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Abstract: Current diagnostic methods for evaluating the functionality of the lymphatic vascular
system usually do not provide quantitative data and suffer from many limitations including high
costs, complexity, and the need to perform them in hospital settings. In this work, we present a
quantitative, simple outpatient technology named LymphMonitor to quantitatively assess lymphatic
function. This method is based on the painless injection of the lymphatic-specific near-infrared
fluorescent tracer indocyanine green complexed with human serum albumin, using MicronJet600TM

microneedles, and monitoring the disappearance of the fluorescence signal at the injection site over
time using a portable detection device named LymphMeter. This technology was investigated in
10 patients with unilateral leg or arm lymphedema. After injection of a tracer solution into each limb,
the signal was measured over 3 h and the area under the normalized clearance curve was calculated
to quantify the lymphatic function. A statistically significant difference in lymphatic clearance in the
healthy versus the lymphedema extremities was found, based on the obtained area under curves
of the normalized clearance curves. This study provides the first evidence that the LymphMonitor
technology has the potential to diagnose and monitor the lymphatic function in patients.

Keywords: lymphatic system; lymphedema; mobile health; lymphatic function monitoring; lym-
phography; indocyanine green

1. Introduction

The lymphatic system plays a pivotal role in immune surveillance, absorption of
dietary lipids in the intestine, and tissue fluid homeostasis [1,2]. Thus, alterations of
lymphatic system function have implications in a number of diseases, including lym-
phedema [3], advanced-stage lipedema [4–6], venous insufficiencies [7], impaired wound
healing, and chronic inflammatory diseases [8–10]. Among those, lymphedema, resulting
from fluid accumulation in the tissues, leads to the development of chronic, often disabling,
and disfiguring swelling of the affected body part. While primary lymphedema is rare and
caused by somatic mutations, secondary lymphedema can develop after oncologic surgery
(where usually lymphadectonomy is part of the treatment regime), radiotherapy, infection
(lymphangitis or parasitic infection), or other major injuries [11–14].

Quantitative evaluation of the lymphatic function is useful for early diagnosis, ac-
curate staging, and evaluation of the treatment of lymphatic insufficiencies, such as lym-
phedema. [15–17]. Some quantitative approaches measuring the rate of disappearance
of a lymphatic-specific radioactively labeled tracer at the injection site—which reflects

Diagnostics 2021, 11, 1873. https://doi.org/10.3390/diagnostics11101873 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-4863-8658
https://orcid.org/0000-0003-0227-9247
https://orcid.org/0000-0002-5351-5054
https://doi.org/10.3390/diagnostics11101873
https://doi.org/10.3390/diagnostics11101873
https://doi.org/10.3390/diagnostics11101873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11101873
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11101873?type=check_update&version=1


Diagnostics 2021, 11, 1873 2 of 14

lymphatic vessel functionality—have been used in clinics. However, they require stationary
and expensive scintigraphy cameras which drastically hampers the widespread applica-
bility of these methods [18–20]. Thus, a technology that enables simple and quantitative
monitoring of lymphatic vessel function in outpatient settings remains an unmet medical
need. The use of near-infrared (NIR) fluorescent tracers, such as indocyanine green (ICG),
allows the elimination of the need for radioactivity and the associated risk of ionizing
radiation, as well as the use of bulky instrumentation [20]. Quantitative approaches for
evaluating lymph transportation capacity by measuring ICG velocity [21–23] or pumping
pressure [20,24–27] using fluorescence cameras have been applied in clinics. We and others
have developed techniques for the quantitative measurement of lymphatic vessel drainage
that are based on monitoring the decay of a fluorescence signal after tissue injection of
lymphatic-specific NIR fluorescent tracers in animal models [27–31]. In a recent study,
which laid the foundation for the current clinical validation, we developed a new, three-
pronged approach for measuring lymphatic function in vivo [27]. We produced a new
formulation of ICG containing the surfactant polyoxyl 15 hydroxystearate (brand name:
Kolliphor HS15) that helped to overcome the physicochemical limitations of ICG, such
as aggregation and self-quenching in purely aqueous solutions [28,30,32–34]. The ICG-
Kolliphor HS15 solution was administered intradermally via a microneedle-based injection
device with hollow microneedles, named MicronJet600 (Nanopass Ltd., Ness Ziona, Israel).
We then used a custom-made handheld NIR detection device named LymphMeter 1.0 for
the simple monitoring of the NIR signal at the injection site. This custom-made device is
portable, equipped with an external power source and therefore suited for use outside of a
hospital setting, in contrast to existing imaging technologies. Using this device, we were
able to quantitatively determine the lymphatic vessel function in pig skin, based on the
clearance dynamics of the tracer from the injection site [27].

