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Exploiting common patterns in diverse
cancer types via multi-task learning
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Cancer prognosis requires precision to identify high-risk patients and improve survival outcomes.
Conventional methods struggle with the complexity of genetic biomarkers and diverse medical data.
Our study uses deep learning to distil high-dimensional medical data into low-dimensional feature
vectors exploring shared patterns across cancer types. We developed a multi-task bimodal neural
network integrating RNA Sequencing and clinical data from three The Cancer Genome Atlas project
datasets: Breast Invasive Carcinoma, Lung Adenocarcinoma, and Colon Adenocarcinoma. Our
approach significantly improved prognosis prediction, especially for Colon Adenocarcinoma, with up
to 26% increase in concordance index and 41% in the area under the precision-recall curve. External
validation with Small Cell Lung Cancer achieved comparable metrics, indicating that supplementing
small datasets with data from other cancers can improve performance. This work represents initial
strides in using multi-task learning for prognosis prediction across cancer types, potentially revealing
shared mechanisms among cancers and contributing to future applications in precision medicine.

Cancer is a leading cause of death globally, underlining the importance of
early detection for improved survival rates1,2. Accurate prognosis predic-
tions, aidedbydata science anddeep learning, can assist in treatinghigh-risk
patients. However, the high dimensionality of omics data presents chal-
lenges such as overfitting, especially when dealing with high-dimensional
data with insufficient samples, a situation known as the “curse of
dimensionality”3.

Additionally, gathering enough patient medical data on the same
cancer type remains challenging when training robust Deep neural net-
works (DNNs). DNNs have proven to be an effective tool for precisely
diagnosing diseases using medical data4–6. However, DNNs trained on
limited samples can suffer from overfitting, so manually labeling sufficient
training samples is not a practical solution. To address this, previous
studies7,8 have integrated multiple datasets of the same cancer type into a
single cohort dataset to augment the volume of labeled data for training and
testing. Studies typically focus on a single cancer type due to different
cancers’ unique genotypes and phenotypes. Yet, many medical experts
maintain that shared underlying mechanisms exist among various
cancers9–11. Despite different cancer types sharing certain commonalities,
they each possess distinct characteristics and are typically treated separately

in the medical field. Yet, a naive data combination strategy may negatively
affect prediction performance. Thus, models are usually developed for each
specific cancer type.

This study addresses the challenge of effectively integrating data from
various cancers by using multi-task learning (MTL), mitigating problems
caused by high dimensionality and small sample sizes. This learning
paradigm mitigates data sparsity issues in scenarios where each task has
limited labeled data12. MTL uses shared structural knowledge across mul-
tiple tasks through inductive bias and has shown promise in various fields,
including natural language processing13–15, computer vision16–19, and
bioinformatics20–22. In this study, we consider each cancer type as a separate
task. Using MTL offers two main benefits: first, it reduces the number of
parameters needed across tasks through parameter sharing; second, it
enhances data efficiencyby incorporatingmorediversemedical data, which
is challenging to label and procure for a single cancer type.

We applied dimension reduction techniques to tackle the challenge of
excessive dimensionality in data generated via high-throughput
technologies23. We used a hybrid ensemble systems biology feature selec-
tor (SBFS) to extract representative features with biological insights7,24. This
selector combinesdata and functionperturbation, considering thebiological
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relevance and interactions between genes to select the most salient features
(Fig. 1). In other words, it is an unsupervised feature selector that uses the
interaction networks between genes to rank them according to their
importance.

We hypothesize that shared, universal representations of information
across cancer types can improve the performance of cancer prognosis
predictionmodels.As a case study,weuseddata from threeprimarydatasets
from the TCGA project25, focusing on breast invasive carcinoma (BRCA),
lung adenocarcinoma (LUAD), and colorectal adenocarcinoma (COAD),
due to their prevalence in the USA and Taiwan.

Consequently, we used a multi-task bimodal deep learning model,
capable of learning across multiple related cancer type features by inte-
grating two different data types: genomic data from RNA-Seq and patient
clinical data. Tomanage thehighdimensionality of these data,we applied an
SBFS24, whichmaps high-dimensional data into a lower-dimensional space,
distilling the most meaningful features for enhanced prognosis predictions.

Cancer prognosis prediction was formulated as a binary classification
problemwith a five-year outcome window starting from the diagnosis date,
a time frame often used to stratify patients in clinical settings. This period
was chosen for its clear interpretability and because it is sufficiently long to
accurately monitor patients’ statuses, yet not so extended as to result in an
excessive number of censored cases. Patients who died within the outcome
windowwere labeled as having poor cancer prognoses (1), while otherswere
considered to have good cancer prognoses (0) (Fig. 2). Due to the TCGA
project’s focus, specific survival times for living patients are unavailable26, so
all alive patients were treated as good cancer prognostic labels. In summary,
we collected 1093, 510, and 454 patients for BRCA, LUAD, and COAD,
respectively, with label imbalance rates (representing poor prognosis labels)
of 9.241%, 33.333%, and 20.485%. The TNM stage distribution for our

cancer datasets, shown in Supplementary Section 1, leans towards early-
stage cancers, often indicative of better prognoses.

For external validation,weused theUniversity ofCologne’s 2015 Small
Cell Lung Cancer (SCLC) study27 obtained from cBioPortal28–30. The
imbalance rate for this set is 81.481%afterfiltering out sampleswithmissing
data and patients who did not follow up with the check-ups. The demo-
graphic information for all datasets can be found in Table 1.

