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Safety Evaluation and Imaging 
Properties of Gadolinium-Based 
Nanoparticles in nonhuman 
primates
Shady Kotb1,*, Joao Piraquive2,*, Franck Lamberton3, François Lux1, Michael Verset4, 
Vanessa  Di Cataldo2, Hugues Contamin4, Olivier Tillement1,  
Emmanuelle Canet-Soulas2 & Lucie Sancey1

In this article, we report the safety evaluation of gadolinium-based nanoparticles in nonhuman primates 
(NHP) in the context of magnetic resonance imaging (MRI) studies in atherosclerosis bearing animals 
and healthy controls. In healthy NHP, the pharmacokinetics and toxicity profiles demonstrated the 
absence of dose, time, and sex-effects, as well as a suitable tolerance of intravenous administration of 
the nanoparticles. We investigated their imaging properties for arterial plaque imaging in a standard 
diet or a high cholesterol diet NHP, and compared their characteristics with clinically applied Gd-
chelate. This preliminary investigation reports the efficient and safe imaging of atherosclerotic plaques.

Atherosclerosis is one of the main cardiovascular disorders resulting from an initial lipid accumulation in the 
artery wall with in situ lesion development as well as an unresolved chronic and complex inflammatory process1. 
This chronic and evolutive injury of the arterial wall may abruptly lead to the obstruction of the vessel itself by 
clot formation, or may lead to acute stroke following plaque rupture with cerebral emboli, which often leads to 
disastrous consequences2. Early imaging and monitoring of atherosclerosis and high-risk plaque is challeng-
ing as the lesion is non-obstructive and a precise non-invasive diagnosis might require the gathering of several 
parameters. As recent novel strategies are being developed for accurate detection, plaque burden can be measured 
using ultrasound exams or computed tomography (CT) for calcium scoring whereas macrophage infiltration and 
microcalcification can be monitored using a PET/CT or PET/MRI combination3,4. In parallel, high-resolution 
MRI allows for the depiction of angiogenesis, intraplaque hemorrhage, observation of necrotic core, or positive 
remodeling5–8. MRI can also be considered as the reference technique for vessel wall imaging and plaque char-
acterization, especially for the carotid and peripheral arteries imaging6. A standard examination combines dif-
ferent high-resolution carotid T1-weighted and proton density-weighted, and a post-contrast agent T1-weighted 
acquisition4,9. For a better characterization of plaque microvasculature, dynamic contrast-enhanced (DCE) MRI 
is considered very helpful to identify leaky neovessels, a hallmark of plaque destabilization10.

Different contrast agents containing gadolinium in the chelated form are used for T1-weighted acquisitions. 
Commercially available gadolinium (Gd) chelates are molecular compounds containing one single Gd atom. 
Nevertheless, clustering several Gd chelates will enhance the relaxivity of the probe and thus, the related contrast 
imaging properties11,12. In this context, we used Gd-based nanoparticles for MRI purposes. Nanoparticles might 
allow the detection of atherosclerosis plaques13 or macrophages in inflammatory atherosclerosis14,15. We previously 
reported the efficient renal elimination (>50% of the injected dose at 74 min post injection)16 and the safety of 
Gd-based nanoparticles in rodents17,18, especially regarding the clearance mechanism19. Herein, we evaluated the 
safety and pharmacokinetics of Gd-based nanoparticles in healthy non-human primates (NHP). To further inves-
tigate the contrast potential, we reported their imaging properties in healthy and high cholesterol (HC) diet NHP 
and compared their characteristics to the vessel wall imaging with commercially available molecular Gd-chelate.
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Results
Nanoparticles characteristics.  Gd-NPs were produced using reported methods, in laboratory and GMP 
environment16,20. This nanoparticle regroups gadolinium (Gd)-chelating DOTAGA (1,4,7,10-tetra-azacyclodode-
cane-1-glutaric anhydride-4,7,10-triacetic acid) coupled to a polysiloxane network. The hydrodynamic diameter 
of Gd-NPs is 3.5 ±​ 1 nm for a mass of ≈​10 kDa. Due to the presence of Gd, the nanoparticle provides positive 
enhancement on T1-weighted MR images and radiosensitizing properties. Its imaging properties are investigated 
in addition to its safety profile in NHP under normal or high cholesterol (HC) diet.

