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ABSTRACT Genome-enabled prediction provides breeders with the means to increase the number of genotypes
that can be evaluated for selection. One of the major challenges in genome-enabled prediction is how to construct
a training set of genotypes from a calibration set that represents the target population of genotypes, where the
calibration set is composed of a training and validation set. A random sampling protocol of genotypes from the
calibration set will lead to low quality coverage of the total genetic space by the training set when the calibration set
contains population structure. As a consequence, predictive ability will be affected negatively, because some parts
of the genotypic diversity in the target population will be under-represented in the training set, whereas other parts
will be over-represented. Therefore, we propose a training set construction method that uniformly samples the
genetic space spanned by the target population of genotypes, thereby increasing predictive ability. To evaluate our
method, we constructed training sets alongside with the identification of corresponding genomic prediction
models for four genotype panels that differed in the amount of population structure they contained (maize Flint,
maize Dent, wheat, and rice). Training sets were constructed using uniform sampling, stratified-uniform sampling,
stratified sampling and random sampling. We compared these methods with a method that maximizes the
generalized coefficient of determination (CD). Several training set sizes were considered. We investigated four
genomic prediction models: multi-locus QTL models, GBLUP models, combinations of QTL and GBLUPs, and
Reproducing Kernel Hilbert Space (RKHS) models. For the maize and wheat panels, construction of the training set
under uniform sampling led to a larger predictive ability than under stratified and random sampling. The results of
our methods were similar to those of the CDmethod. For the rice panel, all training set constructionmethods led to
similar predictive ability, a reflection of the very strong population structure in this panel.
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The key factor to progress in plant breeding is the number of genotypes
that can be evaluated phenotypically (Cooper et al. 2014b). Unfortu-
nately, field testing is slow and costly, forcing breeders to limit the

number of genotypes that is phenotyped. Genomic prediction offers
the potential to alleviate this limitation, allowing to broaden the pool of
genotypes for selection, and thereby increasing selection intensity
(Crossa et al. 2013; Windhausen et al. 2012) and efficiency of breeding
programs (Heffner et al. 2010; Crossa et al. 2013; Windhausen et al.
2012; Hickey et al. 2014; Longin et al. 2015).

In genomic selection, genome-enabled genotypic or breeding values
are calculated from genomic prediction models as sums of effects for
large numbers of markers, often without explicitly testing individual
marker–trait associations (Meuwissen et al. 2001). Genomic prediction
models are developed for a target population of genotypes (TPG). The
TPG describes the full collection of existing and future genotypes that is
supposed to be suitably adapted to the environmental conditions de-
fined by the target population of environments (Cooper et al. 2014a;
Cooper and Hammer 1996; Comstock 1977).
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Breeders have access to a sample from the TPG, the target sample.
This sample of genotypes (or part of it) can be regarded as a calibration
set for genomic prediction models when both phenotypic and marker
data are available. To estimate the marker effects in prediction models,
the calibration set is typically partitioned into a training set and a
validation set. Marker effects are estimated on the training set of
genotypes, and subsequently, genotypic values are calculated for all
genotypes in the training and validation set. For accurate genomic
prediction of the genotypic values in the validation set, training and
validation sets should have similar genetic diversity, reflected in large
kinship coefficients (Saatchi et al. 2011; Auinger et al. 2016). This
condition is more likely to be met if the training set covers the whole
genotypic, say genetic, space of the calibration set. As the calibration set
is assumed to be a representative sample of the TPG, we also hope to
cover the genetic space of the TPG. Therefore, a highly diverse TPG
requires a larger training set size to capture the whole range of genetic
diversity (Hayes et al. 2009).

Conventionally, genomic prediction literature uses random sam-
pling as a strategy to split the calibration set into a training and a
validation set (Burgueño et al. 2012; Crossa et al. 2010; Heslot et al.
2013; Schulz-Streeck et al. 2012; Riedelsheimer et al. 2012). In random
sampling, genotypes belonging to the calibration set have equal prob-
ability to enter the training set. Hence, random sampling reproduces
the genotypic frequencies of the calibration set, leading to a more dense
coverage of those parts of the genetic space that are represented by a
larger number of genotypes (Odong et al. 2013; Jansen and vanHintum
2007). Furthermore, we hypothesize that the heterogeneous coverage of
the genetic space produced by random sampling leads to decreased
predictive ability because part of the genetic diversity in the validation
set is not well represented in the training set.

One strategy to improve the coverage of the genetic space is to use
stratified sampling. In stratified sampling, the calibration set is divided
into subpopulations and then a proportion of genotypes is randomly
selected from each subpopulation (Guo et al. 2014; Albrecht et al. 2014;
Janss et al. 2012; Daetwyler et al. 2012). However, subpopulations are
sometimes not clearly defined or they are internally heterogeneous
(Crossa et al. 2013). Thus, stratified sampling improves the coverage
of the genetic space compared to random sampling, but it does not
guarantee that all relevant genotypes are included in the training set.

The importance of an adequate representation of the genetic space
for successful genomic prediction has been acknowledged in the recent
literature. Rincent et al. (2012) assumed that predictive ability can be
improved if genotypes in the training set are chosen in such a way that
the precision of the contrasts between each genotype in the validation
set and the mean of the calibration set is maximized. This can be
achieved by maximizing the generalized coefficient of determination
(CD). This method was further adapted by Isidro et al. (2015), who
combined the method of Rincent et al. (2012) with stratified sampling.
In this method (Isidro et al. 2015), the calibration set is first classified
into subpopulations and then the CD mean criterion proposed by
Rincent et al. (2012) is applied inside each subpopulation.

The methods proposed by Rincent et al. (2012) and by Isidro et al.
(2015) rely on the variance components estimated from phenotypic
data to choose genotypes for the training set. Although training set
composition is not very sensitive to changes in variance components,
some small differences in the genotypes allocated to the training set
could be observed from trait to trait due to trait heritability differ-
ences (Rincent et al. 2012).

A statistically attractive strategy to increase the genetic similarity
between training and validation sets is to uniformly cover the genetic
space of the population of genotypes. Uniform coverage of the genetic

space as a criterion for choosing members of the training set has the
advantage of purely genotypic information being sufficient, without
requiring phenotypic information (Jansen and van Hintum 2007;
Odong et al. 2011). This principle is well known in the genetic resources
literature, where it is used to define germplasm core collections (Odong
et al. 2013). Here, we interpret the core collection as a training set
because both of them, core collection and training set, are a subset of
genotypes that aim at representing the genetic diversity present in a
larger population.

