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ABSTRACT
Finite element analysis (FEA) is no longer a new technique in the fields of
palaeontology, anthropology, and evolutionary biology. It is nowadays a well-
established technique within the virtual functional-morphology toolkit. However,
almost all the works published in these fields have only applied the most basic
FEA tools i.e., linear materials in static structural problems. Linear and static
approximations are commonly used because they are computationally less expensive,
and the error associated with these assumptions can be accepted. Nonetheless,
nonlinearities are natural to be used in biomechanical models especially when
modelling soft tissues, establish contacts between separated bones or the inclusion of
buckling results. The aim of this review is to, firstly, highlight the usefulness of
non-linearities and secondly, showcase these FEA tool to researchers that work in
functional morphology and biomechanics, as non-linearities can improve their FEA
models by widening the possible applications and topics that currently are not used
in palaeontology and anthropology.

Subjects Anthropology, Evolutionary Studies, Paleontology, Zoology, Biomechanics
Keywords Finite element analysis, Palaeontology, Anthropology, Non-linear methods, Functional
morphology

INTRODUCTION
Computational biomechanics represents the application of computational tools in
mechanical problems to study biological systems. During the last decade, computational
methods such as finite element analysis (FEA) have been widely used in the field of
palaeontology to study biomechanical behaviour of a vast array of fossil species (Rayfield,
2007). However, almost all works published in the field have applied the most basic FEA
capabilities, i.e. liner materials in static structural problems, where we can easily define the
relationship between physical parameters by means of linear equations. This kind of
equations are easy to solve using direct solvers as they exhibit a low computational cost
that is a direct response of the size of the finite element mesh. A larger number of nodes in
a finite element mesh involves more unknowns in the equation and, consequently, more
time is required to solve the mathematical system of equations. Nevertheless, mathematical
nonlinearities are natural in physical laws and the assumption of linearity and staticity is a
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simplification of reality to make the problem easy to solve. This is because a nonlinear
system is characterized with an output that is not proportional to the change of the input.
The inclusion of this complexity entails an increase in the computational cost of solving
the equations and the need of using iterative solvers. Consequently, palaeontologists have
primarily used linear approximations and static problems because these are easier to
calculate, computationally faster and solutions can be superposed on each other, hence
avoiding an iterative process. In addition, most palaeontologists do not have a deep
background on how FEA problems are defined and solved, and many are not aware
of the potential of non-linear modelling. For example, including non-linearities in
paleoanthropological models can improve the results obtained when modelling skulls by
considering sutures, thus making the behaviour of the model closer to reality (Tanaka
et al., 2000). They can also be useful in understanding the failure of slender and thin bones
or when trying to understand the taphonomic deformations that affected some fossil
material by carrying out retrodeformation procedures. Nowadays, most of both
commercial and non-commercial FEA packages can solve non-linearities and some
examples are already published in living species or in biomedical studies involving
humans. Therefore, it makes sense to explore the possibilities that non-linear FEA could
provide to the palaeontological and anthropological communities, as these approaches
would allow them to explore a broader range of scientific questions, including topics that
are currently unsolved or not modelled with enough accuracy. Consequently, the aim of
this review is to, firstly, showcase when non-linearities can be useful in functional
morphology and secondly, to introduce these methods to researchers that work
biomechanics as a way to improving their FEA models by showing them examples that
currently are not used in this field. Therefore, this review can be of interest for
palaeontologists that seek new ideas in their research, functional morphologists that want
to be one step beyond in their research and other researchers who work in the life sciences
or in computational mechanics that want to know the state-of-the-art in non-linear FEA
applied to biomechanical models.

SEARCH METHODOLOGY
The literature cited in this text is based on a personal selection made by the author to
reliably characterise the methods described in the text. A previous search in the Google
Scholar database was done to select the appropriate references for the examples. Different
keywords were used in each analysed case to fit the expected search. The final selection of
the references was based on covering- if possible- diverse animal families, different
morphologies, or different fields.

DISCOVERING ALLTHE FEA ELEMENTS: SOLIDS, SHELLS,
PLATES, BEAMS, SPRINGS, AND TRUSSES
Finite element analysis (FEA) is the mathematical way to solve problems of elasticity in
complex geometries by dividing the geometry in small elements where the equations are
easy to solve (Zienkiewicz & Taylor, 1981). The equations of elasticity relate the external
forces applied in a body to understand how it deforms and how the inner forces are
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distributed inside them (Timoshenko & Gere, 1961). The underlying premise of the
method is that a complex geometry can be subdivided into a mesh consisting of a finite
number of elements in which the respective equations are approximately solved
(Marcé-Nogué et al., 2015). This method has been widely used in palaeontology,
anthropology and functional morphology mostly because we can easily digitize bony
structures (Lautenschlager, 2016) to then apply FEA to the obtained geometries. It cannot
be omitted that the generated models are not literal representations of reality, but they still
may be useful for answering scientific questions (Anderson et al., 2012). Following the idea
of simplification there are different kinds of elements that we can use when we are creating
a FEA model (Fig. 1). The use of some of these elements will result in a greater degree of
simplification from reality than others because different simplifications are assumed in
terms of geometry and mechanical behaviour, but also because it involves a reduction of
the complexity of the mathematical equations and the computational time.

The elements beam and spring or truss are used when the original geometry is a line or
can be assumed as a line and the model is defined either in the 3D space or in 2D.
The primary difference between these elements is that beam elements follow beam theory
(Timoshenko, 1955), which enables the calculation of the loads and deflection of beams
subjected to outer forces (including bending, shear, torsion and axial forces). Springs and
truss elements, in contrast, are only designed to handle tensile and compressive forces in
the axial direction of the element. Examples can be found when simplifying the skull of
reptiles and mammals to a beammodel (Preuschoft &Witzel, 2002). However, they are not
widely used because these models can be solved most of the time by hand without the need
of a computer. However, the use of springs or truss are widely extended as a complement of
the model when it is necessary to include tendons, ligaments, or other complementary
biological structures of the main model. For example, FEA models of the carpal bones
include spring elements to model the presence of ligaments between bones (Gíslason et al.,
2017).

Figure 1 Examples. Examples of bar elements (Marcé-Nogué & Liu, 2020) shell elements (Püschel et al.,
2020a), plane elements (Marcé-Nogué et al., 2020) and solid finite elements (Zhou et al., 2017).

Full-size DOI: 10.7717/peerj.13890/fig-1
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Shell and plate elements are commonly used when the geometry can be assumed as a
surface with constant thickness and the model is defined in 3D space. The difference
between shells and plates are that shells are used in curved surfaces and plates only in plane
surfaces. Mechanically speaking, both shells and plates can handle bending, but shells
develop membrane forces whereas plates do not. This means that shell elements include
the membrane effects of resistance to compressive and tensile forces, whereas plates do not.
In most of the biological models modelling bone structures, shells have been the preferred
option in front of plates. An example of shell elements can be found in works analysing
carpal bones (Püschel et al., 2020a) or talar morphologies (Püschel et al., 2020b) because
they have a tiny layer of cortical bone with cancellous bone inside where the cortical bone
can be assumed as a surface or when modelling something thin as dragonfly wings (Rajabi
et al., 2016a).

Another assumption that may further reduce the dimensions of the problem may be
simplifying to a surface that lies in a 2D plane using plane elements. I suggest calling them
as plane elements because these elements are not really in 2D since they have a constant
thickness and use the equations of plane elasticity. When solving the equations of elasticity,
plane elasticity refers to the study of specific solutions of the elastic problem in bodies that
are surfaces with a constant thickness that are lying in a plane and the forces you apply
should lie in this plane. Examples of plane models can be widely found in studies focused
on mammal mandibles (Lautenschlager et al., 2020; Marcé-Nogué et al., 2020) or in
dinosaurs and other fossils (Neenan et al., 2014;Ma et al., 2021). Plane models also can be
useful when modelling other morphologies such as trilobites (Esteve et al., 2021), claws
(Patiño, Pérez Zerpa & Fariña, 2019), beaks (Miller et al., 2020) or teeth (Ballell & Ferrón,
2021).