In the present study, we investigated a new formulation of ICG pre-complexed with
human serum albumin (HSA) in animals and in humans in combination with a LymphMe-
ter measuring device and hollow MicronJet600 microneedles. The aim of the animal studies
in mice and pigs was to validate the selected ratio of ICG-HSA and determine the required
measurement period for the human study. The aim of the following investigator-initiated
proof-of-concept human study in 10 patients suffering from unilateral lymphedema was to
evaluate whether using this method, named LymphMonitor 1.0, allows for distinguishing
normal and impaired lymphatic function in healthy and lymphedematous extremities in
humans. Overall, the study provides the first evidence that the quantitative evaluation of
lymphatic clearance of intradermally injected HSA-ICG (LymphMonitor technology) has
the potential to evaluate the lymphatic function in patients with lymphatic insufficiencies.

2. Materials and Methods
2.1. Chemicals and Stability Tests

Commercially available, clinical-grade ICG and HSA were used in this study: VERDYE,
(Diagnostic Green GmbH, Aschheim-Dornach, Germany) and Albumin CSL 5% and 20%
(CSL Behring, Marburg, Germany).

2.2. In Vivo Clearance in Animals

Mice were kept under specific pathogen-free conditions until imaging. FVB mice were
bred in-house. K14-sVEGFR-3-Fc transgenic mice were kindly provided by Dr. Kari Alitalo,
University of Helsinki, Finland [29,35]. Mouse experiments were performed in accordance
with an animal protocol (ZH212/16) approved by the Cantonal Veterinary Office Zurich,
Switzerland. An IVIS Spectrum (Xenogen, Caliper Life Sciences, Hopkinton, MA, USA)
imaging system was used for the in vivo lymphatic clearance assay. Male mice, 10–12-weeks-old,
were used for the assays (FVB WT or K14-VEGFR3-Fc transgenic). Detailed protocols for
this assay are described elsewhere [27,29,34,35]. In brief, mice under 2% isoflurane anes-
thesia were injected intradermally in the ears with 3 µL of a freshly prepared solution
containing ICG (0.0025 or 0.005 mg/mL in 5% and 20% HSA or in water using 29-G insulin
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syringes (Terumo). The fluorescence signal in the ears was monitored at pre-determined
timepoints (0, 1, 2, 4, 6 and 24 h). Measurements were performed in isoflurane anesthetized
mice. Between the measurements, the animals were allowed to move without any re-
striction. The signal was measured using the following settings: λex/λem = 745/800 nm,
exposure time of 1.5 or 2 s, small binning, field of view 6.6 cm × 6.6 cm. The images
were analyzed by drawing a region of interest (ROI) around the administration site, and
the average fluorescence intensity was measured for each timepoint using Living Image
Software (Caliper Life Sciences). After subtracting the background signals, the values were
normalized to the time 0 measurement and plotted against time. A mono-exponential
decay function was fitted to the obtained data and the dermal elimination half-lives were
calculated using GraphPad Prism 7 software (constrain parameters for fitted curve: at time
0 h, the value is equal to 1, the plateau value is 0).

The pig experiment was performed in the Centre National de Biologie Expérimentale,
Institute National de la Recherche Scientifique (INRS), Laval, Canada. Procedures involving
the care and the use of pigs in this study were reviewed and approved by the INRS Institu-
tional Animal Care and Use Committee (performed according to the Canadian Council on
Animal Care (CCAC) guidelines and policies (study protocol number: 1711-01)). Throughout
the experiment, the health and well-being of the pigs were closely monitored by a veterinarian.
One 4-week-old female domestic pig was obtained from local Canadian farmer. Prior to
starting any procedures, the animal was acclimatized for one week in the facility.