Once the training set has been constructed, the next task is to identify
a suitable prediction model. A large range of prediction models have
beenproposed, and theydiffer in twomain aspects. Thefirst aspect is the
weight that models assign to specific genomic regions. If large QTL are
present, predictive ability might benefit from modifying the common
assumption that all marker effects come from a common normal
distribution (Hayes et al. 2009). Hence, depending on the trait genetic
architecture, it might be convenient to give more importance to geno-
mic regions with large effects (Crossa et al. 2013; Daetwyler et al. 2010;
Speed and Balding 2014; Hayes et al. 2009; Bernardo 2010).

The second aspect is whether the model accounts only for additive
genetic effects, or also for nonadditive effects (Langer et al. 2014; Reif
et al. 2011; Kippes et al. 2014; Stange et al. 2013). The GBLUP model
proposed by Meuwissen et al. (2001) can be extended to separately
account for nonadditive genetic effects (Oakey et al. 2006). However,
the model proposed by Oakey et al. (2006) is computationally demand-
ing. A less demanding model option for various types of nonadditive
effects is the class of ReproducingKernel Hilbert Space (RKHS)models,
for example, with a Gaussian Kernel (Gianola and van Kaam 2008;
Piepho 2009; Jiang and Reif 2015). The advantage of RKHS models
is that they can be used across a spectrum of genetic architectures (de
los Campos et al. 2009).

Given the importance of population structure and trait genetic
architecture for effective implementation of a genomic prediction
strategy, the objectives of this paper were (i) to compare strategies to
define the training set, and (ii) to compare the predictive ability for
models with explicit QTL with the predictive ability of GBLUP and
RKHS models.

MATERIALS AND METHODS

Data
Tocompare the strategies for training set construction andprediction
models, we used four genotype panels that differed in the amount of
population structure (Flint and Dent maize panels, and a wheat and
rice panel).

Maize
The maize data consisted of a Flint panel crossed with a Dent tester
(F353) and of a Dent panel crossed with a Flint tester (UH007) to
produce hybrid progeny for phenotypic evaluation, published by
Rincent et al. (2014b). Both panels were composed of lines aiming at
best representing the diversity of Flint and Dent maize in Northern
Europe. The panels included commercially used inbred lines created
from open pollinated varieties, and lines recently developed by pub-
lic institutes or, in the case of the Dent panel, private companies.

The Dent panel consisted of 276 genotypes, whereas the Flint panel
had259genotypes.Bothpanelswere evaluated infield trials inGermany,
France and Spain during 2010 and 2011. In this paper, we used the
adjusted means of tasseling date, silking date and dry matter yield for
each genotype across all environments [Supplemental Materials 12 and
13 in Rincent et al. (2014b)]. Tasseling and silking date were expressed
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as growing degree days after sowing, considering a base temperature of
6�, using the mean daily air temperature measured in each environment.

Both panels were characterized genotypically with the Illumina
maize SNP50 BeadChip described in Ganal et al. (2011). From this
set, we used only the markers that were developed by comparing the
sequences of nested association mapping founder lines [PANZEA
SNPs, Gore et al. (2009); Rincent et al. (2012)]. Individuals which
had marker missing rate and/or heterozygosity higher than 0.10 and
0.05, respectively, were eliminated. Missing marker genotypes (below
2% in both panels) were imputed with the software BEAGLE. Markers
with minor allele frequency lower than 0.05 were eliminated, leading to
28,304 PANZEA markers for the Dent panel, and 25,578 PANZEA
markers for the Flint panel (Rincent et al. 2014b).

Wheat
This wheat panel was constructed to represent flowering time variation
present inAustralianwheat germplasm.Phenotypicdata corresponded to
the adjusted means across environments for yield and heading date of
149genotypesobservedduring2009.Yieldwasobservedateight locations,
whereasheadingdatewasobservedat six locations in theAustralianwheat
belt. Genotypes were characterized with 4295 SNPs, from which four
SNPs were at the position of major genes regulating phenology (Ppd-D1,
Vrn-A1, Vrn-B1, Vrn-D1). Missing markers were replaced by imputed
genotypic data using the missForest package in R, following the meth-
odology explained in Bogard et al. (2014). Onemarkerwas discarded as it
showed .25% missing data, 39 markers were removed as they were
monomorphic on this panel, and 431 were discarded because they had
a minor allele frequency lower than 0.05. This led to 3754 markers for
further analysis. Wheat genotypic and phenotypic data are available in
Supplemental Material, File S1, File S2, and File S3.

Rice
The rice data consisted of 413 diverse accessions of inbred lines from 82
countries.Thisdata set ispubliclyavailableathttp://www.ricediversity.org.

Phenotypes consisted of plant height, seed number per panicle and
flowering time in Arkansas. Genotypes that were too similar to each
other (causing the relationship matrix to be singular) or that had a
missing phenotype, were removed, leaving 350 genotypes for the
analysis. The panel was genotyped with a 44-K SNP chip. After
filtering, 36,091 markers were retained in the published data set.
From this set of markers we discarded those that had .5% of miss-
ing values. The remaining missing marker scores were imputed with
the software BEAGLE. Markers with minor allele frequency lower
than 0.05 (considering only the phenotyped lines) were eliminated,
leading to 26,259 markers.

Characterization of the population structure
Population diversity was explored by principal component analysis of
the identity by state (IBS) matrix among genotypes, calculated from
molecular markers (Equation 1). This IBS calculation method indicates
the proportion of shared alleles between genotypes.

AIBS ¼ GG9þ G2G29

K
(1)

In Equation 1, G is a genotype by marker matrix of marker scores,
with 0 and 1 as scores for the homozygotes and 0.5 for the heterozy-
gotes. K is the total number of markers and G2 ¼ 12G; where 1 is a
matrix of ones.

The number of subpopulations present in each data set was de-
termined with the Tracy–Widom statistic, following Patterson et al.
(2006). Here, the number of subpopulations equals the number of
significant principal components, plus one. Genotypes were qualita-
tively assigned to the subpopulation using the STRUCTURE software
(Pritchard et al. 2000) and with the number of groups as determined by
the Tracy–Widom statistic. To get an impression about population
differentiation, the Fst statistic was calculated following Weir (1996)
using a self-coded program in GenStat v.17 (VSN-International 2015).

Figure 1 Scatter plots for principal components representing IBS matrix of
the Flint panel. Symbol color represents each of the five subpopulations.