It is important to point out the differences between shell, plate, and plane elements.
First, shell elements are not lying in a plane whereas plane and plate elements are.
Secondly, plate element allows forces that are not in the plane, like perpendicular forces,
supporting bending whereas plane elements do not. This difference can be seen in previous
FEA modelling studies of several temnospondyl amphibians (Fortuny et al., 2012) or
crocodylomorphs (Pierce, Angielczyk & Rayfield, 2009) where the forces applied are
perpendicular to the flat surface of the skull during bilateral cases where plate elements
where used.

Finally, solid elements are used when the geometry is a volume, and the model is built in
the 3D space. They have been the most widely used in palaeontology and anthropology
because they can be easily created from after digitizing a real geometry using CT scanning,
photogrammetry, laser scanners, among others. Examples can be found in FEA models of
mandibles which have been modelled in 3D (e.g. (Zhou et al., 2019)), unlike the simpler
plane models described above. Solid elements can also be found in models of skulls (Zhou
et al., 2017), teeth (Benazzi et al., 2012) and a broad range of postcranial (Püschel & Sellers,
2016;McCabe et al., 2017; Bucchi et al., 2020) and other biological structures (Nagel-Myers
et al., 2019; Bicknell et al., 2021; Klunk et al., 2021; Krings, Marcé-Nogué & Gorb, 2021).
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NON-LINEARITIES IN FEA MODELS
In general, a nonlinear system is a mathematical system in which the change of the output
variable is not proportional to the change of the input variable and, consequently, the
equations cannot be written as a linear combination of the unknown variables (Kim, 2015).
Therefore, the equations of nonlinear systems are more difficult to solve. A common
strategy to deal with them is to approximate the system by linear equations performing
multiple iterations to converge to the correct solution (Fig. 2). On the contrary, problems
are linear when the output variable is proportional to the change of the input variable.
Linearities are found in elastic materials (i.e., following the Hooke’s Law) or when using
the small strain theory. This theory is applied when deformations are much smaller than
the body dimensions. Therefore, the deformed and undeformed configurations of the body
under analysis are assumed to be the same. The equations of continuum mechanics are
considerably simplified when applying this assumption by ‘linearising’ (i.e., making linear)
the problem to be solved. Non-linearities can be originated by different phenomena in
these systems:

1. Material non-linearity: When a material is non-linear, the strain it experiences is not
proportional to the stress applied i.e., the material does not conform to Hooke’s Law.
This situation occurs in plastic or hyperelastic materials where the relationship between
stress and strain does not follow a lineal proportion.

2. Large deformation non-linearity: The so-called finite strain theory, large strain theory,
or large deformation theory is used when strains are large enough to invalidate the
assumptions of the small strain theory, which is the theory commonly used in linear
elastic problems. In this case, the deformed and undeformed configurations of the body
under analysis are notably different, requiring a clear distinction between them in the
formulation that, consequently, also affects the relation between stress and strain in the
constitutive equation. This theory is common in elastomers and soft tissues and needs to
be used when modelling hyperelastic materials.

3. Large displacement non-linearity: Also called as geometrical non-linearity, assumes
small strains but large rotations and displacements. In the geometrically linear case, the

Figure 2 Convergence. Relationship between external force (F) applied in a body and displacement
(u) in (A) linear problem (B) non-linear problem. K is the stiffness of linear models. Ki is the predicted
stiffness in non-linear models to reach the convergence. Full-size DOI: 10.7717/peerj.13890/fig-2
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forces are applied in the undeformed geometry when solving the model whereas in the
geometrically nonlinear cases, the applied forces depend on the deformed upcoming
geometry. It involves an iterative solution accounting for the displacements and needs to
be considered when analysing buckling.

4. Non-linear contacts: Separate surfaces of two bodies are in contact without overlapping
in such a way that they become mutually tangential. Depending on the relationship
between these two surfaces, contacts that allow the separation in the perpendicular
direction require a nonlinear solution because there are unknowns at the start of the
solving process i.e., where and which force is applied.

The mathematical methods applied to solve general nonlinear functions are all iterative
starting from an initial estimation. The solution is obtained by solving iteratively a
linearization of the non-linear system in different steps towards the convergence of the
solution. Different methods are available depending on the procedure of calculating the
increment of the steps: the Newton-Raphson method, the incremental secant method or
the incremental force method among others (Kim, 2015). Therefore, the computational
cost of the solving procedure of a nonlinear FEA model is now not only affected by the size
of the mesh, but also affected by the number of iterative resolutions before convergence.

Non-linear materials: hyperelasticity and plasticity
Non-linear materials are materials in which the constitutive equation that defines their
behaviours establishes a relationship between stress and strain that is not proportional to a
constant. Typical material non-linearities can be found in phenomena such as plasticity
and hyperelasticity. Plasticity describes the deformation of a material undergoing
non-reversible changes of shape in response to applied forces. In a typical stress-strain
curve for a plastic material there is a linear elastic region which satisfies Hooke’s law and a
plastic region before fracture that can also follow a linear law or can be defined using
different linear sections (Fig. 3). The transition from elastic behaviour to plastic behaviour
is called yield and a non-linear solution is required because the solver needs to discover if
the body is in the plastic region or not. The total strain is defined by etotal ¼ eelastic þ eplastic
and the value of stress will depend on the value of this total strain. In a biological context,

Figure 3 Materials. Constitutive equations between stress (σ) and strain (ε) for (A) plastic materials
using a bilinear model and (B) hyperelastic materials. In a plastic material εT is the total strain when there
is elastic strain (εE) and εt plastic strain; E is the Young Modulus. In a hyperelastic material W is the strain
energy and Eij the components of the strain tensor. Full-size DOI: 10.7717/peerj.13890/fig-3
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plasticity can be found in trabecular bone formulations to capture tension-compression
asymmetry in the yield strength (Gupta et al., 2007) or, more generally, in studies where a
permanent deformation or plasticity is assumed in cortical bone or other biological
materials such as dentin, enamel or nacre (An, 2016). In materials such as dentine or
enamel, plasticity represents the extremes of the loading environment rather than everyday
behaviour.

A hyperelastic material is one that shows extreme elastic behaviour, in that it can return
to its original shape even after experiencing very high strains. They are ideal elastic
materials in which the stress-strain relationship is non-linear because derives from a strain
energy function instead of Hooke’s law (Fig. 3). Moreover, these materials use the large
deformation theory already mentioned above. However, the response of the material is not
plastic because deformations are fully recoverable. Typical formulations of hyperelastic
materials are, among others, phenomenological descriptions of observed behaviour in
Mooney–Rivlin and Ogden formulations or equations describing the underlying structure
of the material in the Neo–Hookean model (Ogden, 1984). Hyperelastic formulations are
common in soft tissues such as ligaments or tendons (Shearer, 2015). Specifically, they can
be found in the periodontal ligament (PDL) (Bucchi et al., 2019), muscles such as the pelvic
floor (Stansfield et al., 2021), the abdominal muscle (Tuset et al., 2019) or generic muscular
tissues (Hedenstierna, Halldin & Brolin, 2008), skin (Ito et al., 2022), corneas (Shan et al.,
2010), cartilage (Pataky, Koseki & Cox, 2016), the temporomandibular joint (Sagl et al.,
2019) or when modelling blood vessels (Vorp, 2007).