The pig was placed on the restrain sling for the injections. Three intradermal injections
of 50 µL of freshly prepared ICG (0.0025 mg/mL)-HSA (5%) were performed on each
side of the flank using MicronJet600TM (NanoPass Technologies Ltd., Ness Ziona, Israel)
microneedles attached to 1 mL BD Luer-Lok syringes [36]. After the injection, a circular
area (3 cm diameter) around the injection site was marked. For each measurement, the
pig was placed on the sling and the LymphMeter detection device was moved slightly
around the marked injection area to localize the region with the highest signal intensity.
Eight to eleven measurements were recorded, and the three highest values were used for
data analysis. Between the measurements it was allowed to move without any restrictions.

2.3. Human Study

The clinical study was approved by the Zurich Cantonal Ethics Committee (BASEC
number: 2018-01823) and Swiss Agency of Therapeutic Products (Swissmedic, study number:
2020DR1060). The trial was conducted according to the principles of the Declaration of Helsinki
and Good Clinical Practice standards. The study was registered in the Swiss National Clinical
Trial Registry at kofam.ch (SNCTP000003646) and at ClinicalTrials.gov (NCT04393168).

2.3.1. Study Design and Endpoints

The study was performed at the Division of Plastic and Hand Surgery of the University
Hospital Zurich, Zurich, Switzerland. The study was a monocentric, interventional, intra-
individual comparison to assess whether the LymphMonitor method allows for valid
assessment of lymphatic function in humans in the context of secondary lymphedema. The
primary objective of the study was to investigate the feasibility of the method to assess
lymphatic function in 10 arm or leg lymphedema patients (diseased extremity versus
healthy extremity). The secondary objective was to establish a correlation of clearance
parameters with the extent of the swelling in lymphedema patients. Safety objectives
included the evaluation of skin reactions after administration of the tracer solution, the
assessment of potential allergic reactions and intolerances, as well as the assessment and
reporting of all adverse effects (expected and unexpected) for the full period of the study.

2.3.2. Participants

A total of ten patients (7 female and 3 male) were recruited for the study. A detailed
list of inclusion and exclusion criteria is provided in Table 1.

kofam.ch
ClinicalTrials.gov
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Table 1. Inclusion and exclusion criteria.

Inclusion Criteria

• Females and males 18–75 years old.
• Established (stage 2 or higher) unilateral secondary arm or leg lymphedema resulting from

lymphadectonomy, radiation or any other surgical treatment, infection or injury (classification according
to International Society of Lymphology [37])

• Good general health status.

Exclusion Criteria

• Critical illness (active cancer, renal failure, hepatic dysfunction).
• Active infection.
• Blood vascular malformations or diseases.
• Scleroderma.
• Primary lymphedema.
• Patients who underwent any surgical procedures for treatment of lymphedema (e.g., lymphovenous

anastomosis, liposuction, lymph node transfer).
• Contradictions to use ICG (VERDYE).
• Patients with hypersensitivity to ICG or to sodium iodide.
• Patients with hypersensitivity to iodine.
• Patients with hyper-thyroidism, patients with autonomic thyroid adenomas.
• Patients in which the injection of VERDYE was poorly tolerated in the past it must not be used again,

since severe anaphylactic reactions might occur.
• Hypersensitivity to albumin or its excipients.
• Women, who are pregnant (pregnancy test will be performed in case of women who did not

undergo menopause).
• Women who are breast feeding.
• Enrolment of the investigator, his/her family members, employees, and other dependent persons.
• Known or suspected non-compliance, drug or alcohol abuse.
• Inabilityof the participant to follow the procedures of the study, e.g., due to language problems,

psychological disorders, dementia, etc.
• Participation in another study with an investigational drug within the 30 days preceding and during the

present study.
• Previous enrolment into the current study.

The description of the patient population is shown in Table 2, together with the
measured volume of the extremities. The volumes of lymphedema extremities were on
average 21.9 ± 12.7% higher compared to contralateral, non-affected arms and legs.