Figure 2 Histogram for the scores of the principal component repre-
senting the IBS matrix of the rice panel. Symbol color represents each of
the subpopulations.
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Training and validation sets
To split the calibration sets into a training and a validation set, we used
the following five methods:

Uniform coverage of the genetic space (U) In U, we used the meth-
odology proposed by Jansen and van Hintum (2007). This method
consists of the following steps, which are applied to the list of all
genotypes contained in the panel (P1): (1) Molecular markers are used
to calculate identity by state among all genotypes in P1 (IBS, Equation
1). (2) The first entry of the training set (T1) is sampled at random
from the panel. Genotypes with a distance to T1; smaller than a
sampling radius r, are discarded from the training set. The new list
of candidate genotypes is called P2: The genotypes that are discarded
are stored in a list calledD1: (3) The second entry of the training set is
sampled at random from P2 and it is called T2: Genotypes with a
distance to T2 smaller than the sampling radius r are discarded from
the list of genotypes. This process is repeated until all the genotypes
have been included in the training set Tn; or in the list of discarded
genotypes (Dn). U is implemented in the “sampling” method of the
GenStat procedure QGSELECT (VSN-International 2015).

The sampling radius used in step (2) was obtained empirically. The
size of this radius depends on the training set size one aims at. If the
desired training set size is larger, the sampling radius becomes smaller.
The target r is obtained by slowly decreasing its values until the number
of sampled genotypes is greater than or equal to the target sample size,
following Figure 1 in Jansen and van Hintum (2007).

Stratified sampling with uniform coverage of the genetic space
(SU) In SU, prior information about the grouping of the genotypes
was supplied. In this method, an extra restriction was added to the
distance restriction. Genotypes are discarded when they are within
the sampling radius and they belong to the same group (i.e., they
are included in the training set when they are within the sampling
radius, but they belong to a different group). This method ensures
that each group is represented by at least one genotype.

Generalized coefficient of determination (CD) The generalized
coefficient of determination was used as a criterion to select genotypes
for the training set in such a way that the precision of the prediction
of the difference between the value of each individual in the validation
set and the mean of the total calibration set is maximized (Rincent
et al. 2012). Briefly, the precision is maximized when the generalized
coefficient of determination (CD, Equation 2) is maximized.

CDðcÞ ¼ diag

2
664
c9

�
AAB2 l

�
Z9MZ þ l

�
AAB

�21
�21

�
c

c9AABc

3
775 (2)

In Equation 2, c is a matrix of the contrasts between each individual
in the validation set and the mean of the calibration set, M, is an
orthogonal projector of the subspace spanned by the columns of the
design matrix of the fixed effects, X, (in our case, only the intercept):
M ¼ I2XðX9  XÞ2X9: l is the ratio between the residual and the
additive genetic variance. For Flint and Dent, we calculated l from
the heritability estimates reported by Rincent et al. (2014b). For wheat
heading time and yield, we used an estimate for l calculated from the
phenotypic data (h2= 0.95 for heading time and h2= 0.89 for yield).
No heritability estimate was available for rice. Thus, we arbitrarily used
0.85 for the three rice traits.

AAB is the realized additive genetic relationship matrix calculated
from all molecular markers along the whole genome following the
equation proposed by Astle and Balding (2009), with as typical entry
for the relationship between genotypes i and j:

AAB
ij ¼ 1

K

XK
k¼1

�
Gik 2 2pk

��
Gjk 2 2pk

�
2pk

�
12 pk

� (3)

where Gik is a marker score that can take the value 2, 1, or 0 for
genotype i at marker k, and pk is the allele frequency of marker
k. The matrix above was calculated using the “realizedAB” option
in the “kin” function of the Synbreed package (Wimmer et al. 2012).

The optimization algorithm used by Rincent et al. (2012) to con-
struct the training set was implemented in R3.2.1. Briefly, at each step,
one genotype in the training set is exchanged by one genotype in the
validation set. This exchange is accepted if CD is increased and is
rejected otherwise. The algorithm was allowed to iterate until the CD
did not change anymore (800 times was enough to reach stability in
all data sets).

Stratified random sampling (S) In S, the number of sampled geno-
types depended on the logarithm of the subpopulation size, fol-
lowing Franco et al. (2005) and Malosetti and Abadie (2001).

nt;s ¼ nt
logðnsÞXS

s¼1
logðnsÞ

(4)

In Equation 4, nt;s is the number of genotypes to be sampled from
subpopulation s into the training set, S is the number of subpopulations,
nt is the total size of the training set we want to construct, and ns is the
number of individuals belonging to subpopulation s in the calibration
set. Within the subpopulations, genotypes were sampled at random.

Random sampling (R) In strategy R, the training set was sampled at
random, so each genotype in the calibration set had equal prob-
ability of being included in the training set.

One hundred independent realizations of each of the five sampling
strategies U, SU, CD, S, and R were generated for each calibration set.
Each of the training sets (sampled genotypes) was used for QTL
detection and as a training set for the prediction models.

Characterization of the training sets
To characterize the connection between the training and the validation
set, we calculated the distance between each genotype in the validation
set and the nearest entry in the training set, following the method

n Table 1 Abbreviations and descriptions for training set
construction methods

Abbreviation Description

U Uniform coverage of the
genetic space

SU Stratified sampling with
uniform coverage of the
genetic space

CD Generalized coefficient of
determination(Rincent
et al. 2012)

S Stratified random sampling
R Random sampling
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Average distance between each accession and the nearest entry (A–NE)
in Odong et al. (2013). Here, we interpret the core collection in that
paper, consisting of entries, as a training set. Core collection entries
and training set members form a subset of genotypes that aim at
representing a larger collection of genotypes. The set of accessions
from which a core collection is created, we interpret to represent a
calibration set. The distance between a genotype in the validation set
and the nearest genotype in the training set [or core collection in
Odong et al. (2013)] was calculated as ð12 IBSÞ: The empirical dis-
tribution of these distances was plotted for each training set construc-
tion method.

Toobtainan impressionof howeach subpopulation is represented in
the training set, we calculated the proportion of genotypes from each
subpopulation that is included in the training set. Themean IBS in each
subpopulation was used to relate the sampling proportion to the genetic
diversity in each subpopulation.