Previous models addressing patient stratification based on survival
outcomes include DeepProg31, DeepSurv32, and various Cox-proportional
hazard-derivedmodels. Huang et al.’s study33 compared Cox-basedmodels
like Cox-nnet34, DeepSurv, and AECOX33 across twelve cancer types. They
found that Cox-nnet, the simplest model, performed better regarding the
concordance index and log-rank test p value. However, it was noted that
these models are sensitive to the variability in genomic and clinical profiles
across different cancers. In contrast, DeepProg is an ensemble framework
that integrates deep learning and more traditional machine learning
approaches to predict patient survival groups using a pan-cancer strategy.
However, its reliance on a boosting strategy detracts from the model’s
interpretability, making it harder to discern which biological features
influence the predictions the most.

Due to the difficulties in obtaining well-annotated and integrating dif-
ferent genomic data types, alongwith understanding the contribution of each
modality to our predictions, our study focused only on RNA-Seq data. We
adopted anMTL approach to address the heterogeneous data issue, enabling
our model to take advantage of these variations and effectively distinguish
between various cancer types and risk groups. Although we aim to integrate
data from different cancers andmodalities, we avoided ensemble models for
greater explainability. Our primary goal is to develop a model capable of
providing reliable predictions even with limited sample sizes. Furthermore,
our focus is to surpass the limitations presented by data scarcity and offer a
reliable way of discriminating between high and low-risk patients.

In this study, we make two key contributions. First, we used MTL to
exploit data from diverse cancer types for cancer prognosis prediction. This
led to significant improvements in several evaluation metrics compared to
single-task learning (STL), primarily on the smaller datasets. Second, we
show our model architecture’s ability to handle multiple tasks and mod-
alities effectively.Ourmodel can generalize representations across all cancer
types in a model-independent manner and overcome common challenges
associated with MTL.

Results
Overview
We conducted multiple experiments to evaluate the effectiveness of MTL by
comparing MTL with STL using a bimodal neural network. The data was
preprocessed using the same pipeline for both learning paradigms. Four
models were used in the STL experiments: logistic regression (LR), random
forest (RF), support vector machine (SVM), and an STL bimodal neural

Fig. 1 | Workflow of the systems biology feature selector for prognostic gene
identification. Systems biology feature selector pipeline used to choose the relevant
prognostic genes that will be later used as input for the RNA-Seq feature extractor.
The well-known biomarkers are shown in Table 6.

Fig. 2 | Visual representation of patient prognosis based on 5-year survival. The
top timeline represents patients with a good prognosis, indicated by a longer survival
span, while the bottom represents patients with a bad prognosis, marked by a shorter
survival duration and a terminal event at year 5. Patients who survive this 5-year
mark are labeled with “0'', while patients who die before five years are labeled
with “1''.
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network (BNN). Three evaluation metrics were used: Area Under the
ReceiverOperatingCurve (AUROC),AreaUnder thePrecision-RecallCurve
(AUPRC), andC-index.Due to the clinical annotations in theTCGAproject,
the C-index was used only for pairs of deceased patients with an exact date of
death (to calculate an accurate survival time). Additionally, we conducted an
external validation for theSTLandMTLmodels using the SCLCdataset. This
set was used to test models already trained on TCGA data.

Single-task learning
Table 2 shows the results of STL, with early fusion on twomodalities for LR,
RF, and SVM and intermediate fusion for the STL BNN. The STL BNN
performed the best in BRCA, whereas RF performed the best in LUAD and
COAD, except for AUPRC in LUAD. No single model consistently out-
performed all other models for all three cancer types under STL. This
experiment served as a benchmark for MTL.

MTL on bimodal neural network
Table 3 and Fig. 3 compare single-task and MTL in the bimodal neural
network. Significant performance improvements were observed in COAD,
with AUROC, AUPRC, and C-index increases of 29%, 41%, and 26%.
BRCA and LUAD improved slightly, with the AUROC and C-indexes
increasing 5% in BRCA and 2% in LUAD. Despite a drop of 8% in AUPRC
for BRCA, MTL outperformed single-task for the AUROC and C-index in
all cancer types, especially for COAD, with fewer available patients.

External validation
We anticipated that the external validation set’s performance would lag
behind the TCGA datasets, primarily due to its shorter survival time dis-
tribution and a higher proportion of later-stage patients than the TCGA
datasets (Fig. 4). Given SCLC’s small sample size (81 samples), we trained
SCLC on only 64 samples and later tested it on the remaining 17. STL-
BRCA, STL-LUAD, and STL-COAD, trained exclusively on one of the
TCGA datasets (BRCA, LUAD, or COAD) and subsequently tested on the
SCLC set, demonstrated limited generalizability. STL-SCLC, an STLmodel
trained on 80% of the SCLC data and tested on the remaining 20%, showed
the worst AUPRC among the STL models, probably due to the limited

Table 1 | Summary of the patients’ demographic attributes and distribution in training and test sets for all cancers, including the
external validation set SCLC (test only)