Toxicity and pharmacokinetic profile in nonhuman primates.  Regulatory toxicity and pharmacoki-
netics were conducted in compliance with good laboratory practices (GLP), and were evaluated in nonhuman 
cynomolgus monkey primates at 3 different Gd-NP doses (low, 150 mg/kg body weight (b.w.); moderate, 300 mg/kg  
b.w.; and high, 450 mg/kg b.w.), during two-repeated injections protocol, i.e. once a week during two weeks. 
During this period, no cardiovascular or clinical signs were observed, neither in males nor females, at any dose 
(Table 1).

Two weeks after the last injection, all vital organs and injection sites were sampled for histological investi-
gation. In all the tissues, no microscopic changes were evidenced after two administrations of Gd-NPs at a high 
dose of 450 mg/kg, compared to the control group (Fig. 1). In particular, the kidneys, which are the main organs 
of elimination, were similar to control kidneys, without any sign of vacuolation.

Plasma kinetics of Gd-NPs were evaluated for the treated groups after each administration, from 3 animals/
sex/group, and are reported in Table 2. Blood samples were collected at 5 and 30 minutes, and 1, 2, 6, and 24 hours 
post-administration to determine the nanoparticles’ pharmacokinetics. Following the intravenous administration 
of Gd-NPs, the exposure in male and female cynomolgus monkeys increased in a dose-proportional manner for 
both sexes on both evaluation days. The exposure on day 7 was similar to that on day 0. The accumulation ratios 
ranged from 0.848 to 1.04 at all dose levels. On day 0, mean clearance as well as the distribution volume were low 
and ranged from 0.111 and 0.187 L/h/kg and 0.176 and 0.314 L/kg, respectively. The mean blood half-life (T1/2) 
ranged from 2.09 to 3.57 hours. In general, there were no trends observed related to dose, sex, or evaluation days 
for clearance, volume of distribution, or T1/2 values. Under these study conditions, two intravenous administra-
tions at one-week interval of Gd-NPs at doses of 150, 300, and 450 mg/kg to the cynomolgus monkey were not 
associated with any overt evidence of intravenous toxicity. Consequently, the high dose (450 mg/kg/administra-
tion) could be considered to be the NOEL (non observed effect level). This dose corresponds to a mean area under 
the curve determined between 0 to 24 h (AUC0–24h) normalized to a unit dose (1 mg/kg b.w.) of 9.00/7.60 mg.h/mL 
(Day 0/Day 7) in males and of 6.42/6.32 mg.h/mL (Day 0/Day 7) in females.

Imaging properties of the Gd-NPs in control (Cont) healthy monkeys.  The T1-MRI properties 
of Gd-NPs were first studied in healthy monkeys to observe the general biodistribution of the particles. After 
the intravenous injection of Gd-NPs, the main vascular network was clearly identified, and the main organs, i.e. 
heart, liver, and kidneys. One should note that there was a marked enhancement of blood vessels at first-pass 
(Fig. 2, see also Figure S1) and the bolus injection was very well tolerated without any changes in hemodynamic, 
cardiac, or ventilation parameters. Within the first 30 minutes, most of the nanoparticles were eliminated by the 
kidney route, as observed in Fig. 2A (last panel). Low T1 contrast was persistent in the muscles, liver, and kid-
neys. The contrast enhancement indicated a rapid renal washout of the nanoparticles: the T1 contrast enhance-
ment strongly increased in the ureters within the first 150 seconds, before it was drastically reduced during the 
next minute (Fig. 2B). Moreover, at 35 min post-administration, the T1 contrast of the ureters was once more 
very intense, indicating a continuous washout of Gd-NPs. The main MRI findings were in accordance with the 
pharmacokinetics’ profiles, which indicated a Gd-NPs blood half-life of ≈​2 hours at the administrated dose (i.e. 
200 mg/kg for MRI investigations).

Imaging properties of Gd-NPs in old animals under a high cholesterol (HC) diet for 24 months.  
Similarly to the previous investigation, MRI was performed on old monkeys under a 24-months HC diet (referred 
as HC++ animal, Fig. 3A). The contrast enhancements were similar to healthy animals except for the liver, which 
indicated a highest enhancement (Fig. 3B). Similar to healthy animals, the Gd-NPs were well tolerated without 
any changes in hemodynamic, cardiac or ventilation parameters.