Sometimes the equations that are defined to control soft tissue behaviour include a
viscous term (Huang et al., 2017). Viscoelasticity describes the variation of material
response within time containing an elastic and a viscous part. The viscous part can describe
creep, when stress remains constant and the deformation increases with time, or
relaxation, when the deformation remains constant and stress decreases over time. On the
other hand, the elastic response is instantaneous and can be defined using a linear material
(Booker & Small, 1977) or a nonlinear hyperelastic material (Kulkarni et al., 2016).

More complex models, including fibres in their formulation, exist for the arterial vessels
(Gasser, Ogden & Holzapfel, 2006) or the intervertebral discs (Noailly, Planell & Lacroix,
2011) among others. Despite the complexity of these formulae, which combines the overlay
of the stiffness in the preferred directions of the fibres with the hyperelastic formulation of
the matrix, the constitutive equation is also nonlinear, and it must be solved following an
iterative procedure.

Non-linearities in geometry: buckling
In a linear problem, the equations of equilibrium are formulated in the original
undeformed state and are not updated with the deformation. This is common in most
engineering problems because the deformations are small enough to avoid differentiating
the original geometry and the deformed one. However, there are cases where the
deformation cannot be ignored, and we need to include large displacement non-linearities
due to the geometrical update during the application of forces: This is the case of buckling.
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Buckling implies a sudden change in shape of a body under load because the loss of
stability when this load reaches certain critical value (Fig. 4). If a body- such as a column
under compression or a plate under shear, for example- is subjected to a gradually
increasing load, when the load reaches the critical value, the body may suddenly change
shape. Although buckling appears before failure, it can be decisive in the ergonomics of
certain biological bodies, limiting the range of forces under which they are able to remain
functional. Buckling is caused by nonlinearities in the geometry and can be approached by
a linearisation that drives to a bifurcation problem of eigenvalues. Therefore, the linear
buckling analysis is done in parallel to a linear elastic analysis. Otherwise, the full nonlinear
solution of the point of collapse can be obtained by increasing the load in smaller steps
with an iterative method while the geometry is updated to its deformed state. This latter is
significantly more computationally expensive but might be more accurate than the linear
buckling. In a biomechanical context, buckling can be found when study slender bodies
such as the swordfish rostrum (Habegger et al., 2020), the weevil rostrum (Matsumura
et al., 2021) or even in bones under compression such as the vertebrae (Williams et al.,
2021). Buckling is also considered in humans as a cause of fractures of postcranial bones
(Lee et al., 2009).

Non-linearities in contacts
Contacts between two bodies are divided between linear contacts and non-linear
contacts. Linear contacts can be included in a linear elastic model without modifying the
solving mode and keeping the direct solution. It also involves a low computational cost that
is simply a function of the size of the finite element mesh (namely, the number of elements
and nodes). However, the inclusion of non-linear contacts changes the solving mode to a
non-linear solution with an iterative solver, increasing the computational cost of the
analysis. Contacts can be described according to the relationship between the two separate
surfaces of each body that become mutually tangential in five general different types

Figure 4 Buckling. Deformed shape and displacement of a column under compression loads solved by
(A) an elastic linear solution (B) a linear buckling (C) deformed shape and displacement of a squared
plate under compression loads solved by a linear buckling and (D) example of buckling in a ruler under
compressive forces. F is the compressive load applied at the column and p is the compressive load applied
at the plate. Full-size DOI: 10.7717/peerj.13890/fig-4
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according to how they can move perpendicularly to each other and how they can move in
the tangential plane. In other words, if they are allowed to separate and slide (Fig. 5).

1. Bonded contacts: when separation and sliding is not allowed. It is a linear contact.

2. No-separation contact: when separation is not allowed but sliding in the tangential
plane is allowed. It is a linear contact.

3. Frictionless contact: when separation and sliding is allowed. It is a non-linear contact.

4. Rough contact: when separation is allowed but sliding in the tangential plane is not
allowed. It is a non-linear contact.

5. Frictional contact: when separation is allowed but sliding in the tangential plane is
controlled by a friction coefficient. It is a non-linear contact.

Frictional contact can be understood as an intermediate status, where sliding in the
tangential plane is not free but is allowed and bonded contact is used when we have two
bodies that are perfectly joined but they are created or defined as separate bodies during
the FEA modelling. For example can be used for defining all the pieces involving a teeth
such as the cortical bone, dentine, enamel, pulp and the PDL (Benazzi et al., 2013; Bucchi
et al., 2019)

In general, contacts are found in FEA models involving more than one body and the
definition of each contact depends on the nature of its behaviour. It can be found in models
when studying the carpal bones of the wrist (Gíslason et al., 2017; Püschel et al., 2020a) or
the feet (Ito et al., 2022), the ossicles of the auditory system (Marcé-Nogué & Liu, 2020), the
intervertebral discs and the vertebrae of the spine (Guan et al., 2019), all the tissues in
the hip (Fleps et al., 2018) or the patella (Fitzpatrick & Rullkoetter, 2012), the mandible, the
tempomandibular joint and the skull (Sagl et al., 2019) or the interaction between the

Figure 5 Contacts. Different types of contact. The labelling of “bonded”, “no-separation”, “rough”,
“frictionless”, and “frictional” is according ANSYS 2021. Other FEA packages could use other similar
labelling. Full-size DOI: 10.7717/peerj.13890/fig-5
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bodies in the wings of dragonflies (Rajabi et al., 2016b), bees and wasps (Eraghi et al.,
2021), among many others. Therefore, contacts can be used to establish relationship
between bones or soft tissues. Contacts are also useful when studying occlusal forces
during mastication to model the interaction between teeth and food (Skamniotis, Elliott &
Charalambides, 2019) or even the impact of eggshells with the floor (Sellés et al., 2019).

SUMMARY: IDEAS FOR PALAEONTOLOGISTS
FEA is no longer an incipient technique in the fields of palaeontology, anthropology, and
evolutionary biology. Instead, it is nowadays a well-established technique within functional
virtual morphology toolkit that has been used in more than 750 biological and
evolutionary publications between 2005 and 2020 (Tseng, 2021). Most of this works
present FEA models without non-linearities. This is not necessarily a problem by itself if
the linear approach is sufficient to answer the scientific question of interest. Indeed, many
engineering problems can be solved without trespassing the threshold of the linear models.
Therefore, this text does not want to spread an incorrect idea regarding the use of
supposedly more accurate non-linear models. In fact, the use of linear and not expensive
computational approaches without nonlinearities can be certainly useful to understand the
behaviour of many biological systems under analysis. For instance, most of the FEA works
that include fossils have focused on the study of skeletal elements that can be successfully
modelled using linear elastic material properties and solved using a static analysis under
small strains and displacements, i.e. without the need of non-linearities. However,
although linear models can be used in a broad range of functional works, the aim of this
text is to highlight the value of non-linearities when they can be of utility, or they are
needed to improve the knowledge we have in fields such as palaeontology and
anthropology.