Table 2. Study population. Abbreviation: (LEV) lymphedema extremity volume in cm3, (HEV) healthy extremity volume in
cm3, (BMI) body mass index, (FD) First diagnostic.

Patient Age Gender Affected Limb LEV
(cm3)

HEV
(cm3) Etiology Clin.

Stage
BMI

(kg/m2)
FD

(M/Y)

1 59 F right leg 23,618 19,212 injury II 40.1 August 2019
2 63 F right leg 8670 6613 ovary cancer II 36.3 November 2018
3 68 F left arm 3672 2869 breast cancer II 33.5 July 2017
4 64 F left leg 11,505 7711 injury II 22 January 2004
5 40 F left leg 10,009 9333 melanoma II 23.8 October 2017
6 61 M right arm 3158 2852 infection II 23.5 2008
7 55 M right arm 3062 2742 melanoma II 30.3 February 2017

8 49 F right leg 9565 7735 cervical
cancer II 21 2018

9 48 F left arm 3049 2765 breast cancer II 29.1 January 2013
10 48 M right leg 10,330 8316 melanoma II 24.5 March 1999

2.3.3. Visits and Intervention

The study consisted of two visits: screening visit and interventional visit. Before the
screening visit, each patient obtained and signed informed consent after the nature and
possible consequences of the studies were explained in detail.
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Screening Visit

During the first visit, the patients’ eligibility for the study was determined based on
inclusion/exclusion criteria. A basic physical examination was performed (blood pressure
and temperature). Moreover, the information about lymphedema-related medical history
was collected, which included origin of lymphedema (i.e., cancer, infection, or operation-
related lymphedema), suffered symptoms (e.g., pain, heaviness, itchiness), and the type
and frequency of applied lymphedema therapies.

Investigational Visit

During the second, interventional visit, the patients had the volumes of their healthy
and lymphedema limbs measured following an established standard operating procedure
(SOP) of the Department of Physiotherapy of the University Hospital Zurich (USZ). The
measurements were performed by a physiotherapist specialized in lymphological therapy.
Briefly, sequential perimeters were measured every 4 cm starting from the level of the
wrist (from processus styloideus ulnae) or ankle (from malleolus lateralis) until the level
of the axilla (for arm) or groin (for leg). The volume was calculated using the truncated
cone formula [38] using a standardized interface. After that, the ICG (0.0025 mg/mL)-HSA
(5%) solution was prepared (as described in Section 2.3.4). For injections of ICG-HSA and
measurements, the patients were placed in the supine or sitting position. The injections
were allocated in the visually most swollen region of the arm or the leg and performed in
the symmetric area of the contralateral non-swollen arm (forearm: in the dorsal or ventral
part)/lower leg (anterior or posterior). Injection of 50 µL of the ICG-HSA solution was
performed using MicronJet600 microneedles according to the manufacturer’s instructions.
The injection sites were marked with a non-allergenic marker. Moreover, the arm/leg was
photographed after the injection and the circumference at the injection site in both the
healthy and the lymphedemous arm/leg was measured using measuring tape.

The time and the location of the injection was recorded in electronic Case Report
Form (eCRF, secuTrial). Following the injection, the fluorescence signal at the injection
site was measured with the LymphMeter (every 15 min during the first hour, and every
30 min thereafter for the total duration of 3 h). For each timepoint, six measurements
per extremity were performed. Custom LymphData software (Figure 1, described in the
following paragraph) connected via Bluetooth with the LymphMeter device was used to
record, save, and export the data in a format that was compatible with the secuTrial data
capture system.

Between the measurements, the patients were asked to stay mainly in a comfortable
sitting position and were allowed to perform simple activities that do not require intense
arm or leg movements. For example, for arm measurements the patient were allowed to
watch a movie or read a book, but not to knit or sew. For leg measurements, the patients were
allowed to go to the bathroom but not use the stairs, do any jogging, or walk long distances.