Attributes BRCA LUAD COAD SCLC

Train Test Train Test Train Test Test

Samples 874 219 408 102 363 91 81

Median age (years) 59.24 58.18 66.87 66.12 69.29 65.88 65

Median birth year 1950 1952 1942 1943 1939 1941 1950

Median diagnosis year 2009 2009 2010 2010 2009 2009 2015

Gender Female 862 219 214 60 164 50 25

Male 12 0 194 42 199 41 56

Race White 605 148 311 79 168 44 34

Black or African American 145 38 40 12 45 14 0

Asian 49 12 6 2 9 2 8

American Indian or Alaska Native 1 0 0 1 0 1 0

Not reported 74 21 51 8 141 30 39

Ethnicity Not Hispanic or Latino 705 175 304 81 210 59 42

Hispanic or Latino 31 8 5 2 4 0 0

Not reported 138 36 99 19 149 32 39

Label Good cancer prognosis 793 199 272 68 289 72 10

Poor cancer prognosis 81 20 136 34 74 19 71

The validation set corresponded to a stratified 25% of the training set.

Table 2 | Summary of the single-task learning model results
using all TCGA cancer datasets

Single-task learning

Datasets Models AUPRC AUROC C-index

BRCA LR 0.292 ± 0.090 0.709 ± 0.066 0.699 ± 0.064

RF 0.353 ± 0.101 0.741 ± 0.065 0.730 ± 0.061

SVM 0.356 ± 0.100 0.712 ± 0.075 0.698 ± 0.072

BNN 0.380 ± 0.097 0.796 ± 0.050 0.783 ± 0.050

LUAD LR 0.502 ± 0.080 0.646 ± 0.058 0.595 ± 0.050

RF 0.526 ± 0.083 0.686 ± 0.056 0.638 ± 0.050

SVM 0.532 ± 0.081 0.617 ± 0.061 0.573 ± 0.051

BNN 0.498 ± 0.083 0.629 ± 0.062 0.574 ± 0.051

COAD LR 0.408 ± 0.103 0.641 ± 0.077 0.632 ± 0.078

RF 0.432 ± 0.104 0.650 ± 0.078 0.641 ± 0.074

SVM 0.421 ± 0.106 0.589 ± 0.084 0.588 ± 0.079

BNN 0.353 ± 0.097 0.554 ± 0.079 0.554 ± 0.078

Table 3 | Results of using STL and MTL on bimodal neural
networks using all cancer datasets

Single-task learning vs multi-task learning on bimodal neural network

Datasets Learning
paradigms

AUPRC AUROC C-index

BRCA STL 0.380 ± 0.097 0.796 ± 0.050 0.783 ± 0.050

MTL 0.348 ± 0.090 0.839 ± 0.044 0.823 ± 0.043

LUAD STL 0.498 ± 0.083 0.629 ± 0.062 0.574 ± 0.051

MTL 0.509 ± 0.082 0.645 ± 0.060 0.587 ± 0.049

COAD STL 0.353 ± 0.097 0.554 ± 0.079 0.554 ± 0.078

MTL 0.498 ± 0.102 0.712 ± 0.073 0.696 ± 0.067

BRCA, LUAD, and COAD correspond to the TCGA sets.
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samples used for training. The high AUPRC across all models is due to the
large number of patients with poor prognoses at the 5-year mark (Table 4).

Ablation studies
We conducted ablation studies to verify the effectiveness of techniques used
in MTL. These four studies focused on the order of RNA-Seq data used for
the feature extractor, RNA-Seq feature extractor, task descriptor, and
weighted random data sampler, and are summarized in Table 5.
1. Without ordered RNA-Seq data: We explored the impact of input

sequence order on prediction accuracy on the classifier (Fig. 5) and
RNA-Seq feature extractor (Fig. 6) using RNA-Seq data arranged in
different order. We used alphabetical order for the unordered data,
sorting the gene’s names in ascending order. Yet, using ordered
(according to PRVs) and unordered RNA-Seq data as input for the
feature extractor showed no significant differences, implying the order
of RNA-Seq data might be less effective than initially thought.

2. Unique RNA-Seq feature extractor without parameter sharing:
Comparing distinct parameter sharing showed that using a unique
RNA-Seq feature extractor caused decreases of between 11% and 14%
for all COADmetrics. In addition to drops in performance of around
3% for AUROC and C-index in BRCA and 1% for AUPRC in LUAD,
as shown in Table 5. We only shared parameters in the classifier and
used a unique RNA-Seq feature extractor per cancer type.

3. Without the task descriptor: Removing the classifier’s task descriptor
resulted in drops between 5% to 7% inBRCAand 5% to 12% inCOAD
for all metrics (Table 5). For LUAD, AUROC and C-index decreased
by 1% to 3%, and AUROC increased by 2%. By deleting the task
descriptor, the classifier had the same structure as the one used for the
single-task bimodal network.

4. Without a weighted random data sampler: Using a naive random
data sampler instead of aweighted randomone resulted in drops of 1%
to 10% in BRCA and 11% to 15% in COAD for all metrics (Table 5).
For LUAD, all metrics rose between 2% to 6%. Unlike the naive
sampler, which samples training data equally across all tasks, the
weighted random sampler balanced the training data, using a variety of
patients with different cancers throughout the training process.

Further analyses
We used SHAP (SHapley Additive exPlanations) values35 to examine the
strength of a particular genomic feature’s effects over our predictions. We
calculated these values using the Captum36 framework. Captum approx-
imates values by computing gradient expectations, which is achieved by

random sampling from a distribution of baselines. These baselines serve as
non-informative inputs and typically lack predictive significance.