Non-linear soft tissues
Little is known about soft tissue properties in fossils. The direct examination of fossil soft
tissues and preserved blood cells is of little value when studying palaeontological remains
due to the degradation or the contamination from modern remains (van Dongen et al.,
2017). The reconstruction of soft tissues from fossils is an issue that it is unresolved but can
be approached through investigating extant relatives to infer the palaeo-physiology of
extinct taxa, e.g., via the phylogenetic bracketing approach (Witmer, 1995). Therefore, any
FEA models can potentially include an inference regarding soft tissues properties. As an
example, cranial sutures are deformable joints between adjacent bones bridged by collagen
fibres and there are several works on fossil taxa that have include soft tissues modelling
sutures in Tyrannosaurus rex skull (Cost et al., 2020), australopithecines (Dzialo et al.,
2014) or in dicynodonts (Jasinoski, Rayfield & Chinsamy, 2009), as well as FEA models of
current lizard species (Dutel et al., 2021), Sphenodon (Curtis et al., 2013) or even some
mammals (Bright & Gröning, 2011). All of these examples used linear material properties
to characterize the elastic behaviour of soft tissues which can be an appropriate
simplification if this is validated experimentally (Bright & Gröning, 2011). However a
recent diagnosis suggested that the lack of sutures or and inappropriate modelling can
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result in inaccurate results of stress, strain or deformation (Rayfield, 2019) although it is
not clear how the soft tissue can be accurately predicted in fossils (Broyde et al., 2021). It is
at this point that the researcher needs, at least, to be aware that a more accurate modelling
of these soft tissues should be done using nonlinear material properties, which in turn
involve an increase in the computational cost of the model. Unfortunately, soft tissue
models in living animals have not been extensively documented, with the exception of
biomedical contexts (Tanaka et al., 2000). Hopefully, studies focused on experimentally
testing non-linear models in diverse biological taxa will be carried out in the near future.

Plasticity in retrodeformations
Retrodeformation is very common in fossil taxa as the process that produces the original
form of the taxon prior to fossil diagenesis when this has been recovered in any deformed
way. Deformation in fossils is produced due to a multiple array of taphonomic and tectonic
processes. Overburden stress due to the weight of the overlying sediments linearly
compacts the fossil from above causing the fossil to break and/or warp. Other causes of
fossil deformation include tectonic stresses and sediment cracking. Under the action of
these loads, the fossil can break in a brittle manner or can be distorted plastically,
preserving the structure of the fossil due to the lack of breakage. Fossils under plastic
deformation, where forces applied during time modify the original shape of the bone
structure may be restored. Although there are several techniques to virtually restore
deformed specimens available without using mechanical equations (Lautenschlager, 2016),
it has sense to use methods from mechanics such as FEA that involve forces if one want to
infer which was the actual process that drove the fossil to be deformed (Arbour & Currie,
2012; Di Vincenzo et al., 2017). Modelling this phenomenon would require including the
nonlinear plastic behaviour of bone, because retrodeformation is a permanent deformation
in cortical bone. In this case FEA could be inversely applied by defining the plastic
behaviour of the fossil material and then, setting the forces applied at the fossil as the
unknowns of the problem. It would allow to answer the question of which forces do we
need to apply deformed bodies to recover its original form.

Buckling in slender bones
In palaeontology there are a lot of slender structures that are susceptible to be analysed
using buckling. Probably the most common and useful case would be in bones under
compression such as the leg bones of large, heavy dinosaurs and mammals. This is because
mass is considered as one of the main factors affecting the morphology and osteological
adaptation of these bones (Etienne et al., 2020). To understand how these bones are
adapted to the heavy weight that they needed to support, evaluation of the maximal stress
as a measure of bone strength is not the only informative metric (Hutchinson, 2021). This
is because bone may fail without involving fracture. Alternatively, bone could fail through
buckling if it is not stiff enough (Currey, 2012). In this case, buckling needs to be
considered, because it can cause the collapse of the legs before the fracture of the bone.
Usually, buckling reduces the capacity of the strength of the structure because it appears in
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a lower value than the yield stress and the fracture stress that defines the strength of the
material.

If we assume that the leg bones in heavy dinosaurs as slender columns like those from a
building, Euler’s critical load is defined as the compressive load at which the column will
suddenly buckle (Timoshenko, 1955). This equation can give clues about the relationship
between geometrical factors such as the length of the bones or how they are joined to the
articulations. Given that the length, material, or boundary conditions cannot be modified
from the original model, Euler’s critical force will depend on the second moment of area or
moment of inertia. Increasing the value of the critical force implies a modification of the
cross-section of the bone through more inertial geometries. Therefore, if we assume the
cross-section of leg bones as an annulus, thicker annulus will increase the inertia. But also,
if the thickness is kept constant, a broader annulus will increase the inertia of the cross
section. This simple consequence can be obtained assuming leg bones with a straight
morphology not close enough to the reality, but very useful for the purpose of study.
However, in case of analysis of the real and irregular geometry of the bones, the simple
formula of Euler cannot be used but the problem of buckling can be solved via
computational methods by means of FEA solving an eigenvalue problem. Few works are
paying attention to it, discarding the effect of buckling in the morphology of the long bones
in living mammals (Brassey et al., 2013). Considering than an eigenvalue problem in a FEA
model is not increasing the computational cost of the analysis too much, it would be worth
to more exhaustively test if the leg bones of heavy dinosaurs or mastodontic extant
mammals are affected by buckling, as was suggested in horses (Currey, 2003). Another case
where buckling could be a concern is in bones with a high aspect ratio where the walls are
substantially thinner (De Margerie et al., 2005). This could be the case of wing bones
(Palmer & Dyke, 2012), and hence buckling should be also explored.

Bone grouping using contacts
Functional implications of fossil bones have been widely studied in fossil taxa using FEA
models (Richmond et al., 2005). Depending on the purpose, bones can be studied alone or
as a group and the main difference between these two cases is the absence or presence of
contacts. When separation between bones is not desired, for example in the analysis of
teeth, considering the bonding of the cortical bone, dentine, enamel, pulp and the PDL
(Benazzi et al., 2013), the contacts used are linear and it does not require an increase in the
computational cost of the solving process. This is something that can be considered when
creating FEA models because it allows the inclusion of several bones in the model without
nonlinearities.

On the other side, nonlinear contacts allow separation between the bones. Although the
inclusion of this contacts implies an iterative solution through convergence, it may be
necessary to implement when a group of bones need to be studied together such as the
carpal bones of the wrist (Gíslason et al., 2017) or the bones of the foot (Ito et al., 2022).
This has been done extensively in biomechanical models of living primates; therefore, it
should be considered in other FEA works in the field of the palaeontology and
anthropology. In fact, the literature is full of biomechanical analysis of kinematics and
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dynamics of solid bodies where bones of fossils are grouped to study its performance
(Sellers et al., 2017; Bishop et al., 2021). Therefore, it makes sense when creating FEA
models, to include more than one bone in the model if it can be useful for the desired
analysis despite increasing the computational cost of the solution. Also when the contact
between bones is through articular cartilage, the contact can be defined between cartilages
that are also in contact with the bone (Püschel et al., 2020a).

Models with shells, plates, beams, springs, and trusses
Finally, although this is not related with the use of a nonlinear iterative solving, the use of
other kind of elements other than solid elements can have a great advantage when dealing
with nonlinear models. This is because they provide a useful way to reduce the number of
elements and nodes of the FEA mesh and, consequently, a reduction of the time spent
solving the equation in each iteration. Hence, a nonlinear model will particularly benefit
from the use these elements.

The use of shell elements to model cortical bone in morphologies that can be assumed as
thin and with a constant thickness, such as carpal bones or talar morphologies, require a
lower number of elements and nodes because there is only one mesh layer. Using solid
elements in the same morphology would need at least four or five layers of elements would
along the thickness to properly build an adequate mesh to accurately capture the results.
This was used in an analysis of carpal bones (Gíslason et al., 2017) to model both the
cortical bone and the articular cartilage, reducing significantly the number of elements to
allow a smooth non-linear solution, due to the presence of non-linear contacts. The same
example uses non-linear spring elements to model the behaviour of the ligaments. This
decision is also in favour of not increasing the number of nodes and elements of the model,
because spring or truss elements can be defined using only one element with the origin and
final nodes. In this manner, the model avoids the inclusion of a three-dimensional
geometry modelled with solid elements for each ligament, which would exponentially
increase the number of nodes and elements in the mesh and consequently, increase the
computational cost of the solution.