2.3.4. Preparation of ICG-HSA

The ICG-HSA solutions containing 0.0025 mg/mL ICG in 5% HSA were prepared
in a dilution/reconstitution process, by firstly dissolving the content of the VERDYE vial
(25 mg) in sterile water for injection followed by dilution of 1 mL of the resulting solution
in 500 mL of commercial 5% HSA. The final solution was used within one hour from the
preparation. One preparation was performed for each patient and the remaining solutions
were discarded.
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2.3.5. LymphMeter and LymphData Software

The LymphMeter device has been already described in detail in our recent publica-
tion [27]. For the purpose of the current study, the LymphData software was developed
to facilitate recording measurements and the import of the data to the secuTrial-based
electronic Case Report Form (eCRF) (Figure 1). LymphData supports Windows, MacOS,
or Linux based systems. It is connected via Bluetooth to LymphMeter 1.0. When a mea-
surement is triggered by pressing the button on the side of LymphMeter 1.0, LymphData
receives and saves the measurement from LymphMeter 1.0 in real time and automatically
associates it with metadata, such as the time and date of the measurement (timestamp) and
pre-defined parameters such as time point, patient ID and the measured extremity code
(healthy or lymphedema). The aggregated data is saved in LymphData’s internal storage
system. The measurements can then be exported to files with a particular comma-separated
file format that the eCRF data management system can interpret. Therefore, the user can
transfer the measurements directly into the eCRF in a semi-automated manner that assures
the integrity of the measurements. Moreover, the operating conditions of the LymphMeter
1.0 (i.e., the laser diode integration time or signal-to-background ratio) are also reported
to the LymphData software, where they are displayed and saved in the internal storage
system together with the actual measurement. If proper operation of the LymphMeter 1.0
is questioned during evaluation of the measurements at a later stage of the study, these
recordings can be consulted to investigate whether the device was working properly and
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was correctly operated. Thanks to its internal database, LymphData can handle prolonged
studies over several weeks, interrupted by restarts of the host system, forced closing, power
outages, or similar incidences, without any data loss.

2.3.6. Data and Statistical Analysis of the Clinical Study

From six measurements for each timepoint, the average fluorescence intensity was
calculated. The average intensity values were normalized to the value at timepoint 0 h
(immediately after injection) and the normalized data were plotted against time to generate
clearance curves. The AUC was calculated using the trapezoidal method. Normality of
the obtained AUC datasets for healthy and lymphedema extremities were tested using
D’Agostino&Pearson normality test. The parameters in healthy and affected extremities
were statistically compared using the parametric paired Student’s t-test (mean compar-
ison); 95% confidence intervals for the mean were calculated. Data are presented as
mean ± standard deviation (S.D.).

3. Results and Discussion
3.1. ICG-HSA Can be Used to Quantitatively Assess Lymphatic Function in Mice

The aim of the first part of the study was to determine whether the selected ICG
(0.0025 mg/mL) solution in a sterile, commercially available 5% HSA can be used for the
quantitative assessment of lymphatic clearance in vivo. These concentrations were based
on the following criteria: the selected ICG concentration (in 5% HSA) lies in the linear range
of ICG concentration—fluorescence intensity curve (measured in vitro, Supplementary
Methods and and Figure S1a) and ICG solutions in commercially available 5% HSA were easy
to inject in preliminary experiments in mice and did not leak from the intradermal injection
sites, as opposed to 20% HSA solutions. We also confirmed improved in vitro stability of the
ICG in 5% HSA solution in contrast to purely aqueous solution, by measuring fluorescence
intensity over time. While the fluorescence intensity of ICG in water solution decreased by
around 60% after 24 h, indicating dye degradation, the fluorescence intensity of ICG-HSA
remained stable within this time (Supplementary Figure S1b). The longer stability of ICG-HSA
has positive implications for its clinical use as it increases the in-use time.

To determine whether the selected ICG-HSA formulation can be used for the quantita-
tive assessment of lymphatic clearance, we compared the lymphatic clearance in ears of
wildtype (WT) mice and of K14-VEGFR3-Fc transgenic mice that lack dermal lymphatic
vasculature. Briefly, we injected 3 µL of the solution into the ears of mice and followed the
fluorescence signal intensity over time using IVIS Spectrum Imaging System.

