci of 50 cells per chamber were counted; two
chambers per IR dose.

4.7. Statistical Analysis

All data was presented as the mean ± standard deviation (SD) or standard error of mean (SEM).
The normality of the distribution of each parameter was assessed using the Anderson–Darling test.
Where normality assumptions were not met, data were logarithmically transformed. To identify
differences between data sets, the two-tailed Student’s t-test was performed. To compare a variable
under different conditions, the two-way ANOVA was performed, followed by a Bonferroni post-hoc
test performed with SigmaPlot (Version 13.0, Systat Software GmbH). Significance was assessed at
p < 0.05 (*: p < 0.05, **: p < 0.01; ***: p < 0.001). For comparative analysis of one dataset to a fixed
value, the one-sample t-test was used. Here, a p value of <0.02 was considered a significant difference
(*: p < 0.02, **: p < 0.01; ***: p < 0.002).
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Abbreviations

AT adipose tissue
ADSCs adipose-derived stem cells
BMSCs bone marrow-derived stem cells
CDK cyclin-dependent kinase
DSBs double-strand breaks
ESCs embryonic stem cells
iPSCs induced pluripotent stem cells
IR irradiation
MMP-2 matrix metalloprotenase-2
pADSCs pooled adipose-derived stem cells
PE plating efficiency
γH2AX phosphorylated H2AX
SD standard deviation
SF survival fraction
VEGF vascular endothelial growth factor

Appendix A

Table A1. Comparison of pADSC survival fractions for each dose with those of MCF-7, MCF10A, and
ZR-75-1 cells.

Irradiation Dose (Gy) Survival Fraction ± Standard Deviation p Value 1

pADSCs

0.5 0.88 ± 0.09
1 0.79 ± 0.07
2 0.64 ± 0.05
4 0.26 ± 0.08
6 0.05 ± 0.01

MCF-7 cells
2 0.52 ± 0.06 0.01811 *
4 0.21 ± 0.05 0.29717
6 0.06 ± 0.02 0.51909

MCF10A cells
2 0.85 ± 0.05 0.00722 **
4 0.61 ± 0.04 0.00165 **
6 0.23 ± 0.01 0.00244 **

ZR-75-1 cells
2 0.48 ± 0.19 0.19339
4 0.10 ± 0.05 0.01072 *
6 0.01 ± 0.01 0.00069 ***

1 Student’s t-test was used to compare survival fractions of pADSCs for each dose with survival fractions of MCF-7,
MCF10A, and ZR-75-1 cells; bolded datasets represent significant differences to the dataset of pADSCs, asterisks
illustrate significance: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table A2. Population doubling times (PDT) of ADSCs within an incubation time of 48 to 240 h with
special emphasis on the PDT of pooled cells and pooled data (bolded).

PDT (48–240 h) ± Standard Deviation

pooled cells 96.5 ± 8.0 h
donor 1 110.7 ± 33.1 h
donor 2 73.4 ± 7.3 h
donor 3 79.2 ± 19.0 h
donor 4 82.2 ± 20.4 h
donor 5 104.1 ± 27.2 h
donor 6 107.9 ± 23.3 h
donor 7 75.6 ± 9.2 h
donor 8 97.3 ± 18.9 h
donor 9 113.0 ± 12.2 h

donor 10 179.6 ± 75.8 h
pooled data 102.3 ± 29.5 h
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Figure A2. Donor-specific differences in the proliferation rate of irradiated ADSCs: comparison of
pooled cells and pooled data of ten different donors. Cell proliferation was measured using a BrdU
ELISA colorimetric assay. Black lines illustrate the mean value of all individual donors. Results are
illustrated as mean ± standard deviation (SD, n = 3).
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Figure A3. Donor-specific differences in the survival fraction of irradiated adipose-derived stem
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