When creating FEA models of fossils and considering the inclusion of some of the
non-linearities it is a good option to evaluate if the use of simpler elements can reduce
computational cost. Although researchers should be aware of the potential ramifications of
simplifying their models, it is also true that any model will necessarily not represent a
literal representation of reality. Instead, the requirements necessary to answer the research
question of interest should always be kept in mind when making decisions about model
complexity.

Summarizing, this text highlighted the usefulness of non-linearities in FEA
palaeontological and anthropological models in spite of increasing their complexity and
the computational costs. Nowadays, most of the commercial and non-commercial FEA
packages include the resolution of non-linear problems in their capabilities, and they also
documented with tutorials and examples how to deal with them. Therefore, the main aim
of this review is to provide a road map for the next generation of palaeontologists,
anthropologists, and functional morphologists by showing them unexplored ways that
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could a profound impact in finite element analysis and how they can explore these
methods further.

ACKNOWLEDGEMENTS
The author wants to thank Lluis Gil and Josep Fortuny for readings and commenting
earlier versions of the manuscript, as well as acknowledging Thomas A. Püschel for
reviewing and proof-reading the text. The text was also substantially improved thanks to
the review done by Emily Rayfield and another anonymous reviewer.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Serra-Hunter (URV) and the CERCA programme (ICP)
from the Generalitat de Catalunya and the research project PID2020-117118GB-I00
funded by MCIN/AEI/10.13039/501100011033. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
CERCA programme (ICP) from the Generalitat de Catalunya: PID2020-117118GB-I00,
MCIN/AEI/10.13039/501100011033.

Competing Interests
The author declares that they have no competing interests.

Author Contributions
� Jordi Marcé-Nogué conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, conceived the text, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review; there is no raw data or code.

REFERENCES
An B. 2016. Constitutive modeling the plastic deformation of bone-like materials. International

Journal of Solids and Structures 92–93(6):1–8 DOI 10.1016/j.ijsolstr.2016.05.003.

Anderson PSL, Bright JA, Gill PG, Palmer C, Rayfield EJ. 2012. Models in palaeontological
functional analysis. Biology Letters 8(1):119–122 DOI 10.1098/rsbl.2011.0674.

Arbour VM, Currie PJ. 2012. Analyzing taphonomic deformation of ankylosaur skulls using
retrodeformation and finite element analysis. PLOS ONE 7(6):e39323
DOI 10.1371/journal.pone.0039323.

Ballell A, Ferrón HG. 2021. Biomechanical insights into the dentition of megatooth sharks
(Lamniformes: Otodontidae). Scientific Reports 11(1):1232 DOI 10.1038/s41598-020-80323-z.

Marcé-Nogué (2022), PeerJ, DOI 10.7717/peerj.13890 14/20

http://dx.doi.org/10.1016/j.ijsolstr.2016.05.003
http://dx.doi.org/10.1098/rsbl.2011.0674
http://dx.doi.org/10.1371/journal.pone.0039323
http://dx.doi.org/10.1038/s41598-020-80323-z
http://dx.doi.org/10.7717/peerj.13890
https://peerj.com/


Benazzi S, Kullmer O, Grosse IR, Weber GW. 2012. Brief communication: comparing loading
scenarios in lower first molar supporting bone structure using 3D finite element analysis.
American Journal of Physical Anthropology 147(1):128–134 DOI 10.1002/ajpa.21607.

Benazzi S, Nguyen HN, Kullmer O, Hublin J-J. 2013. Unravelling the functional biomechanics of
dental features and tooth wear. PLOS ONE 8(7):e69990 DOI 10.1371/journal.pone.0069990.

Bicknell RDC, Holmes JD, Edgecombe GD, Losso SR, Ortega-Hernández J, Wroe S,
Paterson JR. 2021. Biomechanical analyses of Cambrian euarthropod limbs reveal their
effectiveness in mastication and durophagy. Proceedings of the Royal Society B: Biological
Sciences 288(1943):20202075 DOI 10.1098/rspb.2020.2075.

Bishop PJ, Falisse A, De Groote F, Hutchinson JR. 2021. Predictive simulations of running gait
reveal a critical dynamic role for the tail in bipedal dinosaur locomotion. Science Advances
7(39):1–14 DOI 10.1126/sciadv.abi7348.

Booker JR, Small JC. 1977. Methods for the numerical solution of the equations of viscoelasticity.
International Journal for Numerical and Analytical Methods in Geomechanics 1(2):139–150
DOI 10.1002/nag.1610010203.

Brassey CA, Margetts L, Kitchener AC, Withers PJ, Manning PL, Sellers WI. 2013. Finite
element modelling versus classic beam theory: comparing methods for stress estimation in a
morphologically diverse sample of vertebrate long bones. Journal of the Royal Society,
Interface/The Royal Society 10(79):20120823 DOI 10.1098/rsif.2012.0823.

Bright JA, Gröning F. 2011. Strain accommodation in the zygomatic arch of the pig: a validation
study using digital speckle pattern interferometry and finite element analysis. Journal of
Morphology 272(11):1388–1398 DOI 10.1002/jmor.10991.

Broyde S, Dempsey M, Wang L, Cox PG, Fagan M, Bates KT. 2021. Evolutionary biomechanics:
hard tissues and soft evidence? Proceedings of the Royal Society B: Biological Sciences
288(1945):20202809 DOI 10.1098/rspb.2020.2809.

Bucchi C, Marcé-Nogué J, Galler KM, Widbiller M. 2019. Biomechanical performance of an
immature maxillary central incisor after revitalization: a finite element analysis. International
Endodontic Journal 52(10):1508–1518 DOI 10.1111/iej.13159.

Bucchi A, Püschel TA, Lorenzo C, Marcé-Nogué J. 2020. Finite element analysis of the proximal
phalanx of the thumb in Hominoidea during simulated stone tool use. Comptes Rendus Palevol
19(2):26–39 DOI 10.5852/cr-palevol2020v19a2.

Cost IN, Middleton KM, Sellers KC, Echols MS, Witmer LM, Davis JL, Holliday CM. 2020.
Palatal biomechanics and its significance for cranial kinesis in tyrannosaurus rex. The
Anatomical Record 303(4):999–1017 DOI 10.1002/ar.24219.

Currey JD. 2003. How well are bones designed to resist fracture? Journal of Bone and Mineral
Research 18(4):591–598 DOI 10.1359/jbmr.2003.18.4.591.

Currey JD. 2012. The structure and mechanics of bone. Journal of Materials Science 47(1):41–54
DOI 10.1007/s10853-011-5914-9.

Curtis N, Jones MEH, Evans SE, O’Higgins P, Fagan MJ. 2013. Cranial sutures work collectively
to distribute strain throughout the reptile skull. Journal of the Royal Society Interface 10(86):1–9
DOI 10.1098/rsif.2013.0442.

De Margerie E, Sanchez S, Cubo J, Castanet J. 2005. Torsional resistance as a principal
component of the structural design of long bones: comparative multivariate evidence in birds.
Anatomical Record – Part A Discoveries in Molecular, Cellular, and Evolutionary Biology
282:49–66 DOI 10.1002/ar.a.20141.