Figure 2a,b show the fluorescence intensity over time and fitting of mono-exponential
decay function in wild type and K14-VEGFR3-Fc mice and the calculated half-life of
clearance, respectively. The calculated half-life of clearance was significantly longer in
K14-VEGFR3-Fc mice than in WT mice (mean ± S.D: 8.7 ± 2.3 h vs. 3.1 ± 0.4 h respectively,
** p < 0.01, Student’s t-test. Figure 2b). These values are comparable to those previously
obtained using ICG-Kolliphor HS15 (mean ± S.D: 9.6 ± 0.4 h and 2.6 ± 0.8 h for K14-VEGFR3-
Fc mice and WT mice, respectively) [27]. Overall, these results indicate that the ICG-HSA
formulation can be used for the quantitative assessment of lymphatic function in vivo.
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Figure 2. Quantification of dermal lymphatic drainage after bolus intradermal administration of
3 µL of ICG (0.0025 mg/mL) in 5% HSA in the ears of WT and K14-VEFGR3-Fc mice lacking a
dermal lymphatic vasculature. (a) Normalized fluorescence intensity over time and fitting of mono-
exponential decay function in WT and K14-VEGFR3-Fc (n = 4 mice per group) mice. (b) Quantification
of dermal elimination half-lives in WT and K14-VEFGR3-Fc mice from fitted curves. Data are shown
as mean ± S.D and compared by Student’s t-test; ** p < 0.01.

3.2. In Vivo Validation of ICG-HSA in Pigs Using the LymphMeter Device

Pig and human skin share similarities in structure and thickness (epidermis varying
from 30 to 140 µm and 50 to 120 µm, respectively) [39–41]. Thus, we decided to perform a
pre-clinical validation of the technology, named LymphMonitor 1.0, in vivo in in pig skin.
The LymphMeter 1.0 device was used for measuring the fluorescence signal over time. ICG-
HSA was injected into the skin of a 1-month-old female domestic pig using MicronJet600TM

microneedles (three pyramid-shaped microneedles, each 600 µm long). Injection with
microneedles enables standardized and uniform delivery of the tracer formulation through
the epidermis directly to the dermal skin layer [36]. The intradermal injections were
performed on the left and right flank, and the signals were measured with LymphMeter
1.0 for a total duration of 3 h (every 15 min during the first hour, then every 30 min). This
measurement frequency was chosen to enable observation of the initial signal plateau
phase due to diffusion of the dye in the tissue and/or distribution to initial lymphatics dye
prior to the clearance phase (signal decrease). Figure 3a shows the normalized clearance
curves obtained for the left and right flank of the pig. A plateau phase lasting for 30–45 min
was observed for 4 out of 6 injections. As fitting using a mono-exponential decay function
to calculate half-life would not be appropriate in this case [27], we calculated the area-
under-the curve (AUC) to assess the total clearance of the tracer from the injection site.
The average AUC calculated for the right side (1.94 ± 0.13) was slightly lower than for
the right side (2.29 ± 0.13), however, the difference was not statistically significant (paired
Student’s t-test, p > 0.05, Figure 3b). As we assume that the skin on both flanks of the pig
should be identical in terms of the lymphatic clearance, the slight difference in average
AUC on both sides may emerge from not ideally symmetric injections of the tracer. The
average pooled AUC was 2.12 ± 0.25. The calculated % Relative Standard Deviation (RSD)
for AUC (pooled for right and left flank) was 12%, which demonstrates good repeatability
of the measurements. In conclusion, while the mouse experiments confirmed the correct
choice of the ICG-HSA concentrations, the pig experiments validated the timeframe (3 h)
needed for the measurements using the LymphMeter and confirmed that the lymphatic
clearance measurements can be performed with good repeatability.
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Figure 3. Lymphatic clearance measured by the LymphMeter 1.0 in the skin of the pig’s flank after
bolus intradermal administration of 50 µL of ICG (0.0025 mg/mL) in a solution of 5% HSA, using
MicronJet600TM microneedles. (a) Normalized fluorescence signal at each injection site over time on
the left and right side. (b) AUCs of ICG clearance curves from left and right flank. Data shown as
mean ±S.D. and analyzed by paired Student’s t-test; p > 0.05.