QTL detection
Training sets obtained by U, SU, CD, S or R sampling of the genotype
panel were used to identify QTL that became part of the prediction
model.QTLwere identifiedbyagenome-wideassociationmapping scan
(GWAS), following Equation 5.

yi ¼ mþ xikak þ Gi þ ei (5)

In Equation 5, yi stands for the phenotype of genotype i, m is the
intercept, xik is a vector that represents information of genotype i at
marker k (0 and 2 for homozygous and 1 for heterozygous), and ak is
the additive QTL effect (fixed) for marker k. Gi represents a polygenic
effect for genotype i, and ei is the nongenetic residual

�
ei � N

�
0;s2

e

��
.

The distribution of Gi is � N
�
0;As2

g

�
: A is the additive genetic re-

lationship matrix calculated from the molecular marker information as
in Rincent et al. (2014a). In this method, a specific A is calculated for
each linkage group by excluding the markers on that particular linkage
group. A significance threshold equivalent to a genome-wide signifi-
cance level of 0.01 was used for the four data sets, following the Li and Ji
(2005) multiple-testing correction.We performed the GWAS as imple-
mented in GenStat 17th edition (VSN-International 2015).

Prediction models
The following prediction models were used:

QTL:

yi ¼ mþ
X

q2Q
�
xiqaq

�þ ei (6)

In Equation 6, m is the intercept,
P

q2QðxiqaqÞ is for genotype i the
sum of (random) QTL effects belonging to the QTL set Q, where these

QTLwere identified in a preliminary GWAS scan. Effects for eachQTL
were allowed to have their own distribution (aq � Nð0;s2

qÞ), and ei is
the residual (ei � Nð0;s2

e Þ).

GBLUP:

yi ¼ mþ Gi þ ei (7)

In Equation 7, m is the intercept and Gi represents the random
genotype effects that follow a distribution Gi � Nð0;AABs2

gÞ: AAB is
the additive relationship matrix, following Astle and Balding (2009)
(Equation 3). The predictions were calculated using GenStat 17th edi-
tion (VSN-International 2015).

QGBLUP:

yi ¼ mþ
X

q2Q
�
xiqaq

�þ Gi þ ei (8)

Themodel in Equation 8 combines the QTL and GBLUPmodel.
Again, m is the intercept,

P
q2QðxiqaqÞ is the sum of random QTL

effects from the QTL set Q for genotype i, with each of the QTL
effects having proper variance component, aq � Nð0;s2

qÞ: The
polygenic effects Gi are assumed to follow a distribution
Gi � Nð0;AABms2

gÞ: ei is the residual
�
ei � N

�
0;s2

e

��
. AABm corre-

sponds to a modified additive relationship matrix, calculated from all
markers except those that were within a window of 620cM around
QTL. This precaution was taken to avoid accounting for the QTL
effects both in the random QTL terms, and in the residual polygenic
term. Again, predictions were calculated in GenStat 17th edition
(VSN-International 2015).

RKHS: The RKHS model is as the GBLUP model in Equation 7, but
Gi � Nð0;A�Þ: A� ¼ expð2D=uÞ represents the genetic relationship
matrix, where D is a matrix with Euclidean dissimilarities among
genotypes calculated from marker scores in the Synbreed package
(Wimmer et al. 2012), and u is a tuning parameter which determines
how the covariance among individuals decays as a function of the
genetic distance (Gianola and van Kaam 2008; Piepho 2009). An
estimate for u was obtained by fitting mixed models along a grid of
values between 0.05 and 5. The u value that provided the best pre-
dictive ability over a number of validation sets was used as the final u
value (de los Campos et al. 2010). The final u value also showed the
lowest AIC across the grid. The RKHS predictions were fitted by the
REML procedure in GenStat v.17 (VSN-International 2015).

Training set size
For maize, training sets contained 50, 70, 100, 150, or 200 geno-
types [to match sample sizes chosen by Rincent et al. (2012)].

n Table 2 Subpopulation size in the calibration set, genetic diversity (Div ¼ 12median  IBS) and number of calibration set genotypes
assigned to the training set, expressed as a percentage of the number realized by random sampling

Flint, 200 Dent, 200 Wheat, 100 Rice, 300

Size Div. U SU CD S Size Div. U SU CD S Size Div. U SU CD S Size Div. U SU CD S

a 50 0.26 235 225 230 13 a 17 0.26 261 253 242 38 a 17 0.18 220 213 214 29 a 220 0.17 28 28 24 0
b 30 0.30 25 12 27 218 b 45 0.28 233 231 225 10 b 19 0.25 25 21 24 28 b 129 0.31 14 14 7 0
c 55 0.33 8 6 8 3 c 13 0.31 21 24 210 35 c 41 0.31 228 224 2 2
d 30 0.34 1 8 4 21 d 38 0.32 211 213 214 22 d 21 0.35 5 4 23 6
e 94 0.39 15 4 13 23 e 40 0.36 23 24 25 22 e 51 0.40 22 14 14 0

f 123 0.38 25 24 22 227

For the description of the training set construction methods U, SU, CD, S, and R, see Table 1.
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The wheat data had a limited panel size, so training set sizes of 50,
75, and 100 genotypes were used. Rice training sets had a size of 50,
100, 150, 200, or 300 genotypes to match the sizes used by Isidro
et al. (2015).

Predictive ability
Predictive ability was calculated as the Pearson correlation co-
efficient between observed and predicted phenotypes (Meuwissen
et al. 2001). To evaluate whether predictive ability was driven by

Figure 3 Distribution of genetic distances
(distance¼12 IBS) between validation set geno-
types and the closest genotype in the training set
(summed over 100 sampling events). For the de-
scription of the training set construction methods
U, SU, CD, S, and R see Table 1.

3738 | D. Bustos-Korts et al.



population structure, the Pearson correlation was calculated both
across subpopulations, so ignoring population structure, and within
the subpopulations, where it should be remarked that for smaller sub-
populations no reliable estimates of predictive ability may be possible.

We wanted to study the influence of training set construction method,
prediction model, and training set size on predictive ability. For each com-
binationof these three factors,we calculatedmeanpredictive ability across 100
training set realizations. We also calculated a standard error (SE). To comply
with the normality assumption, correlations were analyzed on a transformed

scale using Fischer’s z transformation, z ¼ 1
2

�
ln

�
1þ r
12 r

��
, and means

were back transformed using r ¼ expð2zÞ þ 1
expð2zÞ2 1

before reporting them.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS
Wefirst explored population structure for the Flint, Dent, wheat, and
rice panels. Subsequently, we investigated the properties of training
sets constructed following the training set construction methods
U, SU, CD, S, and R. Finally, we present the results of predictive abilities
as defined by training set construction method and varying training
set size and genomic predictionmodel. Predictive ability as estimated
when ignoring population structure, i.e., across subpopulations, was
compared to predictive ability for individual subpopulations to

Figure 4 Predictive ability for the Flint and Dent
panels as a function of training set size, using the
RKHS model. The mean standard error for predictive
ability was 0.001. For the description of the training
set construction methods U, SU, CD, S, and R see
Table 1.
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establish the degree by which predictive ability was driven by
population structure.