Contrast properties for vulnerable carotid plaque.  The contrast properties of Gd-NPs were evaluated 
for vulnerable carotid plaques and compared to the ones of Gd-DOTA. In this pathology, unspecific accumulation 

In life parameters Safety Pharmacology Clinical Pathology Terminal parameters

Mortality/Morbidity Electrocardiograma Haematology Necropsy

Clinical signs Blood pressureb Coagulation HistoPathology

Local tolerance Respiratory rate Serum clinical chemistry

Body weight Neurobehavioral assessment Urinary analysis

Food consumption

Ophtalmology

Table 1.   List of the investigations performed after 2-repeated IV injection of Gd-NPs in cynomolgus 
monkey. aIncludes heart rate, QRS complex duration, PR intervals, QT intervals. bIncludes diastole and systole. 
No differences were reported at any dose. Details can be found in the Supplementary information Table S1.
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of contrast agent may occur due to the leaky wall’s endothelial layer and the inflammation, which recruits 
highly active macrophages21. In our condition, the 24-months HC diet induced moderate and more advanced 
atherosclerosis, as indicated by the ultrasound and biochemical parameters recorded from the treated animals 
(Supplementary information Table S2). As indicated by pre-contrast T1 MRI (Fig. 4), the carotid walls were not 
observable before the administration of any contrast agent. In absence of vulnerable plaque, both Gd-DOTA and 
Gd-NPs allowed very minimal carotid wall delineation. In presence of vulnerable plaque, both Gd-DOTA and 
Gd-NPs delineated the carotid wall with similar contrast properties. Gd-NPs appeared to have similar imaging 
properties as compared to Gd-DOTA. In the case of a well-established pathology (Fig. 4, HC++), the vulnerable 
plaques were better identified by Gd-NPs, in comparison to Gd-DOTA. The T1-contrast obtained after Gd-NPs 
was measured with time and the elimination kinetics of Gd-NPs were determined (Fig. 5). In healthy animals, 
Gd-NPs were rapidly washed out, whereas a significant retention was observed in HC animals. Gd-NPs retention 
might be proportional with the stage of the pathology, as the highest retention was observed for the most devel-
oped pathology (right carotid of HC++ animal).

Discussion – Conclusion
The use of nanoparticles as a contrast imaging agent requires their specific distribution in the body after intra-
venous injection, a rapid clearance from the body without undesired accumulation, a safe profile, and good 
contrast properties. Gd-NPs present the above mentioned properties with a fine distribution within the entire 
body starting at the first heartbeats following the intravenous administration, as well as a fast renal clearance as 
demonstrated with healthy NHP. After high-dose repeated IV administration, the particles were well tolerated, 
without modification of the antemortem and post-mortem parameters as compared to untreated animals. In 
particular, H&S staining indicated a safe renal elimination of Gd-NPs. Transient and minimal vacuolations of the 
proximal convoluted tubules was observed in rodents as previously reported18,19, but the NHP did not present 
such transient alteration for similar equivalent doses, indicating a strong tolerance and safe elimination in NHP. 

Figure 1.  Examples of histological sections of vital organs and injection site of the control and the high-
dose group. Hematoxylin and eosin staining revealed similar microscopic profiles when comparing control and 
high-dose group samples, in both males and females.

Day, Gender
Dose  

(mg/kg/day)

AUC0–24h DN Cmax DN T1/2 Cl Vss Acc. 
Ratio(h*mg/mL) AUC0-24h (mg/mL) Cmax (h) (L/h/kg) (L/kg)

