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Spinal cord injury (SCI) is a high incident rate of central nervous system

disease that usually causes paralysis below the injured level. The occurrence

of chronic inflammation with the axonal regeneration difficulties are the

underlying barriers for the recovery of SCI patients. Current studies have

paid attention to controlling the instigative and developmental process of

neuro-inflammation. Ethyl pyruvate, as a derivative of pyruvate, has strong

anti-inflammatory and neuroprotective functions. Herein, we reviewed the

recent studies of ethyl pyruvate and high mobility group box-1 (HMGB1).

We think HMGB1 that is one of the main nuclear protein mediators to

cause an inflammatory response. This protein induces astrocytic activation,

and promotes glial scar formation. Interestingly, ethyl pyruvate has potent

inhibitory effects on HMGB1 protein, as it inhibits chronic inflammatory

response by modulating the HMGB1/TLR4/NF-κB signaling pathway. This

paper discusses the potential mechanism of ethyl pyruvate in inhibiting

chronic inflammation after SCI. Ethyl pyruvate can be a prospective

therapeutic agent for SCI.
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Introduction

Spinal cord injury (SCI) refers to spinal cord dysfunction
or organic damage caused by direct or indirect external
force affecting the spine (Fouad et al., 2021). The clinical
manifestations of SCI are usually the motor and sensory
dysfunctions of tissues and organs below the injury level
such as dysfunctions of bladder and rectum (Leibinger et al.,
2021). Severe SCI patients can present with the paraplegia
(Bendella et al., 2019), respiratory disorders, and even cause the
death. SCI mainly occurs in young adults, and is often caused
by falling, traffic accidents, violence, and improper physical
exercises. Statistics show that there are about 18,000 new SCI
patients worldwide every year (Lv et al., 2021). The high cost
of treatment coupled with the incomplete injury recovery,
which contributes to the tremendous psychological, economic
and social burden for patients and their families. In recent
years, the high incidence and disability of SCI has become
a major medical conundrum. SCI based on its physiological
and pathological characteristics that is divided into the acute
and chronic SCI. The physiopathological features are mainly
temporary shock of the spinal cord in the initial stage of the
acute SCI. A few minutes following the early inflammatory
stage will trigger the biochemical disorders at the injured sites,
cell microenvironment destruction, inflammatory response,
together with detrimental effects to the vascular system after
the acute SCI phase (Kumar et al., 2020). The chronic stage
is characterized by the edema and glial scar formations at the
injured sites from a few days to years after injury, and leads to
the permanent autonomic dysregulation.

Chronic inflammation is the main obstacle in SCI treatment,
as nerve cells are extremely active at this stage, especially
astrocytes (Yoshizaki et al., 2021). Activated astrocytes not only
proliferate rapidly, but also change cell morphologies, which
become hypertrophic and conglutinate into pieces to form the
scar-like glial cells (Okada et al., 2018). The scar prevents the
expansion of the injured area, and blocks axonal repair (Cox
et al., 2021). Therefore, at the chronic development stage of SCI
patient, the activated astrocytes can form glial scar around the
injured area to result in the injured area hollow and hinder
axonal regeneration and repair (Edwards-Faret et al., 2021).

Abbreviations: BDNF, Brain-derived neurotrophic factor; CNTF, Ciliary
neurotrophic factor; CSPGs, Chondroitin sulfate proteoglycans; DAMPs,
Damage-associated molecular patterns; Drp1, Dynamin-related protein
1; EP, Ethyl pyruvate; ERK1/2, Extracellular regulated protein kinases1/2;
GFAP, Glial fibrillary acidic protein; HMGB1, High mobility group box-1;
JAK2, Janus kinases 2; JNK, c-Jun N-terminal kinase; MAPK, Mitogen-
activated protein kinase; MD-2, Myeloid discrimination protein 2; MyD88,
Myeloid differentiation factor 88; NF-κB, Nuclear factor-kappa B; NLRP3,
Nod-like receptor protein-3; Nrf2, Nuclear factor E2-related factor 2;
PAMPs, Pathogen associated molecular patterns; RAGE, Receptor of
advanced glycation end product; ROS, Reactive oxygen species; SCI,
Spinal cord injury; STAT3, Signal transducer and activator of transcription
3; TLR, Toll-like receptor.

Presently, SCI studies mainly focus on reducing chronic
inflammatory response, preventing glial scar formation, and
promoting axonal growth.