Population structure
We present the panels ordered from the least to the most struc-
tured. Flint with an Fst statistic of 0.11 was the least structured
panel; 5.96% of the total variation was explained by PC1 and
3.84% by PC2 (Figure 1). PC1 separated the Northern Flint ge-
notypes from the other Flint genotypes, coinciding with what
was reported by Rincent et al. (2012). The Tracy-Widom statistic
indicated that four PCs were significant, suggesting five genetic
groups. Although the separation between some groups is not

visible in the three dimensions shown in Figure 1, groups were
separated in higher dimensions.

The Dent panel with an Fst of 0.19 was slightly more structured
than the Flint panel. A larger percentage of variationwas explained by
the first PCs (5.64% for PC1 and 4.62% for PC2, Figure S1). Five PCs
were significant, thus, genotypes were classified into six subpopula-
tions. The first PC separated the IODent from the non-IODent geno-
types, the second PC separated the stiff-stalk from the non-stiff-stalk
genotypes, and the third PC separated the D06 family from the rest.
The remaining subpopulations were separated by PC4 and PC5.

For the wheat panel, Fst was 0.28 and four PCs were significant,
indicating the presence of five subpopulations. PC1 (11.41%) tended to

Figure 5 Predictive ability for the wheat and rice
panels as a function of training set size, using the
RKHS model. The mean standard error for predictive
ability was 0.001. For the description of the training
set construction methods U, SU, CD, S, and R see
Table 1.
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separate genotypes by their vernalization requirements, and PC2
(8.48%) tended to separate genotypes by their sensitivity to photo-
period (Figure S2).

Rice was the most structured panel that we analyzed with an Fst
of 0.36. Only the first PC was significant (39.41% of the variation),
indicating two clearly distinguishable subpopulations (see Figure 2).

Training and validation sets
In this section, we compare fivemethods to construct training sets from
calibration sets (U, SU, CD, S, and R, see Table 1 for a description of the
method abbreviations). Each individual calibration set is split into a
training set and a validation set. For each combination of training set
construction method, training set size, and genomic prediction model,
100 training sets were constructed, or drawn, from a calibration set.

Representation of subpopulations in training sets: Randomsampling
of genotypes in the calibration set, i.e., training set constructionmethod
R, to create a training set, will lead to a training set with proportional
representation of subpopulations. In Table 2 we express the abundance
of genotypes coming from a particular subpopulation when using train-
ing set construction methods U, SU, CD, and S relative to the abun-
dance for that subpopulation as realized by application of training set
construction method R. For all panels it held that large and diverse
subpopulations were over-represented in the training sets created by
application of U, SU, and CD in comparison to R. The lowest diversity
subpopulations were always under-represented when using U, SU, and
CD. Subpopulation affected representation in an expected way for the
Dent panel and rice panel for the comparison of S vs. R, that is, larger
subpopulations were under-represented and smaller subpopulations
were over-represented. For the Flint and wheat panel the relationship
between representation and subpopulation size was not clear. In con-
clusion, for U and SU, a relatively larger number of genotypes was
allocated to the training set from those parts of the genetic space that
were more diverse. CD behaved comparably to U and SU for all panels.

Distance between validation set and training set: Our objective was
to evaluate methods for training set construction that provide a more
homogeneous coverage of the genetic space and that reduce the
genetic distance between genotypes in the validation set and those in
the training set. The underlying rationale is that the lower the genetic

distance (larger genetic relatedness) between validation and training
sets, the better thepredictive ability in the validation set is expected tobe.

Figure 3 shows the distribution of distances of validation set geno-
types to the closest training set genotype, with distance ¼ 12 IBS;
summed over all 100 realizations of the training set. A broad distri-
bution indicates high heterogeneity of distance, i.e., some validation
genotypes are close to the training set, whereas others are distant.
Our objective was to construct a training set that is on average close
to the validation set with little variation between validation geno-
types, reflected in a narrow distribution.

At all training set sizes, SU and U had a narrower distribution than
CD, S, and R, showing that training set samples created by SU and U
achieve a homogeneous coverage of the genetic space and that these
sampling outcomes are consistent from realization to realization.

At small training set size, the median and the maximum genetic
distancebetweengenotypes in the validation set and those in the training
set was similar for U, SU, S, and R. Only CD showed a smaller median
distance, compared to the other four methods, especially for wheat and
rice (Figure 3 and Table S1).

At larger training set sizes, the methods CD, U, and SU showed
smaller distances between genotypes in the validation and training sets,
compared to S and R (Figure 3 and Table S1). CD coincided withU and
SU for the modal genetic distance, but tended to have a broader distance
distribution. This broader genetic distance distribution implies that while
on average CD, U, and SU are similar, CD tends to achieve a less homo-
geneous coverage of the genetic space, when compared to U and SU.

Incorporating a priori defined subpopulations into the genetic dis-
tance sampling, SU vs.U, had only a small effect for the least structured
panels, Flint and Dent. For those panels, U showed a slightly narrower
distribution than SU. This difference was most relevant at small sample
sizes. In the case of more structured populations (wheat and rice), the
incorporation of a priori subpopulation information into the sampling
process did not change the distribution of genetic distances between
validation and training sets. This means that as a desirable feature of
our U method population substructure, whether subtle or not, it will
automatically be accounted for in the construction of the training set.