Day 0

M 150 812 5.41 1,429 9.53 2.13 0.187 0.195

M 300 1,866 6.22 3,305 11.02 2.17 0.162 0.176

M 450 4,051 9.00 4,792 10.65 3.57 0.111 0.314

F 150 884 5.89 1,422 9.48 2.21 0.171 0.225

F 300 1,695 5.65 3,216 10.72 2.09 0.178 0.184

F 450 2,890 6.42 4,541 10.09 2.34 0.150 0.185

Day 7

M 150 828 5.52 1,437 9.58 2.29 NA NA 1.02

M 300 1,934 6.45 3,198 10.66 2.22 NA NA 1.04

M 450 3,419 7.60 4,779 10.62 NA NA NA 0.848

F 150 831 5.54 1,528 10.19 2.30 NA NA 0.948

F 300 1,665 5.55 2,984 9.95 2.19 NA NA 0.983

F 450 2,842 6.32 4,979 11.06 NA NA NA 0.991

Table 2.   Mean pharmacokinetic parameters in male and female cynomolgus monkeys following two 
intravenous administrations of Gd-NPs. M: Male; F: Female; AUC: Area under the curve; DN: Dose-Normalized; 
Cmax: Maximum plasma concentration; T½: blood half-life; Cl: Clearance; Vss: Volume of distribution at the steady 
state.Units for DN AUC0–24h is (mg*h/mL)/(mg/kg) and units for DN Cmax is (mg/mL)/(mg/kg). Acc. Ratio =​ 
Accumulation Ratio. The values were determined at 5 and 30 minutes, 1, 2, 6, and 24 hours post-administration.



www.nature.com/scientificreports/

4Scientific Reports | 6:35053 | DOI: 10.1038/srep35053

Figure 2.  MRI first-pass kinetics of Gd-NPs in different tissues (liver, kidneys’ cortex and medulla, skin, 
and lungs) in a male control subject with a slow injection. (A) During the first minutes of the acquisition, 
Gd-NPs were administrated intravenously, allowing a clear observation of the blood network and main organs, 
such as the heart, liver, and kidneys, i.e. an excellent T1 enhancement for angiographic studies and fast renal 
excretion. Then, at 35 minutes, the kidneys and ureters were mainly observed, demonstrating the washout of 
the nanoparticles. (B) The contrast enhancement was determined on the main organs. The highest contrast 
enhancements were observed for the kidneys, liver, and ureters.

Figure 3.  MRI first-pass kinetics of Gd-NPs in different tissues (liver, kidneys’ cortex and medulla, lungs) 
in a female HC subject with a slow injection. (A) Similar to healthy animals, Gd-NPs were distributed in the 
vascular network and the main organs, and rapidly reached the kidneys. (B) The contrast enhancements were 
determined for the kidneys, livers, and lungs.
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Figure 4.  High-resolution vessel wall carotid MRI in control (upper panel) and HC animals (middle and 
lower panel). Enlarged views of the carotids (right panels) with pre-contrast T1 images (A), post-Gd-DOTA (B) 
and post-Gd-NPs (C) respectively. In HC animals, post-contrast enhancement of the vessel wall is characteristic 
of atherosclerotic lesions with inflammation and increased vessel wall permeability. Arrows: vessel wall.
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Mean blood half-life measured in NHP was very similar to the one measured in rats for equivalent doses, with 
2.35 hours versus 2.31 hours, respectively18. Altogether, the safety profile indicated a NOEL of 450 mg/kg/admin-
istration, which corresponds to 145 mg/kg/administration for Humans22,23.

In contrast to intravascular ultrasound which accurately image the vessel wall at high resolution24, MRI is 
noninvasive. Combined to a T1-weighted contrast agent, MRI also allows to assess the morphological plaque 
characteristics. In particular, the local lesion and its evolution could be monitored using a carotid MRI protocol, 
considering the vessel wall permeability on gadolinium-enhanced MRI5. Under high cholesterol diet, old NHP 
had at-risk plasmatic profile (high LDL/HDL ratio, high triglycerides (see Table S3) and high hsCRP levels) and 
developped atherosclerosis lesions similar to human plaques at the same vascular sites25. As shown by MRI, our 
animals had carotid plaques with the same advanced and vulnerable characteristics as in patients.

For similar contrast properties16,20, Gd-DOTA is a cyclic ionic chelate, and Gd-NPs possess DOTA-derivatives. 
Both compounds possess very strong complexation for Gd (logβ110 =​ 25.58 for Gd-DOTA, and logβ110 =​ 25.58 
for Gd-NPs), preventing the release of free Gd20. Safe administration was observed for old atherosclerosis NHP. 
Imaging of the vessel’s wall in this pathologic animal was demonstrated using both chelates and chelates bound to 
NPs. The signal measured in the vessel wall was correlated to the plaque development for Gd-NPs investigations; 
the former agent possesses a longer circulation time as compared to Gd-DOTA that is rapidly cleared from the 
body which may have favored its retention in the plaque (13.2 min vs. 6.8 min in mice, respectively)19. Therefore, 
this agent has more suitable properties to quantify neovessels leakiness using DCE-MRI, another important func-
tional parameters to define vulnerable plaques10. Thanks to the high safety of Gd-NPs, this could be studied 
longitudinally in the near future using kinetic modeling in order to assess the vessel’s wall permeability over time 
and correlate it with the plaque’s evolution and downstream clinical events.