High-mobility group box 1 (HMGB1), as a DNA binding
protein in the nucleus, is a structural cofactor for cells, and
has an important regulatory function for transcription (Sun
et al., 2017). HMGB1 is a key factor released during the
apoptotic and necrotic processes, and plays a significant role
in promoting local and systemic inflammatory response (Wang
et al., 2020a). When cells are strongly stimulated or start
necrosis, HMGB1 is secreted from the nucleus to the outside
of cells, which activates inflammatory responses of glial cells,
stimulates the cells to release neurotoxic factors, and aggravates
the inflammatory responses (Shen et al., 2020). The high
expression of HMGB1 can aggravate a patient’s condition in the
injury and inflammation sites (Yang et al., 2018). Several studies
show to curtail the inflammatory reaction, improve spinal cord
edema and injury recovery by inhibiting HMGB1 activity (Sun
et al., 2017, 2019a). HMGB1, as the upstream factor of secondary
inflammatory reaction, can activate nuclear factor-kappa B
(NF-κB) (Liang et al., 2020), mitogen-activated protein kinase
(MAPK) (Xie et al., 2019), and other classical inflammatory
pathways to trigger the activation and inflammation of glial cells
after SCI (Ta Na et al., 2019). Furthermore, the high expression
of HMGB1 promotes inflammatory reactions, and is closely
related to the activation of several cell membrane receptors, such
as toll-like receptor (TLR) 4, TLR2, and receptor of advanced
glycation end product (RAGE) in the wake of SCI (Casula
et al., 2011; Xia et al., 2019; Fan et al., 2020). Macrophages
and injured neurons can release HMGB1 to activate microglia
and astrocytes through the HMGB1/NF-κB signaling pathway,
moreover, the reactive astrocytes and microglia further release
HMGB1 to exacerbate the inflammatory response, apoptosis
and oxidative stress in the damaged area (Liu et al., 2017; Sun
et al., 2017; Wang et al., 2021; Du et al., 2022). However, the
specific interaction between HMGB1 and its receptors is unclear,
and needs further studies.

Ethyl pyruvate (EP), as a chemically stable derivative of
pyruvate, has significant anti-inflammatory and neuroprotective
effects (Lee et al., 2019a). Studies have shown that EP exerts
the potent anti-inflammatory roles by inhibiting the expression
of various inflammatory mediators and eliminating the release
of oxidative stress factors (Dong et al., 2019b). In the EP-
treated mice, the inflammatory signal of NF-κB was significantly
inhibited (Liu et al., 2019a). Moreover, studies showed that
EP could restore the axonal regeneration after SCI, and has
an exceptional protective effect on nerve development, and
is closely related to its inhibition of inflammatory response
by downregulating the HMGB1 activity (Wang et al., 2009;
Sun et al., 2017, 2019a). However, the specific physiological
mechanism is still unclear. In addition, EP can significantly
inhibit the astrocytic proliferation, and reduce the formation
of glial scar (Djedović et al., 2017). The above evidences
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indicate that EP may act as a potential agent for SCI
treatment.

Astrocytic activation and the high
mobility group box-1/toll-like
receptor4/nuclear factor-kappa B
pathway in spinal cord injury

Astrocytic activation

The most important feature of the chronic stage is glial
scar formation, which inhibits the regeneration and recovery of
spinal cord (Leibinger et al., 2021). Glial scar is usually formed
by the activated astrocytes. Many receptors on the surface
of astrocytes receive various inflammatory factors. Hence, the
destruction of the microenvironment can easily lead to the
activation of astrocytes (Giovannoni and Quintana, 2020).
Furthermore, cytokines, pathogen associated molecular patterns
(PAMPs), damage-associated molecular patterns (DAMPs), and
growth factors can cause astrocytic activation (Figure 1).
These factors increase the expressions of vimentin, actin,
chondroitin sulfate proteoglycans (CSPGs) and glial fibrillary
acidic protein (GFAP), the activations of MAPK and NF-κB
pathways, and STAT protein phosphorylation on astrocytes
(Phuagkhaopong et al., 2017; Yuan et al., 2017; Han et al., 2018;

Potokar et al., 2020). Obviously, reducing or clearing the
expression of these factors can effectively inhibit the activations
of astrocytes and inflammatory reactions, and improve the
injury recovery. Currently, the glial scar of SCI can be directly
removed by surgery, however, this poses certain risk to the
patient. Thus, ameliorating this reactive process is a key factor.