QTL detection in the training set: The number of detected QTL
increased with training set size (Table S2, Table S3, and Table S4). At
training set sizes smaller than 100 genotypes, the number of sets in

n Table 3 Predictive ability for the Flint panel, using a training set
size of 200 genotypes

Model U SU CD S R SE

Silking, Flint, 200 genotypes
QTL 0.514 0.531 0.468 0.373 0.378 0.010
GBLUP 0.810 0.830 0.836 0.695 0.713 0.009
QGBLUP 0.806 0.822 0.829 0.680 0.698 0.010
RKHS 0.819 0.832 0.835 0.684 0.706 0.009

Tasseling, Flint, 200 genotypes
QTL 0.231 0.399 0.328 0.286 0.263 0.017
GBLUP 0.813 0.824 0.832 0.669 0.684 0.009
QGBLUP 0.784 0.800 0.798 0.619 0.635 0.017
RKHS 0.819 0.828 0.834 0.665 0.682 0.009

Yield, Flint, 200 genotypes
QTL 0.287 0.443 0.187 0.067 0.130 0.021
GBLUP 0.372 0.381 0.447 0.388 0.388 0.021
QGBLUP 0.334 0.383 0.373 0.224 0.284 0.021
RKHS 0.380 0.378 0.444 0.373 0.377 0.010

For the description of the training set construction methods U, SU, CD, S, and R
see Table 1. SE indicates the mean standard error across methods.

n Table 4 Predictive ability for Dent, using a training set size of
200 genotypes

Model U SU CD S R SE

Silking, Dent, 200 genotypes
QTL 0.461 0.471 0.396 0.409 0.367 0.008
GBLUP 0.822 0.820 0.818 0.698 0.744 0.007
QGBLUP 0.842 0.829 0.822 0.696 0.729 0.008
RKHS 0.818 0.814 0.805 0.621 0.678 0.007

Tasseling, Dent, 200 genotypes
QTL 0.580 0.597 0.530 0.438 0.452 0.009
GBLUP 0.823 0.823 0.829 0.712 0.752 0.009
QGBLUP 0.839 0.832 0.826 0.707 0.741 0.009
RKHS 0.823 0.821 0.817 0.628 0.687 0.009

Yield, Dent, 200 genotypes
QTL 0.416 0.395 0.403 0.241 0.300 0.009
GBLUP 0.649 0.677 0.674 0.567 0.650 0.007
QGBLUP 0.649 0.677 0.678 0.524 0.617 0.009
RKHS 0.621 0.646 0.655 0.523 0.603 0.007

For the description of the training set construction methods U, SU, CD, S, and R
see Table 1. SE indicates the mean standard error across methods.
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which QTL were detected was very small and their positions changed
across training sets. For training set sizes of 100 genotypes or larger,
CD, U, and SU produced a larger number of QTL than S and R.

In the case of the Flint panel, most consistent QTL were detected on
linkage group1 for tasseling, silking and yield (Table S2). ForDent,QTL
were detectedmost often on linkage groups three and eight for tasseling
and silking and in linkage group 5 for yield (Table S3).

Very few QTL for grain yield were detected in the wheat panel. For
heading time, large QTL for photoperiod and vernalization require-
ments appearedonly at larger sample sizes, reflecting that thepopulation
was too small for QTL detection in the training set. However, given that
the population was characterized for loci that are known to be relevant
for vernalization and photoperiod sensitivity, we decided to include
these four loci in all the QGBLUP and QTL models for heading date.

For the rice panel, the most consistent QTL for plant height was
detected on linkage group 1 (Table S4).When using themethodsU, SU,
and CD, an important proportion of the training sets showed a QTL on
linkage groups 2 and 6 at larger training set sizes. For seed number, a
consistent QTL was detected for a training set size of 300 genotypes on
linkage group 12. For flowering date, the most consistent QTL were
detected on linkage groups 3 and 5. Again, these QTL were more often
detected with U, SU, and CD, than with S and R.

Predictive ability in the validation set, ignoring subpopulations:
First, we present predictive ability as calculated on all genotypes in the
validation set, pooling validation genotypes across subpopulations. To
investigate the influence of the subpopulations on the accuracy, we have
also calculated within subpopulation prediction abilities (see below).

In the Flint, Dent, wheat, and rice panel, as expected, the relative
predictive ability of methods depended on the training set size (Figure 4
and Figure 5). While at small training set sizes, differences between all
methods were minor, at larger training set sizes, methods that reduced
the distances between the validation and the training set (i.e., U, SU,
and CD) showed a clear improvement compared to S and R with an
absolute increase in predictive ability of between 0.10 and 0.25.

Prediction models differed in predictive ability (Table 3, Table 4,
Table 5, and Table 6). For the Flint, Dent, and rice panels, RKHS,
GBLUP, and QGBLUP showed a larger predictive ability than the
QTL model. This indicates that the evaluated traits were regulated by
a large number of loci (Table 3, Table 4, and Table 6). For the same
reason, including QTL in a separate model term (QGBLUP) was not
advantageous over GBLUP. The comparable results of RKHS and
GBLUP indicate that nonadditive genetic effects were not so relevant
for the analyzed traits in the Flint, Dent, or rice panels.

Model ranking was slightly different for heading date in the wheat
panel from that in Flint, Dent, and rice. In the case of heading date,

QGBLUP led to larger predictive ability, compared toGBLUP andQTL
(Table 5). This indicates that, for heading time in wheat, it is convenient
to account separately for loci with large effects. However, RKHS
showed a larger predictive ability than QGBLUP, reflecting that non-
additive genetic effects contribute to phenotypic variation of heading
date. In the case of grain yield, no large QTL were consistently detected
and therefore, we only used RKHS and GBLUP to predict this trait in
wheat. As for heading, RKHS showed a larger yield predictive ability
than GBLUP.

Predictive ability in the validation set, calculated within
subpopulations: We present predictive ability as calculated within
subpopulations for the Flint, Dent, and rice panel. The wheat data were
not included in this analysis because the panel was too small, and
predictive abilitywithin subpopulations could not be calculated reliably.

Within subpopulations, training set constructionmethods generally
maintained their ranking, compared to predictive ability calculated
across subpopulations; U, SU, and CD were better than S and R (Table
7, Table S5, Table S6, Table S7, Table S8, and Table S9). This indicates
that the improvement in predictive ability observed for U, SU, and CD
was not driven by the subpopulations. This result can also be observed
in the correlation plot between predicted and observed phenotypes.
Figure 6 shows that the relation between predicted and observed trait
values was similar within subpopulations and across subpopulations,
demonstrating that predictive ability was not driven by population
structure.

For the ricedata, predictive abilitywithin subpopulationswas similar
for all the training set construction methods, coinciding with the result
observed for the predictive ability across subpopulations (Table S10,
Table S11, and Table S12).

For all the panels, the ranking of predictionmodels with respect to
within subpopulation predictive abilities coincided with that for
across subpopulations; RKHS, GBLUP, and QGBLUP were similar
(with minor differences in the ranking, depending on the panel),
whereas the QTL model led to clearly lower predictive ability.