Figure 5.  MRI characteristics of the left and right carotids after intravenous administrations of Gd-NPs. The 
uptake of Gd-NPs in the vulnerable carotid plaque was followed as function of time for signal intensity (A), and 
contrast enhancement (B). The calculated slopes of the washout were determined for Gd-DOTA (C, grey) and Gd-
NPs (D, green). They were significantly different for vulnerable carotid plaques versus healthy carotids. L: left. R: 
right. HC: High cholesterol. For HC++ animal, Gd-DOTA values were not determined due to movements during 
the acquisition. *P <​ 0.05, **P <​ 0.01 HC versus healthy NHP. $p <​ 0.05 for HC++ left versus right carotid.
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Altogether, this study demonstrates the safety of the Gd-NPs, in particular for old pathologic animals. The 
T1-contrast properties were previously reported for vessel wall and plaque imaging. Further studies will indicate 
the potential of Gd-NP for such investigations.

Materiel and Methods
Gadolinium-based nanoparticles.  The gadolinium (Gd)-based nanoparticles (Gd-NP), AGuIX, 
were synthesized, purified, and characterized in compliance with GMP standards (Carbogen Amcis, Swiss). 
Gd-NPs are composed of an inorganic matrix of polysiloxane surrounded by covalently bound DOTAGA (Gd) 
((1,4,7,10-tetra-azacyclododecane-1-glutaric anhydride - 4,7,10-triacetic acid) - Gd3+). The main chemical for-
mula is Gd10Si26C238N56O142Hx, for a 3.5 ±​ 1 nm hydrometric diameter and an overall charge of 9.5 ±​ 5.5 mV at 
pH 7.

Nonhuman primate (NHP) studies.  All animal studies and experiments were approved by the French 
Ministry of Agriculture and carried out in accordance with the official regulation of the French Ministry of 
Agriculture after approval by the local Ethical Committee (No 1367 & 1239).

Pharmacokinetics and toxicity study.  A total of 24 healthy cynomolgus monkeys (macaca fascicularis)  
(n =​ 3/sex/group) were assigned to 4 groups: control, low-, moderate-, and high-dose of AGuIX series, i.e. 0, 
150, 300, and 450 mg/kg/administration, respectively (Wil Research, France). The doses were administered intra-
venously, once per week for 2 weeks (day 0 and day 7). Blood samples were collected following each admin-
istration at 5 and 30 min, 1, 2, 6 and 24 h. The blood plasma distribution kinetics was analyzed based on a 
non-compartment model (Kinetica 4.4.1, Thermo Fisher). All animals were observed for mortality, clinical signs, 
ophthalmology, body weight, food consumption, hematology, biochemistry, pathology, toxicokinetics, and uri-
nary parameters. Animals from the control group received a sterile solution of pure water containing calcium 
chloride (1.5 mM) and NaOH to mimic the adjuvant at pH 7.4. Hematoxylin and eosin (HES) staining were 
performed on tissue sections excised from the heart, lung, kidneys and liver to visualize the toxicity induced by 
AGuIX, 2 weeks after the second administration.