The magnitude of SHAP values indicates the strength of a gene’s
impact on risk prediction, with the direction (positive or negative)
representing a risk-increasing or protective effect, respectively. Our
main observation from comparing SHAP values for STL and MTL is
that STL relies more heavily on a reduced pool of specific genes. At the
same time, MTL bases its predictions on a more uniform and wide-
spread gene selection for LUAD. This is patent in Fig. 7b. Addi-
tionally, the variation in values and range between STL and MTL
frameworks is more pronounced for LUAD than BRCA or COAD.
For a deeper dive into the variation and correlation of feature
importance across folds, please consult Supplementary Section 6.

We calculated the Kaplan–Meier (KM) survival curves37,
applying a separate Kaplan–Meier fitter for each bootstrap in the test
set (Fig. 8). We computed the average survival probabilities and log-
rank p-values per time point. In almost all cases, there was a sig-
nificant distinction between poor and good prognosis groups using
the threshold α = 0.05. The exception was STL on COAD, though its p
value was close to the threshold (p = 0.05659).

Discussion
Our findings indicate that the MTL model benefits significantly from
training on larger, more diverse datasets, even when the data are sourced
from different cancers. This is evidenced by improved performance across
mostmetrics when training on only 60%of the total data, compared to 80%.
This improvement is especially prevalentwhencontrasting theperformance
in the cross-validation (Supplementary Section 2) and the bootstrap test
(Table 3.) This is particularly crucial for cancers with fewer available
patients, such as COAD, where MTL showed marked improvements in all
metrics.

The SHAP value analysis suggests that MTL captures a broader range
of genomic features than STL. Moreover, gene influences on prognosis are
more substantial and variable in LUAD, with greater variance between STL
and MTL results than in the other two cancers. The KM survival curves
reveal that, while the STL model successfully distinguished between good
andbadprognosis groups forBRCAandLUAD, it failed todo so forCOAD.
This might be attributed to the fact that the STL BNN significantly
underperformed in COAD, indicating potential overfitting. In contrast, all
classes predicted by the MTL model were significantly different.

The ablation studies reinforce the importance of sharing RNA-Seq
feature extractors to benefit performance, suggesting common RNA-Seq

Fig. 3 | Comparative performance analysis: multi-task vs. single-task learning. Each subplot represents the performance changes when switching from STL to MTL for
each cancer dataset. The delta for each metric is defined as the MTL metric minus the STL metric.
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expression patterns among the three cancer types. Additionally, providing
task information to the classifier improved overall model performance, as
shown by the decrease in AUROC when removing the task descriptor.
Furthermore, the results from using an unweighted random sampler imply
that the ratio of data from different tasks significantly influences perfor-
mance. This suggests that further exploration of data sampling techniques is
needed. Nonetheless, the effect on LUADwas minimal due to the relatively
similar number of training samples with and without the weighted random
sampler.

The external validation results indicate that MTLmodels trained
on larger, more diverse cancer datasets offer better generalization and
more stable performance in SCLC. However, the MTL model trained
solely on TCGA data did not perform satisfactorily when directly
applied to the SCLC dataset without further retraining. Thus,
updating and refining the model with new data, as seen with the MTL
(4 cancers) model, is crucial for improving its generalizability and
applicability to specific cancer types. Additionally, focused research
on the unique characteristics of SCLC, such as its aggressiveness and

Fig. 4 | Overall survival time distribution for 4
cancer types (BRCA, LUAD, COAD, SCLC). The
histograms show the count of patients across dif-
ferent survival times (in months) for each cancer
type: BRCA, LUAD, COAD, and SCLC. The vertical
dashed lines represent important survival time sta-
tistics: green for the median, blue for the 75th per-
centile, and red for the cutoff at 60 months.

Table 4 | Performance of STL and MTL models using SCLC as the testing set

Performance of STL and MTL learning paradigms on different datasets

Training dataset Testing set Learning paradigm AUPRC AUROC C-index

BRCA SCLC STL 0.84790 ± 0.05356 0.54930 ± 0.07627 0.57398 ± 0.03459

LUAD SCLC STL 0.86949 ± 0.04360 0.57273 ± 0.07461 0.48825 ± 0.04495

COAD SCLC STL 0.86785 ± 0.04009 0.54391 ± 0.07167 0.49265 ± 0.03709

SCLC SCLC STL 0.67977 ± 0.13818 0.50554 ± 0.17836 0.54630 ± 0.12084

LUAD, SCLC SCLC MTL (2 cancers) 0.88008 ± 0.09716 0.56364 ± 0.27581 0.55417 ± 0.12947

BRCA, LUAD, COAD SCLC MTL (3 cancers) 0.83564 ± 0.05517 0.5000 ± 0.08374 0.49333 ± 0.03977

BRCA, LUAD, COAD, SCLC SCLC MTL (4 cancers) 0.89121 ± 0.08435 0.56962 ± 0.26270 0.58991 ± 0.10259

STL-BRCA,STL-LUAD, andSTL-COAD refer to single-task learningmodels trainedexclusively on oneof the TCGAdatasets (BRCA,LUAD, orCOAD)with their respective selectedgenesandsubsequently
tested on the SCLC set. For instance, STL-BRCA indicates a model trained on BRCA data and later tested on SCLC data. STL-SCLC corresponds to an STL model trained on 80% of the SCLC data and
tested on the remaining 20%. “MTL (2 cancers)” refers to amulti-task learningmodel trained on LUAD andSCLC data. “MTL (3 cancers)” represents amodel trained on TCGA data and tested on the entire
SCLCdataset. “MTL (4 cancers)”denotes amodel trained onBRCA,LUAD,COAD, andSCLCsimultaneously. For theSTL-SCLCandMTLmodels, the SCLCdatasetwas split in the sameproportion as the
TCGA datasets for training and testing, and these models were evaluated on an unseen testing set. Models that did not use SCLC for training were tested on the whole SCLC dataset.
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staging distribution, may further enhance long-term prediction
accuracy.