3.3. Human Study

Having validated the appropriate concentrations of ICG and HSA in the solution
and the timeframe of the measurements with LymphMeter in the animal studies, we
proceeded with the human study to assess whether the method allows for valid assessment
of lymphatic function in humans in the context of secondary lymphedema. To this end, we
measured the fluorescence signal of intradermally injected ICG-HSA at the injection site
in arms or legs of 10 lymphedema patients (diseased extremity versus healthy extremity)
over time.

Figure 4a shows the normalized clearance curves obtained in each patient. Except for
patients 4 and 10, one can clearly appreciate that the signal decrease was more prominent
in healthy extremities than in those with lymphedema. The normalized fluorescence
signal at 3 h post-injection was 9.5–43.4% higher (average 21.4 ± 12.4%) in lymphedema
extremities than in the healthy ones. For some patients, the measured signal varied within
0.5–1 h after the injection (e.g., in patient 1 in the lymphedema extremity and in patient
7 in both extremities). A lack of clear signal decrease immediately after injection may
result from diffusion and distribution/redistribution of the dye in the tissue and initial
lymphatics prior to the lymphatic clearance phase (signal decrease), which in the case
of lymphedema may be longer, due to the increased interstitial fluid accumulation. This
phenomenon was already observed in our previous studies [27] in the back skin of mice
and in pigs, as well as in several human studies with both radioactive and fluorescent
probes [7,18,19,28,42]. As an example, Modi et al. [43] reported an initial increase of the
counts of subcutaneously injected radioactive IgG prior to the decrease phase, suggesting
transport of the probe to more superficial layers of the skin. Since, due to the initial plateau
phase and signal variations, fitting using mono-exponential decay function and half-life
calculation was not possible in the clinical study, we used the AUC of the normalized
clearance curves to assess the total tissue clearance of the tracer from the injection site.
Figure 4b shows the calculated AUCs for the lymphedema and the contralateral healthy
extremities. The calculated average AUCs were significantly higher in lymphedema arms
and legs (2.76 ± 0.14 h, 95% CI: 2.67–2.85) compared to healthy limbs (2.38 ± 0.25 h, 95% CI:
2.22–2.53), (p < 0.01, Student’s t-test). On average, the AUC in lymphedema extremities
was 17.3 ± 13.4% (range 0.5–41.0%) higher than in the healthy extremities.
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Figure 4. Lymphatic clearance measured by LymphMeter 1.0 in the skin of extremities of 10 patients after intradermal
bolus administration of 50 µL of ICG (0.0025 mg/mL) in a solution of 5% HSA using MicronJet600TM microneedles.
(a) Normalized clearance curves in lymphedematous (square) and contralateral healthy extremity (circle) for each patient.
(b) AUCs for the lymphedema and the contralateral healthy extremity. Data were compared by Students t-test; ** p < 0.01.
Data obtained in legs and arms are marked in red and black, respectively. (c) Correlation between ratios of AUCs and
volumes in healthy and lymphedema extremities. r = −0.3647 (Pearson’s correlation coefficient), p = 0.3001. Data obtained
in legs and arms are marked in red and black, respectively.
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In the past, several studies have used radioactive tracers to investigate their clear-
ance from the injection site after subcutaneous, intramuscular, or intradermal injection.
It was found that indeed the clearance was altered in several pathological conditions
including lymphedema [42–50], and that clearance rates were dependent on the body loca-
tion [43,51,52] and were changed upon exercise [53]. Other studies using 99mTc-human IgG
found that the removal rate constant (k) of intramuscularly and subcutaneously injected
tracer was on average 30% lower in the lymphedema forearm compared to the healthy
forearm [48,49], and that this reduction was correlated with the degree of swelling [48].
Using the same tracer, another study reported a 46% decrease of the clearance constant
ratio (k) in hands swollen due to lymphedema compared to the contralateral non-affected
hands after subcutaneous injection [47]. While these studies provided convincing evidence
that the depot clearance of radioactive tracers is a useful parameter to quantify lymphatic
function, its practical translation to the routine clinic is hampered by the need for using
large and stationary gamma cameras as well as radioactivity. By contrast, the LymphMoni-
tor 1.0 technology uses a small, portable detection device, that allows for performing the
measurements at any location without the need to expose the patients to ionizing radiation.