Atherosclerosis NHP model.  Atherosclerosis animals were evaluated after being 24 months under a high 
cholesterol diet. The model is developed by Cynbiose (Marcy L’Etoile, France), and the animals of the present 
study are part of a larger study to evaluate plaque vulnerability using imaging biomarkers in this translational 
NHP model. Briefly, after ovariectomy, old females were fed a high cholesterol (HC) diet (Energy 19.3 MJ/kg, with 
45 kJ% from fat, containing 0.5% cholesterol, 23% lipids, 11.3% from saturated fatty acids and 38% sugars, mainly 
sucrose) (V3944-000, Ssniff, Germany). The food ration was adapted according to the animal’s body weight (100 g 
for animals under 5 kg and 200 g for animals over 5 kg). The study duration was 24 months. One fruit was pro-
vided daily to each animal. Delicacies were also occasionally given to the animals at the end of the day as part of 
the Testing Facility environmental enrichment program. The control animals were maintained under the same 
housing conditions, but with the regular NHP diet (Energy 13.7 MJ/kg, with 51 kJ% from carbohydrate, and 
11 kJ% from fat containing 4% fat, and 10.2% sugars) (Ssniff, Germany). Total cholesterol and lipidic profiles were 
evaluated in plasma and high sensitive C reactive protein (hsCRP) was measured in serum. Expert cardiologist 
and veterinarian under general anesthesia performed ultrasonography, at 12 and 18 months to evaluate plaque 
development in different vascular beds: the carotids, aorta, and iliac arteries. Gene expression and cytokines were 
measured in the heart, carotids, and aorta at the end of the atherosclerosis inflammatory profile study.

Magnetic Resonance Imaging.  The biodistribution study was carried out in cynomolgus monkeys under 
a normal diet (macaca fascicularis, control animals 5 and 8 y.o., n =​ 2) and in high cholesterol fed NHPs (HC+/++ 
animals 16 and 17 y.o., n =​ 2) at 200 mg/mL of AGuIX i.e. 0.1 mmol of Gd/kg equiv. Magnetic resonance imag-
ing (MRI) was performed with a 3T scanner (Magnetom Prisma, Siemens, Erlangen, Germany) equipped with 
high performance gradients (80 mT/m, slew rate 200 T/m/s). All images were acquired with a set of standard 
multi-channels received MRI coils delivered by the manufacturer. These coils were installed once during the 
positioning of the animal in the scanner and activated according to the field of view. First, the monkeys were 
installed in supine position on the lower part of the 64-channel Head/Neck coil as well as the 32-channel Spine 
coil. Then two additional 4-channel flexible surface coils were placed on top on the neck (SC coil, size of 14 cm by 
9 cm) and the thorax (FS coil, size of 37 cm by 7 cm) respectively. Whole body and high resolution imaging of the 
carotids were performed under general anesthesia (xylazine/ketamine, 100–200 mg/kg) with continuous mon-
itoring of temperature, O2 saturation and cardiac/respiration rate. The induction was performed by intramus-
cular injections of ketamine at 10 mg/kg (Ketamine 1000, Virbac, Carros, France) and midazolam at 0.2 mg/kg 
(Midazolam Aguettant, Lyon, France) followed by anesthetic maintenance by intravenous infusion of ketamine at  
12 mg/kg/h. Dynamic images were acquired with the TWIST (Time resolved angiography With Interleaved 
Stochastic Trajectories) pulse sequences. TWIST sequence was applied in the coronal orientation and 
acquired with a separation of 5 seconds between frames. The imaging parameters were: TR/TE/Flip 
angle =​ 2.95 msec/1.10 msec/25° and voxel size 0.8 ×​ 0.8 ×​ 1.2 mm3. For comparison, a bolus of gadolinium 
chelate (0.1 mmol Gd/kg, Gd-DOTA, DOTAREM®​ Guerbet, Aulnay-sous-Bois, France) was administered 
intravenously at 0.1 mL/sec followed by a saline flush. After renal excretion of standard gadolinium chelate, the 
sequence was repeated with the Gd-NPs at an adjusted dose for a similar angiographic T1 effect (0.1 mmol Gd/
kg Gd-NPs). High-resolution images of the carotids were acquired with an ECG-gated Turbo Spin Echo sequence 
with black-blood module. The parameters were TR/TE =​ 466 ms/5.8 ms, TSE factor =​ 9, reconstructed voxel size 
of 0.3 ×​ 0.3 ×​ 2 mm and 9 slices planed perpendicular to the common carotid using a TOF acquisition.
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MRI data treatment.  MRI data analysis was performed using the Inveon®​ Research Workplace 4.1 software 
(Siemens, Erlangen, Germany). The regions of interest were drawn in the carotid vessel wall and in the artery’s 
lumen to obtain the dynamic contrast information during the contrast agent first-pass, and in the different organs 
of interest for the contrast distribution at a steady state.

Statistical analysis.  Statistical analysis was performed using unpaired T-Test (Excel software) for the vul-
nerable plaque contrast.
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