DISCUSSION
Themain objective of this study was to assess the impact of five training
set construction methods (U, SU, CD, S, and R) on predictive ability
in the validation set. A secondary objective was to compare four

n Table 6 Predictive ability for rice, using a training set size of
300 genotypes

Model U SU CD S R SE

Flowering, rice, 300 genotypes
QTL 0.309 0.320 0.303 0.271 0.267 0.013
GBLUP 0.778 0.779 0.751 0.676 0.657 0.013
QGBLUP 0.766 0.770 0.728 0.673 0.653 0.013
RKHS 0.815 0.816 0.787 0.699 0.677 0.013

Height, rice, 300 genotypes
QTL 0.379 0.379 0.301 0.361 0.366 0.014
GBLUP 0.759 0.756 0.805 0.804 0.800 0.011
QGBLUP 0.740 0.738 0.801 0.806 0.801 0.011
RKHS 0.785 0.779 0.806 0.790 0.788 0.011

Seed number, rice, 300 genotypes
QTL 0.231 0.223 0.275 0.191 0.191 0.019
GBLUP 0.556 0.554 0.638 0.580 0.571 0.013
QGBLUP 0.479 0.467 0.582 0.515 0.519 0.019
RKHS 0.603 0.599 0.671 0.589 0.579 0.013

For the description of the training set construction methods U, SU, CD, S, and R
see Table 1. SE indicates the mean standard error across methods.

n Table 5 Predictive ability for wheat, using a training set size of
100 genotypes

Model U SU CD S R SE

Wheat, heading, 100 genotypes
QTL 0.303 0.301 0.336 0.382 0.351 0.009
GBLUP 0.472 0.472 0.474 0.357 0.371 0.009
QGBLUP 0.512 0.519 0.562 0.517 0.478 0.009
RKHS 0.632 0.611 0.592 0.421 0.419 0.009

Wheat, yield, 100 genotypes
GBLUP 0.660 0.650 0.620 0.475 0.482 0.009
RKHS 0.699 0.679 0.654 0.538 0.517 0.009

For the description of the training set construction methods U, SU, CD, S, and R
see Table 1. SE indicates the mean standard error across methods.
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prediction models that differ in the importance that they assign to
specific genomic regions and in the type of genetic effects that they
consider (additive/nonadditive). The training set construction meth-
ods and prediction models were evaluated at different training set
sizes in four diversity panels. Predictive ability was calculated for the
validation set in all the panels.

Training set construction methods
Prediction of unobserved genotypes is possible provided that genotypes
to be predicted are genetically similar to those that have been observed
(Habier et al. 2010; Saatchi et al. 2011). Hence, a prerequisite to obtain
large predictive ability is that the training set represents well the cali-
bration set and that the calibration set represents well the TPG (Rincent
et al. 2012; Crossa et al. 2013; Albrecht et al. 2014; Auinger et al. 2016).

Breeding populations are commonly structured. When population
structure is present, genetic similarity is heterogeneous, because pairs of
genotypes can belong to the same or different subpopulations. Random
sampling fromthecalibration set reproduces itsdistributionalproperties
without taking into account diversitydifferences across the genetic space
(Jansen and vanHintum2007). Thus, in structured populations, simple
random sampling will not result in training sets that adequately represent
the full genetic variation in the calibration set, leading to on average lower
similarity between genotypes in the training and the validation set
(Pszczola et al. 2012; Albrecht et al. 2011; Wientjes et al. 2016).

We showed that a more homogeneous coverage of the genetic space
by applying the methods U and SU leads to smaller distances between
genotypes in training and validation sets, and to a higher predictive
ability. A uniformly covered genetic space also offers the potential to
provide good predictive ability for new genotypes not belonging to the
initial calibration set, provided that theyare containedwithin the genetic
space spanned by the initial calibration set.

Rincent et al. (2012) proposed to increase predictive ability by max-
imizing the precision of the contrast between each individual in the
validation set and the mean of the calibration set (training and valida-
tion sets). This method was also successfully applied to genomic pre-
diction in pea (Tayeh et al. 2015). Here, we show that CD, U, and SU
are alternative methods that deliver comparable results because they all
provide a training set that has a smaller genetic distance to the valida-
tion set. One of the advantages of U and SU is that no estimate of
heritability is required. Thus, it resolves the unavoidable ambiguity
when defining a training set for multiple traits with different heritabil-
ities. A second advantage is that U and SU showedmore consistency of
training set sample properties revealed by a narrower distribution of
distances between the validation and the training set, compared to CD,
S, and R. The genotypes in the training set are at more constant dis-
tances, providing a more uniform coverage of the genetic space and
larger predictive ability, even when the distribution of genotypic dis-
tances in the validation set is different from that in the training set.
Furthermore, U and SU have the advantage that they are computation-
ally easier and faster to apply than CD.

U, SU, and CD are methods that use genetic similarity/distance as a
criterion to construct the training set. Thus, the set of markers used for
distance calculation influences training set composition.One aspect that
could be further explored is the convenience of considering only those
genomic regions that influence the trait of interest, especially for traits
regulated by a small number of loci. In the same vein, the presence of
ascertainment bias in the marker set needs to be evaluated because it
mightmodify the relativedistances amonggenotypes, and, therefore, the
training set composition. For that reason,we repeated all calculations for
maize, using the full SNP50 BeadChip in place of the PANZEAmarker
set (results not shown). The relative distances among genotypes were
highly comparable between those twomarker sets (Frascaroli et al.2012)
and therefore we did not observe changes in the ranking of training set
construction methods or prediction models for predictive ability.

Prediction models
Themaindifference amongpredictionmodels is the relative importance
assigned to specific loci as contrasted with the rest of the genome. It is
therefore natural to expect that the degree of success of the different
models depends on trait genetic architecture.This studydealt with yield,
yield components (regulated by many loci with small effects), and with
phenology traits. In the case of wheat,flowering time is regulatedmainly
by a few loci with large effect. However, despite the apparently simple
genetic regulation of heading date favoring a QTL model, it is still
beneficial to include a term that accounts for residual genetic variance.
This result is in line withZheng et al. (2013), who showed thatflowering
time in wheat is not only regulated by major genes for photoperiod
and vernalization requirements, but also by a polygenic effect that
influences earliness per se. In contrast, in the case of maize and rice,
phenology and yield traits are regulated by many QTL (Buckler et al.
2009; Rincent et al. 2014b; Zhao et al. 2011). The more complex
genetic architecture of maize and rice traits is in agreement with our
findings of models using genome-wide information showing larger
predictive ability than those using information from a few QTL
(QTL prediction model).