Di Vincenzo F, Profico A, Bernardini F, Cerroni V, Dreossi D, Schlager S, Zaio P, Benazzi S,
Biddittu I, Rubini M, Tuniz C, Manzi G. 2017. Digital reconstruction of the Ceprano

Marcé-Nogué (2022), PeerJ, DOI 10.7717/peerj.13890 15/20

http://dx.doi.org/10.1002/ajpa.21607
http://dx.doi.org/10.1371/journal.pone.0069990
http://dx.doi.org/10.1098/rspb.2020.2075
http://dx.doi.org/10.1126/sciadv.abi7348
http://dx.doi.org/10.1002/nag.1610010203
http://dx.doi.org/10.1098/rsif.2012.0823
http://dx.doi.org/10.1002/jmor.10991
http://dx.doi.org/10.1098/rspb.2020.2809
http://dx.doi.org/10.1111/iej.13159
http://dx.doi.org/10.5852/cr-palevol2020v19a2
http://dx.doi.org/10.1002/ar.24219
http://dx.doi.org/10.1359/jbmr.2003.18.4.591
http://dx.doi.org/10.1007/s10853-011-5914-9
http://dx.doi.org/10.1098/rsif.2013.0442
http://dx.doi.org/10.1002/ar.a.20141
http://dx.doi.org/10.7717/peerj.13890
https://peerj.com/


calvarium (Italy), and implications for its interpretation. Scientific Reports 7(1):13974
DOI 10.1038/s41598-017-14437-2.

Dutel H, Gröning F, Sharp AC,Watson PJ, Herrel A, Ross CF, Jones MEH, Evans SE, FaganMJ.
2021. Comparative cranial biomechanics in two lizard species: impact of variation in cranial
design. Journal of Experimental Biology 224(5):717 DOI 10.1242/jeb.234831.

Dzialo C, Wood SA, Berthaume MA, Smith AL, Dumont ER, Benazzi S, Weber GW, Strait DS,
Grosse IR. 2014. Functional implications of squamosal suture size in paranthropus boisei.
American Journal of Physical Anthropology 153(2):260–268 DOI 10.1002/ajpa.22427.

Eraghi SH, Toofani A, Khaheshi A, Khorsandi M, Darvizeh A, Gorb S, Rajabi H. 2021. Wing
coupling in bees and wasps: from the underlying science to bioinspired engineering. Advanced
Science 2004383(16):2004383 DOI 10.1002/advs.202004383.

Esteve J, Marcé-Nogué J, Pérez-Peris F, Rayfield EJ. 2021. Cephalic biomechanics underpins the
evolutionary success of trilobites. Palaeontology 64(4):519–530 DOI 10.1111/pala.12541.

Etienne C, Mallet C, Cornette R, Houssaye A. 2020. Influence of mass on tarsus shape variation: a
morphometrical investigation among Rhinocerotidae (Mammalia: Perissodactyla). Biological
Journal of the Linnean Society 129(4):950–974 DOI 10.1093/biolinnean/blaa005.

Fitzpatrick CK, Rullkoetter PJ. 2012. Influence of patellofemoral articular geometry and material
on mechanics of the unresurfaced patella. Journal of Biomechanics 45(11):1909–1915
DOI 10.1016/j.jbiomech.2012.05.028.

Fleps I, Enns-Bray WS, Guy P, Ferguson SJ, Cripton PA, Helgason B. 2018. Correction: on the
internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall
impact (PLoS ONE (2018) 13:8 (e0200952) DOI: 10.1371/journal.pone.0200952). PLOS ONE
13(11):e0208286 DOI 10.1371/journal.pone.0208286.

Fortuny J, Marcé-Nogué J, Gil L, Galobart À. 2012. Skull mechanics and the evolutionary patterns
of the otic notch closure in capitosaurs (Amphibia: Temnospondyli). The Anatomical Record:
Advances in Integrative Anatomy and Evolutionary Biology 295(7):1134–1146
DOI 10.1002/ar.22486.

Gasser TC, Ogden RW, Holzapfel GA. 2006. Hyperelastic modelling of arterial layers with
distributed collagen fibre orientations. Journal of The Royal Society Interface 3(6):15–35
DOI 10.1098/rsif.2005.0073.

Guan W, Sun Y, Qi X, Hu Y, Duan C, Tao H, Yang X. 2019. Spinal biomechanics modeling and
finite element analysis of surgical instrument interaction. Computer Assisted Surgery
24(sup1):151–159 DOI 10.1080/24699322.2018.1560086.

Gupta A, Bayraktar HH, Fox JC, Keaveny TM, Papadopoulos P. 2007. Constitutive modeling
and algorithmic implementation of a plasticity-like model for trabecular bone structures.
Computational Mechanics 40(1):61–72 DOI 10.1007/s00466-006-0082-5.

Gíslason MK, Foster E, Bransby-Zachary M, Nash DH. 2017. Biomechanical analysis of the
Universal 2 implant in total wrist arthroplasty: a finite element study. Computer Methods in
Biomechanics and Biomedical Engineering 20(10):1113–1121
DOI 10.1080/10255842.2017.1336548.

Habegger L, Motta P, Huber D, Pulaski D, Grosse I, Dumont ER. 2020. Feeding biomechanics in
billfishes: investigating the role of the rostrum through finite element analysis. The Anatomical
Record 303(1):44–52 DOI 10.1002/ar.24059.

Hedenstierna S, Halldin P, Brolin K. 2008. Evaluation of a combination of continuum and truss
finite elements in a model of passive and active muscle tissue. Computer Methods in
Biomechanics and Biomedical Engineering 11(6):627–639 DOI 10.1080/17474230802312516.

Marcé-Nogué (2022), PeerJ, DOI 10.7717/peerj.13890 16/20

http://dx.doi.org/10.1038/s41598-017-14437-2
http://dx.doi.org/10.1242/jeb.234831
http://dx.doi.org/10.1002/ajpa.22427
http://dx.doi.org/10.1002/advs.202004383
http://dx.doi.org/10.1111/pala.12541
http://dx.doi.org/10.1093/biolinnean/blaa005
http://dx.doi.org/10.1016/j.jbiomech.2012.05.028
http://dx.doi.org/10.1371/journal.pone.0208286
http://dx.doi.org/10.1002/ar.22486
http://dx.doi.org/10.1098/rsif.2005.0073
http://dx.doi.org/10.1080/24699322.2018.1560086
http://dx.doi.org/10.1007/s00466-006-0082-5
http://dx.doi.org/10.1080/10255842.2017.1336548
http://dx.doi.org/10.1002/ar.24059
http://dx.doi.org/10.1080/17474230802312516
http://dx.doi.org/10.7717/peerj.13890
https://peerj.com/


Huang H, Tang W, Tan Q, Yan B. 2017. Development and parameter identification of a
visco-hyperelastic model for the periodontal ligament. Journal of the Mechanical Behavior of
Biomedical Materials 68:210–215 DOI 10.1016/j.jmbbm.2017.01.035.

Hutchinson JR. 2021. The evolutionary biomechanics of locomotor function in giant land animals.
Journal of Experimental Biology 224(11):125 DOI 10.1242/jeb.217463.

Ito K, Nakamura T, Suzuki R, Negishi T, Oishi M, Nagura T, Jinzaki M, Ogihara N. 2022.
Comparative functional morphology of human and chimpanzee feet based on
three-dimensional finite element analysis. Frontiers in Bioengineering and Biotechnology 9:1–13
DOI 10.3389/fbioe.2021.760486.

Jasinoski SC, Rayfield EJ, Chinsamy A. 2009. Comparative feeding biomechanics of Lystrosaurus
and the generalized dicynodont Oudenodon. Anatomical Record 292(6):862–874
DOI 10.1002/ar.20906.

Kim N. 2015. Introduction to nonlinear finite element analysis. New York, NY, USA: Springer.

Klunk CL, Argenta MA, Casadei-Ferreira A, Economo EP, Pie MR. 2021. Mandibular
morphology, task specialization and bite mechanics in Pheidole ants (Hymenoptera:
Formicidae). Journal of The Royal Society Interface 18(179):20210318
DOI 10.1098/rsif.2021.0318.

Krings W, Marcé-Nogué J, Gorb SN. 2021. Finite element analysis relating shape, material
properties, and dimensions of taenioglossan radular teeth with trophic specialisations in
Paludomidae (Gastropoda). Scientific Reports 11(1):22775 DOI 10.1038/s41598-021-02102-8.