This study examined the potential of MTL to overcome the
limitations of small datasets in cancer prognosis prediction. We used
MTL to improve data efficiency by treating each cancer type as a
different task. MTL showed significant improvements in AUROC,
AUPRC, and C-index of 29%, 41%, and 26% in COAD, respectively,

and minor improvements of 2% to 5% for all metrics in BRCA and
LUAD. Furthermore, an external validation using SCLC data yielded
performance comparable to that of the LUAD dataset. This result
suggests extending our MTL approach to other types of cancers may
be a promising direction for future research. Our model took
advantage of shared information among the embeddings of different
cancer types via MTL and bimodal neural networks to overcome the
limitations of small datasets. Ablation studies justified the model
design and the effectiveness of combining multiple cancer data using
a unified predictionmodel. Consequently, we plan to extend our work
to include rarer cancer types, addressing the challenge posed by small
sample sizes. Ultimately, we aspire to contribute to significant
advancements in precision oncology.

Table 5 | Summary of the ablation studies conducted on the MTL bimodal neural network model

Ablation studies on multi-task bimodal neural network

Datasets Modifications AUPRC AUROC C-index

BRCA Original 0.348 ± 0.090 0.839 ± 0.044 0.823 ± 0.043

Without ordered RNA-seq data 0.353 ± 0.092 0.831 ± 0.045 0.813 ± 0.045

Unique RNA-seq feature extractor 0.465 ± 0.111 0.811 ± 0.052 0.793 ± 0.051

Without task descriptor 0.277 ± 0.075 0.790 ± 0.051 0.773 ± 0.050

Without weighted random sampler 0.333 ± 0.099 0.736 ± 0.065 0.721 ± 0.064

LUAD Original 0.509 ± 0.082 0.645 ± 0.060 0.587 ± 0.049

Without ordered RNA-seq data 0.532 ± 0.081 0.650 ± 0.059 0.596 ± 0.048

Unique RNA-seq feature extractor 0.499 ± 0.079 0.643 ± 0.062 0.595 ± 0.053

Without task descriptor 0.537 ± 0.083 0.614 ± 0.066 0.570 ± 0.055

Without weighted random sampler 0.566 ± 0.084 0.677 ± 0.062 0.614 ± 0.053

COAD Original 0.498 ± 0.102 0.712 ± 0.073 0.696 ± 0.067

Without ordered RNA-seq data 0.447 ± 0.101 0.679 ± 0.071 0.663 ± 0.065

Unique RNA-seq feature extractor 0.381 ± 0.103 0.580 ± 0.088 0.576 ± 0.084

Without task descriptor 0.376 ± 0.092 0.655 ± 0.065 0.638 ± 0.060

Without weighted random sampler 0.351 ± 0.092 0.573 ± 0.080 0.577 ± 0.076

Fig. 5 | Classifier architecture. NGE refers to the RNA-seq feature embedding, NCE

corresponds to the dimension of the clinical feature embedding, and NT represents
the number of tasks.

Fig. 6 | Feature extractors for RNA-seq and clinical data. RNA-seq (left) and
clinical (right) feature extractors. NG stands for the number of genes, NGE and NCE

corresponds to the RNA-Seq and clinical feature embedding dimensions. NCN and
NCC correspond to the number of numerical and categorical clinical features.
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Methods
Problem formulation
Consider three prediction tasks T i

� �3
i¼1, all prognosis prediction

tasks for different cancer types. Each task T i comes with a training
dataset Dtrain

i containing Ni samples, i.e., Dtrain
i ¼ xin; y

i
n

� �� �Ni

n¼1,

where xin 2 Rdi is the feature vector with dimension di and yin 2 f0; 1g
is the label of the task T i for the nth training sample. We consider a
model f i x

i; θshare; θi
� �

for each task T i such that θshare are the para-
meters shared between tasks and θi are the parameters related to the
specific task T i. The binary cross-entropy is adopted for each task T i

Fig. 7 | Evaluating gene contribution to prognosis
with SHAP values in different learning models.
The subfigures represent BRCA (a), LUAD (b), and
COAD (c) genomic features. The bar chart contrasts
the contribution of individual genes to model pre-
dictions between STL (black bars) and MTL (gray
bars) frameworks. Positive SHAP values indicate a
gene’s expression level contributes to a higher risk
prediction, whereas negative values suggest a pro-
tective or lessened effect. Each bar’s magnitude
reflects the corresponding gene’s average impact
across every dataset.

a

b

c
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as the loss function and can be written as:

Li θshare; θi
� �

;Dtrain
i

� � ¼ � 1
Ni

PNi

n¼1
yin log f i x

i
n; θ

share; θi
� �� ��

þ 1� yin
� �

log 1� f i x
i
n; θ

share; θi
� �� ��

:

ð1Þ

We obtained optimal neural network parameters by minimizing the
loss function across all tasks, as shown in Eq. (2).

min
θshare ; θif g3i¼1

X3
i¼1

Li θshare; θi
� �

;Dtrain
i

� �
: ð2Þ

Evaluation metrics
AUROC. The Area Under the Curve of the Receiver Operating Char-
acteristic curve for a binary classificationmodel calculates the proportion
of all positive-negative pairs that are correctly classified38. The ROC curve
plots theTrue Positive Rate (TPR) against the False Positive Rate (FPR) at
various thresholds. These rates are calculated as follows:

TPR ¼ TP
TP þ FN

;

where TP is the number of true positives, and FN is the number of false
negatives.

FPR ¼ FP
FP þ TN

;

a b

c d

e f

Fig. 8 | Kaplan–Meier survival curves for BRCA, LUAD, and COAD using STL
andMTL. Subfigures (a), (c), and (e) show the STL KMplots for BRCA, LUAD, and
COAD, respectively. Subfigures (b), (d), and (f) present theirMTL counterparts. The

shaded area represents the confidence intervals for each risk group. Blue refers to the
low-risk group, and orange refers to the high-risk group. The p value for the log-rank
test is shown along the title for each plot.
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where FP is the number of false positives, and TN is the number of true
negatives.

TheAUROCcanbe interpreted as theprobability that the classifierwill
rank a randomly chosen positive instance higher than a randomly chosen
negative instance. A higher AUROC value indicates better model perfor-
mance, with 1 being a perfect classifier and 0.5 indicating a performance no
better than random chance. We calculate the AUROC using the following
formula:

AUROCðf Þ ¼
P

t02D0

P
t12D1I½f ðt0Þ<f ðt1Þ�

jD0j � jD1j ;

hereD0 andD1 represent the negative and positive classes and ∣D0∣ and ∣D1∣
the number of samples in each class. I represents the indicator function

AUPRC. The precision-recall curve plots the recall on the x axis and
Precision on the y-axis for different threshold values39. It measures how
well a classifier identifies positive cases. As a result, the baseline for this
metric is not fixed and depends on the proportion of positive instances in
the dataset. The Precision (P) corresponds to the ratio of true positive
predictions versus the total number of positive predictions (both true
positives and false positives), and it is given by the following formula:

P ¼ TP
TP þ FP

:

In contrast, the Recall (R) corresponds to the ratio of true positive
predictions to the total number of actual positives in the data, calculated
using:

R ¼ TP
TP þ FN

;

here TP is the number of true positives, FP is the number of false positives,
and FN is the number of false negatives.

Finally, since we are in a discrete setting, the AUPRC is calculated by
the following formula:

AUPRC ¼
X
n

ðRn � Rn�1ÞPn;

where Pn and Rn are the Precision and Recall for a threshold with index n.

C-index. The C-index quantifies the correlation between observed sur-
vival times and predicted risk scores40. A pair is defined as concordant if
the patient with the shorter survival time also has a higher risk score. In
this study, the C-index is calculated using:

C ¼
P

i;jI Ti>Tj

� �
� I ηi<ηj

� �

P
i;jI Ti>Tj

� � ;

where i and jdenotedistinct patients,Ti andTj represent their survival times,
ηi and ηj are their corresponding model-predicted risk scores, and I the
indicator function.

Datasets
The study includes three primary datasets from the TCGA project: BRCA,
LUAD, and COAD. The TCGA project focuses on generating, managing,
analyzing, and interpreting molecular profiles at various levels for many
human tumors with different types and subtypes41. We filtered outpatients
lacking survival status, time, and incomplete RNA-Seq or clinical data. We
downloaded the data of qualified patients using GDC API version 33.1,
released on May 31, 202225. An external dataset used to test our model’s
generalizability was obtained from cBioPortal28–30. This validation dataset
was collected for the University of Cologne’s 2015 SCLC study27. We

followed the same filtering procedure as with TCGA datasets. Since not all
genes in LUAD are also present in the SCLC data, we used BRCA’s selected
genes for the SCLC-MTL prediction, as all genes selected for BRCA were
present among the SCLC genomic data. Surprisingly, the performance on
the SCLC set using BRCAgenes is comparable to that of LUADandCOAD.
We attribute this to the relative abundance of BRCA data compared to the
other cancers. This reinforces our idea that the MTL model can transfer
insight to less-represented cancers by drawing upon a larger dataset, thereby
improving its performance in smaller datasets.

RNA-seq and clinical data
The data comprised RNA-Seq and clinical data. The RNA-Seq data had up
to 60,000 probes per patient, withmultiple probes possiblymatching a gene
name using the GENCODE v36 version. Due to the limitations of the SBFS,
we selected protein-encoding genes as our gene candidates. We used tran-
scripts per million (TPM) as our count transformation for the RNA-Seq
data.We selected six categories of clinical attributes for the clinical data.Age,
birth year, and diagnosis year were considered numerical data, and gender,
race, and ethnicity were used as categorical data. The numerical data were
standardized using the training set’s mean and standard deviation. In
contrast, categorical data were integrated and encoded through an
embedding layer for the bimodal neural network and one-hot encoded for
other models. RNA-Seq data were not further standardized, as the count
transformation had already been normalized.