We also aimed to establish a correlation of clearance parameters with the extent of the
swelling in lymphedema patients. An increase in limb volume is one of the most prominent
landmarks of lymphatic insufficiency. In a previous study, a significant correlation of
clearance constant (k) ratios and volume ratios of lymphedema and contralateral healthy
arms was found [48]. However, we did not find a significant correlation between the AUC
ratios (AUC in the lymphedematous limb divided by the AUC of the contralateral limb)
and the limb volume ratios (Figure 4c). In patient 4, who had a very prominent swelling
of the affected leg (volume ratio 1.49), the AUC ratio was close to 1, whereas in patient 2,
with the second largest volume ratio (1.31, leg lymphedema), the AUC ratio was 1.41.
This indicates that the limb volume might not be the best predictor of lymphatic function.
Interestingly, patient 4 suffered from lymphedema since almost 16 years, whereas patient 2
was diagnosed only two years before the study. An equal AUCs ratio in a patient with
long-term, chronic lymphedema may indicate that lymphatic insufficiency may lead to
systemic effects and might also influence the contralateral extremity. However, the low
number of patients studied and the heterogenous patient population of the present study
(patients with leg and arm lymphedema and different etiologies of disease) does not really
provide a solid base for investigating such correlations.

The safety and well-being of the patients was monitored throughout the study. In gen-
eral, the injection of ICG-HSA using MicronJet600TM microneedles was simple, and patients
did not report any sign of pain or discomfort during injection. Over the duration of the
intervention (3 h), we did not observe any redness or erythema, which demonstrates that
the intradermal injections of ICG-HSA are well tolerated.

4. Conclusions

Our study provides the first evidence that the quantitative evaluation of lymphatic
clearance of intradermally injected ICG-HSA with portable LymphMeter device (Lymph-
Monitor technology) has the potential to evaluate the lymphatic function in patients. There
was a significant difference in lymphatic clearance in the lymphedema extremities versus
contralateral healthy limbs based on the obtained AUCs of the normalized clearance curves.
Thus, the primary objective of the study was achieved, namely the proof-of-concept for the
feasibility of the LymphMonitor method to quantitatively assess the lymphatic function in
established arm or leg lymphedemas. The present study provides a full overview of the
LymphMonitor method development—from the validation of a suitable tracer in mouse
studies, through the determination of the required measurement period in pigs to the
validation in patients. To the best of our knowledge, this is the first human study showing
the use of depot clearance of a fluorescent tracer to quantitatively assess lymphatic func-
tion. Currently, we aim to develop a wearable detection device that can be secured to the
skin, thus enabling continuous measurements over time. This would eliminate the need
for repeated measurements at pre-determined timepoints and minimize the effort of the
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medical professional who would only need to perform the tracer injection and attach the
device to the skin. In the long term, we envisage that patients might be able to perform the
functional tests at home, using a self-injection device, and then transmit the results directly
to a medical professional using a custom mobile application. This technology would allow
consistent monitoring of the lymphatic function in patients after an event that increases
the risk of developing lymphedema (e.g. in cancer patients after lymphadenectomy or
injury), as well as the progression of the disease, and also to assess the efficiency of applied
treatments (e.g., lymphovenous anastomosis surgery). The small and heterogeneous pa-
tient cohort constitutes a major limitation of our clinical study. Thus, a more extensive,
long-term clinical trial in a larger patient population would help to evaluate the changes
in AUC in both lymphedema and healthy extremities throughout the progression of the
disease and thus unravel the full potential of the technology for early diagnosis and for
monitoring of lymphatic insufficiencies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11101873/s1, Supplementary Methods: In vitro fluorescence measurements.
Figure S1: Linear relationship between ICG concentrations in purely aqueous solution, 5% and 20%
HSA, and fluorescence intensity. ICG concentration range in which the relationship is linear, and
respective R2 of the fitted regression lines.
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