The glial scar blocks the axonal growth that is key to
two aspects: (1) It hinders the connection of the spinal cord
tract (Bradbury and Burnside, 2019); (2) it secretes molecules
such as CSPGs and GFAP to inhibit the neuronal growth and
plasticity. The upregulation of CSPG and GFAP expressions
is an indication of astrocyte activation (Sun et al., 2020).
Studies have shown that the regenerative ability of axons
can be significantly restored by inhibiting CSPGs expression.
For example, in a study by Tran et al. (2018) the failure of
axonal regeneration upregulated CSPGs expression after SCI.
However, the degradation of CSPGs could promote the axonal
regeneration and recovery by hindering CSPGs to bind to PTPσ

(Tran et al., 2018). Similarly, Xu et al. (2020) showed that
Rg-1 could downregulate CSPGs expression after SCI, reduce
the cavity area after injury, and promote hind limb recovery
in mice. Therefore, lowering the expression level of CSPGs in
glial scar could promote the axonal growth and enhance SCI
recuperation. However, the downregulation of CSPGs required
inhibiting the degree of astrocyte activation by reducing the
expression of various pro-inflammatory factors and apoptotic
factors within astrocytes.

FIGURE 1

Numerous factors activate astrocytes to cause neuroinflammation.
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The high mobility group box-1/toll-like
receptor4/nuclear factor-kappa B
signaling pathway

HMGB1, as a protein of the 215 amino acids, is located in
a stable environment of the nucleus. In healthy cells, HMGB1
plays a non-histone role in the nucleus that is key to maintain the
nucleosome stability and DNA transcription (Kim et al., 2021).
HMGB1 can be secreted via two ways: One is actively secreted
by the immune system as a warning signal during cell stress; the
other is aggressively secreted by the necrotic cells (Manivannan
et al., 2020). In general, the active and passive secretions of
HMGB1s promote each other. In the wake of cells damaged,
a large number of active HMGB1s are secreted from the
nucleus to the cytoplasm and extracellular, and various HMGB1
responsive receptors in the cytoplasm or cell membrane surface
are activated, and then promote a series of inflammation and
apoptosis. These result in the secretions of more inflammatory
factors, including the caspase family factors, TNF-α, IL-1β and
IL-6 (Zheng et al., 2021). These cytokines induce cellular stress
and trigger cells to release more HMGB1s. HMGB1s are secreted
out of cells that can play a role in cytokines, and may induce
the leukocytes to the injury tissues and exert the immune effects
(Mu et al., 2019).

Human HMGB1 consists of three functional domains:
A-box, B-box, and C-tail (Hazlett et al., 2021). The B-box
domain participates in inflammation by binding to its receptors
on the cell surface. The A-box competitively antagonizes the
function of the B-box domain and weakens its inflammatory
effect. The C-tail is involved in regulating the binding of
HMGB1 to the DNA (Hazlett et al., 2021). The HMGB1
receptors include TLR2, TLR4, and RAGE (Xue et al., 2021).
HMGB1s bind to corresponding receptors that produce a
larger and more complex danger signals, and then activate
a series of related inflammatory signaling pathways. TLRs
are important receptors that bind the endogenous factors of
cells (Arnaboldi et al., 2020), and induce the activation of
the NF-κB signaling pathway. Moreover, the TLR4 is a key
player in promoting inflammation in various diseases. The
binding of HMGB1 and TLR4, TLR4 primarily recognizes
myeloid discrimination protein 2 (MD-2) through the B-box
domain of the HMGB1, and then triggers inflammation (Sun
et al., 2019b). Notably, the combination of fluoroquinolone
antibiotics in the hydrophobic region of MD-2 reduces the
TLR4-MD-2 dimerization, while curtails the effectiveness of
the TLR4 and I-κB kinase. The above events contribute to
cell resistance to inflammation (Zusso et al., 2019). Usually,
the extracellular inflammatory factors trigger the corresponding
receptors on cell membrane to change its conformation and
activate I-κB kinase. When cells are stimulated, TLRs recruit
myeloid differentiation factor 88 (MyD88) that a key protein
activates I-κB kinase. The inhibition of MyD88 expression
blocks the NF-κB signaling pathway and reduces the risk of