Kulkarni SG, Gao XL, Horner SE, Mortlock RF, Zheng JQ. 2016. A transversely isotropic
visco-hyperelastic constitutive model for soft tissues. Mathematics and Mechanics of Solids
21(6):747–770 DOI 10.1177/1081286514536921.

Lautenschlager S. 2016. Reconstructing the past: methods and techniques for the digital
restoration of fossils. Royal Society Open Science 3(10):160342 DOI 10.1098/rsos.160342.

Lautenschlager S, Figueirido B, Cashmore DD, Bendel E-M, Stubbs TL. 2020. Morphological
convergence obscures functional diversity in sabre-toothed carnivores. Proceedings of the Royal
Society B: Biological Sciences 287(1935):20201818 DOI 10.1098/rspb.2020.1818.

Lee T, Choi JB, Schafer BW, Segars WP, Eckstein F, Kuhn V, Beck TJ. 2009. Assessing the
susceptibility to local buckling at the femoral neck cortex to age-related bone loss. Annals of
Biomedical Engineering 37(9):1910–1920 DOI 10.1007/s10439-009-9751-9.

Ma W, Pittman M, Butler RJ, Lautenschlager S. 2021. Macroevolutionary trends in theropod
dinosaur feeding mechanics. Current Biology 32(3):1–10 DOI 10.1016/j.cub.2021.11.060.

Marcé-Nogué J, Fortuny J, Gil L, Sánchez M. 2015. Improving mesh generation in finite element
analysis for functional morphology approaches. Spanish Journal of Palaeontology 31:117–132
DOI 10.7203/sjp.30.1.17227.

Marcé-Nogué J, Liu J. 2020. Evaluating fidelity of CT based 3D models for Zebrafish conductive
hearing system. Micron 135:102874 DOI 10.1016/j.micron.2020.102874.

Marcé-Nogué J, Püschel TA, Daasch A, Kaiser TM. 2020. Broad-scale morpho-functional traits of
the mandible suggest no hard food adaptation in the hominin lineage. Scientific Reports
10(1):6793 DOI 10.1038/s41598-020-63739-5.

Matsumura Y, Jafarpour M, Reut M, Shams Moattar B, Darvizeh A, Gorb SN, Rajabi H. 2021.
Excavation mechanics of the elongated female rostrum of the acorn weevil Curculio glandium
(Coleoptera; Curculionidae). Applied Physics A: Materials Science and Processing 127(5):1–11
DOI 10.1007/s00339-021-04353-8.

McCabe K, Henderson K, Pantinople J, Richards HL, Milne N. 2017. Curvature reduces bending
strains in the quokka femur. PeerJ 5(3):e3100 DOI 10.7717/peerj.3100.

Marcé-Nogué (2022), PeerJ, DOI 10.7717/peerj.13890 17/20

http://dx.doi.org/10.1016/j.jmbbm.2017.01.035
http://dx.doi.org/10.1242/jeb.217463
http://dx.doi.org/10.3389/fbioe.2021.760486
http://dx.doi.org/10.1002/ar.20906
http://dx.doi.org/10.1098/rsif.2021.0318
http://dx.doi.org/10.1038/s41598-021-02102-8
http://dx.doi.org/10.1177/1081286514536921
http://dx.doi.org/10.1098/rsos.160342
http://dx.doi.org/10.1098/rspb.2020.1818
http://dx.doi.org/10.1007/s10439-009-9751-9
http://dx.doi.org/10.1016/j.cub.2021.11.060
http://dx.doi.org/10.7203/sjp.30.1.17227
http://dx.doi.org/10.1016/j.micron.2020.102874
http://dx.doi.org/10.1038/s41598-020-63739-5
http://dx.doi.org/10.1007/s00339-021-04353-8
http://dx.doi.org/10.7717/peerj.3100
http://dx.doi.org/10.7717/peerj.13890
https://peerj.com/


Miller CV, Pittman M, Kaye TG, Wang X, Bright JA, Zheng X. 2020. Disassociated
rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime,
and developmental patterns. Communications Biology 3(1):519
DOI 10.1038/s42003-020-01252-1.

Nagel-Myers J, Mastorakos I, Yuya P, Reeder G. 2019. Modelling crushing crab predation on
bivalve prey using finite element analysis. Historical Biology 33:1373–1382
DOI 10.1080/08912963.2019.1699555.

Neenan JM, Ruta M, Clack JA, Rayfield EJ. 2014. Feeding biomechanics in Acanthostega and
across the fish-tetrapod transition. Proceedings of the Royal Society B: Biological Sciences
281(1781):20132689 DOI 10.1098/rspb.2013.2689.

Noailly J, Planell JA, Lacroix D. 2011. On the collagen criss-cross angles in the annuli fibrosi of
lumbar spine finite element models. Biomechanics and Modeling in Mechanobiology
10(2):203–219 DOI 10.1007/s10237-010-0227-5.

Ogden RW. 1984. Non-linear elastic deformations. Mineola: Dover.

Palmer C, Dyke G. 2012. Constraints on the wing morphology of pterosaurs. Proceedings of the
Royal Society B: Biological Sciences 279(1731):1218–1224 DOI 10.1098/rspb.2011.1529.

Pataky TC, Koseki M, Cox PG. 2016. Probabilistic biomechanical finite element simulations:
whole-model classical hypothesis testing based on upcrossing geometry. PeerJ Computer Science
2:e96 DOI 10.7717/peerj-cs.96.

Patiño S, Pérez Zerpa J, Fariña RA. 2019. Finite element and morphological analysis in extant
mammals’ claws and quaternary sloths’ ungual phalanges. Historical Biology 33:1–11
DOI 10.1080/08912963.2019.1664504.

Pierce SE, Angielczyk KD, Rayfield EJ. 2009. Shape and mechanics in thalattosuchian
(Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning. Journal of
Anatomy 215(5):555–576 DOI 10.1111/j.1469-7580.2009.01137.x.

Preuschoft H, Witzel U. 2002. Biomechanical investigations on the skulls of reptiles and
mammals. Senckenbergiana Lethaea 82(1):207–222 DOI 10.1007/BF03043785.

Püschel TA, Marcé-Nogué J, Chamberlain AT, Yoxall A, Sellers WI. 2020a. The biomechanical
importance of the scaphoid-centrale fusion during simulated knuckle-walking and its
implications for human locomotor evolution. Scientific Reports 10(1):3526
DOI 10.1038/s41598-020-60590-6.

Püschel TA, Marcé-Nogué J, Gladman J, Patel BA, Almécija S, Sellers WI. 2020b. Getting its feet
on the ground: elucidating paralouatta’s semi-terrestriality using the virtual morpho-functional
toolbox. Frontiers in Earth Science 8:79 DOI 10.3389/feart.2020.00079.

Püschel TA, Sellers WI. 2016. Standing on the shoulders of apes: analyzing the form and function
of the hominoid scapula using geometric morphometrics and finite element analysis. American
Journal of Physical Anthropology 159(2):325–341 DOI 10.1002/ajpa.22882.

Rajabi H, Rezasefat M, Darvizeh A, Dirks J-H, Eshghi S, Shafiei A, Mostofi TM, Gorb SN.
2016a. A comparative study of the effects of constructional elements on the mechanical
behaviour of dragonfly wings. Applied Physics A 122(1):19 DOI 10.1007/s00339-015-9557-6.

Rajabi H, Shafiei A, Darvizeh A, Dirks J-H, Appel E, Gorb SN. 2016b. Effect of microstructure
on the mechanical and damping behaviour of dragonfly wing veins. Royal Society Open Science
3(2):160006 DOI 10.1098/rsos.160006.