Systems biology feature selector
To address the curse of dimensionality issue in high-dimensional omics
data,we apply a robust SBFSmethod (Fig. 1) for selecting a small gene subset
with biological insights24. We used well-known genetic biomarkers from
previous studies for three cancer types to select prognostic genes7,8,24. Based
on the literature, we selected five, seven, and eight well-known genetic
biomarkers for BRCA, LUAD, and COAD (summarized in Table 6). We
divided the SBFS into two primary parts, detailed below.

StepMiner and ANOVA
We used StepMiner42 to categorize patients in the training set into two
separate genetic biomarker+ and genetic biomarker- groups based on the
gene-level expression for each well-known genetic biomarker. Then, we
conducted an analysis of variance (ANOVA) to exclude invariant genes
between the two groups, resulting in two distinct genetic biomarker groups
and a list of relevant gene candidates.

GIN and ranking
We built two Gene interaction network (GINs) based on interactions
documented inBioGrid43 for these twobiomarker groups. Figure 9 shows an
example of a Gene Interaction Network. Following this, we calculated the
Akaike information criterion to select a proper model for each GIN. Then,
we computedmultiple prognostic relevance values (PRVs) for all candidate
genes and ranked thembyPRVscores.Wecalculated thePRVsby summing
the differences inmodel weights for neighboring genes between both GINs.
PRVs allow us to condense how a gene will interact with its neighbors in
different prognosis scenarios.

Gene candidateswithout a significant difference in expression between
biomarker+ and biomarker- groups were cut off from the list. We then

Table 6 | Each row shows well-known genetic biomarkers for
each cancer type (BRCA, LUAD, and COAD) that the SBFS
later used

Datasets Well-known genetic biomarkers

BRCA ESR1, PGR, ERBB2, MKI67, PLAU

LUAD EPCAM, HIF1A, PKM, PTK7, ALCAM, CADM1, SLC2A1

COAD EPCAM, CD44, ALCAM, PROM1, ABCB1, ABCC1, ABCG2,
ALDH1A1
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ranked the remaining gene candidates according to their PRV scores.
Subsequently, we obtained a global gene list by summing the rankings of all
gene candidates. Finally, we selected the twenty top-ranking prognostic
genes from this comprehensive list. The final list is presented in Table 7.

Model architecture
We introduce a bimodal neural network, a unique model architecture
designed for two modalities44. It integrates RNA-Seq and clinical data to
obtain accurate prognostic predictions. Eachmodality uses a distinct feature
extractor to generate high-level embedded features. These embedding fea-
tures are subsequently concatenated into a single embedded feature, fed
through a classifier for prognosis prediction, a process referred to as inter-
mediate fusion. As opposed to early fusion, where different modalities are
combined before feature extraction, intermediate fusion integrates distinct
modalities after feature extraction but before classification. Our bimodal
neural network is divided into two main components: a feature extractor
anda classifier.The architectureof theproposedmodel is depicted inFig. 10.

The feature extractor (Fig. 6) comprises an RNA-Seq feature extractor,
a clinical feature extractor, and a concatenating layer. These two neural
networks are designed for the different modalities, transforming each into
high-level embeddings. As RNA-Seq and clinical data have similar raw data
formats, their feature extractors share some principles in their model
architecture design (shown in Table 8).

The RNA-Seq feature extractor has four layers, using count transfor-
mations, such as TPM45, for RNA-Seq data.We added batch normalization
layers across layers to prevent gradient explosion46. The RNA-Seq data were
sorted in descending order based on the PRV calculated by the SBFS to
ensure consistency across tasks and embed implicit information.

The clinical feature extractor also has four layers with batch normal-
ization.We added an embedding layer to transform clinical categorical data
into a fixed-dimension embedding. This prevents sparsity issues and allows
the clinical feature extractor to map clinical categorical data, as in word
embeddings in natural language processing47. The embeddings of the clin-
ical categorical data are averagedover a single patient and concatenatedwith
clinical numerical data embeddings.

Finally, we concatenated the high-level embeddings generated
from the RNA-Seq and clinical feature extractors, forming a single
embedding, which the classifier (Fig. 5) later uses as an input, along
with the task descriptor.

The classifier (Fig. 5) takes the high-level feature embedding generated
from the feature extractor and predicts cancer prognosis. It has four layers
with batch normalization46 and Softsign48 to improve the nonlinear trans-
form and stable training. We applied Softsign to improve the model’s sta-
bility across computer devices and its capacity to handle high-level
embeddings from multiple tasks.

MTL techniques
Humans typically benefit from learningmultiple tasks simultaneously49, but
in machine learning, MTL may underperform STL due to negative
transfer50. Some challenges affecting performance negatively are dealing
with infrequent and highly specific tasks, tuning shared parameters, and
transferring features12,51. To address these challenges, we apply several
techniques to enhance MTL’s performance.