The importance of considering trait genetic architecture when
selecting the prediction model was also discussed by Daetwyler et al.
(2010) and by Bernardo (2014), who simulated diverse traits that dif-
fered in the number of QTL explaining the genotypic variance. The
authors observed that traits regulated by a small number of QTL tend to
be predicted better bymodels that give a larger importance toQTLwith
large effects, compared to the GBLUP model. This result has also been

n Table 7 Predictive ability within groups for Flint silking date,
using a training set size of 200 genotypes

Flint, Silking date, 200 genotypes

Subpop. U SU CD S R SE

QTL
a 0.073 0.104 0.14 0.043 0.232 0.052
b 0.775 0.893 0.663 0.686 0.648 0.061
c 0.803 0.446 0.761 0.347 0.439 0.034
d 0.603 0.797 0.641 0.680 0.622 0.053
e 0.371 0.191 0.258 0.121 0.182 0.023

GBLUP
a 0.485 0.588 0.485 0.395 0.577 0.031
b 0.625 0.867 0.656 0.579 0.638 0.039
c 0.850 0.331 0.908 0.449 0.575 0.028
d 0.802 0.726 0.860 0.501 0.534 0.043
e 0.666 0.563 0.727 0.634 0.563 0.019

QGBLUP
a 0.452 0.597 0.509 0.420 0.552 0.038
b 0.611 0.867 0.625 0.654 0.647 0.048
c 0.864 0.402 0.899 0.489 0.561 0.034
d 0.705 0.736 0.803 0.631 0.574 0.053
e 0.737 0.603 0.714 0.523 0.512 0.023

RKHS
A 0.578 0.576 0.519 0.266 0.554 0.031
B 0.625 0.959 0.627 0.554 0.629 0.039
C 0.807 0.354 0.877 0.523 0.609 0.028
D 0.760 0.753 0.859 0.509 0.582 0.043
E 0.732 0.559 0.732 0.633 0.554 0.019

For the description of the training set construction methods U, SU, CD, S, and R
see Table 1. SE indicates the mean standard error across methods.
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observed for a set of human diseases regulated by few loci with different
effect size, for which it was advantageous to include several random
terms (Speed and Balding 2014).We are aware that the number of QTL
included in our QGBLUP models contains an element of subjectivity
because of the selection of a significance threshold to define when a
locus enters the QTL list. Bernardo (2014) gave some guidelines about
when to include the QTL in a separate model term.

Previous paragraphs discussed the convenience of separately ac-
counting for additive loci, depending on their effect size. However, part
of the genetic variance might be nonadditive. If the epistasis is simple
(interaction between a few loci with large effects), it can bemodeled as a
QTL-interaction term (Malosetti et al. 2011). Unfortunately, in the case
of the traits analyzed here, epistasis has been shown to be largely

complex (Reif et al. 2011; Kippes et al. 2014). Langer et al. (2014)
showed that epistasis for heading date in wheat can be dissected into
at least 30 epistatic interactions, among which many of them did not
correspond to interaction between large phenology genes. The results
shown by Langer et al. (2014) coincide with the lack of improvement in
predictive ability that we observed when we incorporated additional
terms accounting for interaction among large phenology genes (results
not shown). The RKHS model allows to account for epistatic interac-
tions, without the need of specifying which genomic regions are re-
sponsible for this interaction (Crossa et al. 2010, 2013; Gianola and van
Kaam 2008; Jiang and Reif 2015).

Traits and crops might also differ in the relative size of epistatic
interactions (Langer et al. 2014; Reif et al. 2011; Spindel et al. 2015;

Figure 6 Relation between predicted and observed
tasseling date for the Dent panel using the RKHS
model and 200 genotypes. A single training set
realization is shown for each training set construc-
tion method. Symbol color represents each of the
six subpopulations.
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Blanc et al. 2006). For example, a larger improvement was observed
with the RKHS model for wheat data than for maize and rice. This
result coincides with those of Endelman (2011) and Stange et al. (2013),
who observed that the advantage of the RKHS model was large in the
case of wheat grain yield, but it was small in the case of maize traits.

A further issue that needs to be considered in structured populations
is the convenience of assuming constant or heterogeneous allele effects
across subpopulations (Lehermeier et al. 2015; de los Campos et al.
2015). Models that allow for subpopulation-specific allele effects range
from models that assume fully independent populations (effects esti-
mated in each population separately), to more complex models that
allow allele effects to be correlated across subpopulations (Lehermeier
et al. 2015; Olson et al. 2012). In this paper, we focused on models that
assume homogeneous effects. We also explored the idea of allowing for
subpopulation-specific effects by fitting all the models to each subpop-
ulation independently (not shown). However, models that allow for
subpopulation-specific effects did not show a clear advantage over
models with homogeneous effects, coinciding with Lehermeier et al.
(2015), Schulz-Streeck et al. (2012), and Albrecht et al. (2011).

Sample size
Sample size reduction inevitably leads to a larger probability of losing
genotypeswith extremevalues for the trait of interest, therebynarrowing
down the phenotypic trait range and the predictive ability. Our results
showedanonlineardecrease inpredictive ability as a functionof training
set size. This nonlinear decrease of the predictive abilitywas also observed
by Heffner et al. (2011), Zhao et al. (2012), and Rincent et al. (2012) and
can be explained by the number of individuals, trait heritability, and the
effective number of chromosome segments (Daetwyler et al. 2008, 2013).

When assessing the sampling methods in relation to sample size,
U produced a more homogeneous representation of the genetic
diversity of the original population, compared to S and R, leading
to larger predictive ability. The fact that this advantage was main-
tained only at large sample sizes can be explained by the fact that, at
smaller training set sizes, none of the training sets was able to provide
enough information for an accurate estimation of genotypic effects.

Conclusions

Training set construction methods that take into account the genetic
diversity of the calibration set have higher predictive ability and
are not sensitive to population structure in the calibration set:
U, SU, and CD vs. S and R.

U and SU and CD produce comparable predictive abilities, but U
and SU are simpler to calculate and require less computational
cost and no phenotypic information in comparison to CD.

As expected, training sample size reduction led to lower predictive
ability, but this reduction was stronger for the wheat and maize
panels than for the rice panel.
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