Rayfield EJ. 2007. Finite element analysis and understanding the biomechanics and evolution of
living and fossil organisms. Annual Review of Earth and Planetary Sciences 35(1):541–576
DOI 10.1146/annurev.earth.35.031306.140104.

Marcé-Nogué (2022), PeerJ, DOI 10.7717/peerj.13890 18/20

http://dx.doi.org/10.1038/s42003-020-01252-1
http://dx.doi.org/10.1080/08912963.2019.1699555
http://dx.doi.org/10.1098/rspb.2013.2689
http://dx.doi.org/10.1007/s10237-010-0227-5
http://dx.doi.org/10.1098/rspb.2011.1529
http://dx.doi.org/10.7717/peerj-cs.96
http://dx.doi.org/10.1080/08912963.2019.1664504
http://dx.doi.org/10.1111/j.1469-7580.2009.01137.x
http://dx.doi.org/10.1007/BF03043785
http://dx.doi.org/10.1038/s41598-020-60590-6
http://dx.doi.org/10.3389/feart.2020.00079
http://dx.doi.org/10.1002/ajpa.22882
http://dx.doi.org/10.1007/s00339-015-9557-6
http://dx.doi.org/10.1098/rsos.160006
http://dx.doi.org/10.1146/annurev.earth.35.031306.140104
http://dx.doi.org/10.7717/peerj.13890
https://peerj.com/


Rayfield EJ. 2019. What does musculoskeletal mechanics tell us about evolution of form and
function in vertebrates? The Science and Regulations of Naturally Derived Complex Drugs. Berlin:
Springer International Publishing, 45–70.

Richmond BG,Wright BW, Grosse I, Dechow PC, Ross CF, Spencer MA, Strait DS. 2005. Finite
element analysis in functional morphology. The Anatomical Record Part A: Discoveries in
Molecular, Cellular, and Evolutionary Biology 283A:259–274 DOI 10.1002/ar.a.20169.

Sagl B, Schmid-Schwap M, Piehslinger E, Kundi M, Stavness I. 2019. A dynamic jaw model with
a finite-element temporomandibular joint. Frontiers in Physiology 10:1–12
DOI 10.3389/fphys.2019.01156.

Sellers WI, Pond SB, Brassey CA, Manning PL, Bates KT. 2017. Investigating the running
abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis. PeerJ
5(79):e3420 DOI 10.7717/peerj.3420.

Sellés AG, Marcé-Nogué J, Vila B, Pérez MA, Gil L, Galobart À, Fortuny J. 2019. Computational
approach to evaluating the strength of eggs: implications for laying in organic egg production.
Biosystems Engineering 186(4):146–155 DOI 10.1016/j.biosystemseng.2019.06.017.

Shan G, Visentin P, Elsheikh A, Ballo A, Moritz N, Zhao J, Liao D. 2010. Biomechanics:
principles, trend and applications. New York: Nova Science Publishers, Inc.

Shearer T. 2015. A new strain energy function for the hyperelastic modelling of ligaments and
tendons based on fascicle microstructure. Journal of Biomechanics 48(2):290–297
DOI 10.1016/j.jbiomech.2014.11.031.

Skamniotis CG, Elliott M, Charalambides MN. 2019. Computer simulations of food oral
processing to engineer teeth cleaning. Nature Communications 10(1):3571
DOI 10.1038/s41467-019-11288-5.

Stansfield E, Kumar K, Mitteroecker P, Grunstra NDS. 2021. Biomechanical trade-offs in the
pelvic floor constrain the evolution of the human birth canal. Proceedings of The National
Academy of Sciences of The United States of America 118(16):e2022159118
DOI 10.1073/pnas.2022159118.

Tanaka E, Miyawaki Y, Del Pozo R, Tanne K. 2000. Changes in the biomechanical properties of
the rat interparietal suture incident to continuous tensile force application. Archives of Oral
Biology 45(12):1059–1064 DOI 10.1016/S0003-9969(00)00082-0.

Timoshenko S. 1955. Strength of materials. New York: Van Nostrand.

Timoshenko SP, Gere JM. 1961. Theory of elastic stability. New York: McGraw-Hill.

Tseng ZJ. 2021. Rethinking the use of finite element simulations in comparative biomechanics
research. PeerJ 9(5):e11178 DOI 10.7717/peerj.11178.

Tuset L, Fortuny G, Herrero J, Puigjaner D, López JM. 2019. Implementation of a new
constitutive model for abdominal muscles. Computer Methods and Programs in Biomedicine
179(9395):104988 DOI 10.1016/j.cmpb.2019.104988.

van Dongen B, Manning PL, Warwood S, Buckley M, Kitchener AC. 2017. A fossil protein
chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-
contamination. Proceedings of the Royal Society B: Biological Sciences 284(1855):20170544
DOI 10.1098/rspb.2017.0544.

Vorp DA. 2007. Biomechanics of abdominal aortic aneurysm. Journal of Biomechanics
40(9):1887–1902 DOI 10.1016/j.jbiomech.2006.09.003.

Williams CJ, Pani M, Bucchi A, Smith RE, Kao A, Keeble W, Ibrahim N, Martill DM. 2021.
Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their
biomechanical implications. iScience 24(4):102338 DOI 10.1016/j.isci.2021.102338.

Marcé-Nogué (2022), PeerJ, DOI 10.7717/peerj.13890 19/20

http://dx.doi.org/10.1002/ar.a.20169
http://dx.doi.org/10.3389/fphys.2019.01156
http://dx.doi.org/10.7717/peerj.3420
http://dx.doi.org/10.1016/j.biosystemseng.2019.06.017
http://dx.doi.org/10.1016/j.jbiomech.2014.11.031
http://dx.doi.org/10.1038/s41467-019-11288-5
http://dx.doi.org/10.1073/pnas.2022159118
http://dx.doi.org/10.1016/S0003-9969(00)00082-0
http://dx.doi.org/10.7717/peerj.11178
http://dx.doi.org/10.1016/j.cmpb.2019.104988
http://dx.doi.org/10.1098/rspb.2017.0544
http://dx.doi.org/10.1016/j.jbiomech.2006.09.003
http://dx.doi.org/10.1016/j.isci.2021.102338
http://dx.doi.org/10.7717/peerj.13890
https://peerj.com/


Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft
tissues in fossils. In: Thomason J, ed. Functional Morphology in Vertebrate Paleontology.
Cambridge: Cambridge University Press.

Zhou Z, Fortuny J, Marcé-Nogué J, Skutschas PP. 2017. Cranial biomechanics in basal urodeles:
the Siberian salamander (Salamandrella keyserlingii) and its evolutionary and developmental
implications. Scientific Reports 7(1):10174 DOI 10.1038/s41598-017-10553-1.

Zhou Z, Winkler DE, Fortuny J, Kaiser TM, Marcé-Nogué J. 2019. Why ruminating ungulates
chew sloppily: biomechanics discern a phylogenetic pattern. PLOS ONE 14(4):e0214510
DOI 10.1371/journal.pone.0214510.

Zienkiewicz OC, Taylor RL. 1981. Finite element method – the basis (Volume 1). New York:
McGraw-Hill.

Marcé-Nogué (2022), PeerJ, DOI 10.7717/peerj.13890 20/20

http://dx.doi.org/10.1038/s41598-017-10553-1
http://dx.doi.org/10.1371/journal.pone.0214510
http://dx.doi.org/10.7717/peerj.13890
https://peerj.com/

	One step further in biomechanical models in palaeontology: a nonlinear finite element analysis review
	Introduction
	Search methodology
	Discovering all the fea elements: solids, shells, plates, beams, springs, and trusses
	Non-linearities in fea models
	Summary: ideas for palaeontologists
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