We use hard parameter sharing to reduce shared parameter portions
and prevent overfitting on specific tasks52, in contrast to parameter-sharing
state-of-the-art models53–55. All parameters, including the feature extractor

Table 7 | This table showcases the top 20 prognostic genes selected by the SBFS

Datasets Twenty top-ranking prognostic genes

BRCA ESR1, EFTUD2, HSPA8, STAU1, SHMT2, ACTB, GSK3B, YWHAB, UBXN6, PRKRA, BTRC, DDX23, SSR1, TUBA1C, SNIP1, SRSF5, ERBB2, MKI67,
PGR, PLAU

LUAD HNRNPU, STAU1, KDM1A, SERBP1, DHX9, EMC1, SSR1, PUM1, CLTC, PRKRA, KRR1, OCIAD1, CDC73, SLC2A1, HIF1A, PKM, CADM1, EPCAM,
ALCAM, PTK7

COAD HNRNPL, HNRNPU, HNRNPA1, ZBTB2, SERBP1, RPL4, HNRNPK, HNRNPR, TFCP2, DHX9, RNF4, PUM1, ABCC1, CD44, ALCAM, ABCG2, ALDH1A1,
ABCB1, EPCAM, PROM1

The genes are listed in the same order as they were ranked by the feature selection process. Well-known genetic biomarkers (previously mentioned in Table 6) are emphasized in boldface.

Fig. 9 | Gene Interaction Network illustrating the interactions between relevant biomarkers for all three cancers.
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and classifier, are directly shared across tasks, resulting in identical para-
meters for all tasks.

We added a task descriptor to the model architecture, containing
information representing each task anddistinguishing it fromothers. In this
study, the task descriptor indicates the cancer type. An embedding layer is
added to the classifier, transforming this information into a task descriptor
embedding. This approach allows the feature extractor to capture the gen-
eral relationship between tasks without confusion from different task
features56.

Two optimization techniques are applied for properMTL. A weighted
randomdata sampler balances the number of samples between tasks in each
batch, using weights (provided as probabilities) determined by the inverse
square of each task’s sample size in the training set. The sampler then uses
these probabilities to draw data according to the multinomial probability
distribution across all tasks, with replacement. This approach avoids
manipulating losses across all tasks57–59. We used a weighted random data
sampler to prevent tasks with more extensive data samples from becoming
dominant and ensure that all gradients contributed nearly equally to the
learning. Additionally, two different optimizers were used to optimize the
feature extractor and classifier separately, updating the feature extractor first
and then the classifier to stabilize gradient updates during training.

Experiment settings
In the STL experiment, we applied default parameter settings from Scikit-
learn60 for LR, RF, and SVMwithminor changes.We adopted the balanced
class weights mode, as datasets were imbalanced. SVM required input data
normalization. We used the PyTorch framework61 to build bimodal neural
networks and stochastic gradient descent (SGD) with momentum as
optimizer62. The embedding dimensions for the bimodal neural networks
(RNA-Seq feature extractor, clinical feature extractor, and classifier) were
equal to eight.We adopted SGDhyperparameters from the literature62, with
a learning rate of 0.01 and momentum of 0.9. We trained bimodal neural
networks for 50 epochs and used the last epoch’s model checkpoint for
testing. Experiments were performed using Ryzen 72700 (CPU), DDR4 64
GB (RAM), and Nvidia GeForce RTX 3060 (GPU).

Patients were divided into training and test sets for each cancer type in a
4:1 ratio, with stratified splits based on cancer prognostic labels using a
random seed number “1126”. The test set was treated like a hold-out set to
avoid data leakage. Different data samplers were adopted for different
learningparadigms: randomsamplerwithoutweighting for STLand random
sampler with weighting forMTL. Before the testing stage, we used a fourfold
cross-validation approach, where the training data was divided into four

equal parts. In each fold, 75% of the training data was used for training and
25% for validation, ensuring each data segment was used once as the
validation set.

We trained on thewhole training set (including training and validation
sets used in the cross-validation) for testing. Then,we sampledpatients from
the original unseen test set using 1000 bootstrapped test sets with replace-
ment, using the size of the original test set for each bootstrapped test set,
estimating variations for all evaluation metrics63. We followed the same
methodology for the external SCLC dataset, assigning it the same task
descriptor as LUAD for the MTL model. The 20 genes selected for the
feature extractorwere present both in theTCGAgenes used for training and
in the SCLC RNA-Seq data.

For the SCLC external validation, we trained theMTLmodel similarly
to the TCGA evaluation. We then evaluated its performance on the com-
plete SCLC set using this trainedmodel. Various configurations combining
selected genes from BRCA, LUAD, and COAD, along with different task
descriptors, were tested to analyze the model’s behavior under diverse
assumptions. Given the similarities of SCLCwith LUAD compared to other
cancers, we decided to use LUAD’s gene selection for the MTL tasks. Since
not all LUAD genes were present in SCLC, we used 18 LUAD genes and
supplemented them with two genes from BRCA that were also present in
SCLC, completing the 20-gene set.

Data availability
The datasets analyzed during the current study are publicly available in the
Genomic Data Commons (GDC) Data Portal. The three primary datasets
focusing on BRCA, LUAD, and COAD can be accessed through the TCGA
project, available at https://portal.gdc.cancer.gov. The external validation
dataset is available at https://www.cbioportal.org/study/summary?id=sclc_
ucologne_2015.

Code availability
The source code for reproducing the main results is available in this repo-
sitory, along with their documentation: https://github.com/idssplab/Multi-
Cancer. A static version can be found at Zenodo with https://doi.org/10.
5281/zenodo.12203877.
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