inflammatory response (Kiripolsky et al., 2020). The knockout
of MyD88 gene of tumor cells inhibits their growth and
migration by decreasing the activity of NF-κB (Zhu et al., 2020).
Activated I-κB kinase further induces the phosphorylation or
degradation of IκB-α to cause the dissociation and translocation
of the p65/RelA pathway to the nucleus. If the P65/RelA
enters into the nucleus and binds to the corresponding DNA,
it will begin to active the inflammatory-related genes. It has
a significant therapeutic effect on LPS-induced acute lung
injury by using HMGB1 to impair the TLR4/MyD88/NF-κB
pathway (Meng et al., 2018). Also, a significant downregulation
of the HMGB1 activity can ameliorate neuropathic pain. In
addition, the binding of the HMGB1 and TLR4 promotes
the phosphorylations of the extracellular regulated protein
kinases1/2 (ERK1/2) and dynamin-related protein 1 (Drp1),
and the signals are translocated to the mitochondria and
cause the mitochondrial rupture (Feng et al., 2021). RAGE, as
an important receptor of HMGB1, has been widely studied.
Noteworthy, HMGB1 can induce the ERK1/2 phosphorylation
by binding to the RAGE, further triggering the activation of the
Janus kinases 2/signal transducer and activator of transcription
3 (JAK2/STAT3) signaling pathway, which in turn causes the
metabolic abnormalities and apoptosis (Zhang et al., 2019).
Further, the combination of HMGB1 and RAGE can instigate
the activation of JNK/NF-κB signaling pathway to promote
the occurrence of inflammation (Wu et al., 2013). Following
the combination of the extracellular HMGB1 and RAGE, a
variety of extracellular cytokines are encapsulated and carried
out to the lysosomes by intracellular endocytosis, and convey the
detrimental information to cells (Andersson et al., 2018). Also,
the HMGB1/RAGE/cathepsin B signaling pathway activates the
nod-like receptor protein-3 (NLRP3) inflammasome, promotes
the expressions of caspase family proteins, and triggers the
inflammation and apoptosis (Jia et al., 2019).

In addition to the inflammation and apoptosis, the activity
of HMGB1 is closely related to oxidative stress (Pauletti et al.,
2019). Studies have demonstrated that the high secretion
of HMGB1 is accompanied with the expression of reactive
oxygen species (ROS) (Min et al., 2021; Zhou et al., 2021).
The nuclear factor E2-related factor 2 (Nrf2) is an important
protein in the antioxidant system, and its activation promotes
the transcriptions and expressions of a variety of antioxidant
and cytoprotective proteins in cells. In oxidative stress, the
combination of HMGB1 and RAGE not only compromises Nrf2
translocation to the nucleus, but also reduces the activity and
expression of Nrf2, and causes the imbalance of antioxidant
system (Wang et al., 2020b; Arab et al., 2021; Figure 2).

The increased HMGB1 is related to astrocytic activation,
which increases the expression of aquaporins on the surface of
astrocytes and causes cell edema (Sun et al., 2017). Interestingly,
when HMGB1 expression is increased, astrocytic functions are
also intensified (Zhao et al., 2020). The extracellular HMGB1
activates astrocytes, which may promote the intracellular
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FIGURE 2

HMGB1 identification and its binding are by different receptors on the cell membrane. The pairing of TLR4 with HMGB1 activates the MyD88,
which in turn activates the I-κB kinase and NF-κB pathway, and triggers the expressions of downstream factors.

inflammatory signaling pathways by binding with the receptors
on the membrane. However, the specific mechanism is presently
unclear, and still needs further studies.

Ethyl pyruvate

The anti-inflammatory role of ethyl
pyruvate

Pyruvate, as a neuroprotective agent, plays an important
role in the glycolysis and tricarboxylic acid cycle. Pyruvate has
long been studied as a scavenger of free radicals in vivo, as
it can eliminate the ROS and H2O2, and inhibits the activity
of endogenous cytokines to reduce oxidative stress response
after cell injury (Guarino et al., 2019; Zhang et al., 2020, 2021).

EP is an ester derivative of pyruvate, has better stability than
pyruvate, and is an effective anti-inflammatory and anti-cancer
agent that has been employed in several disease treatments
(Table 1). EP can significantly reduce the expression of some
cytokines (These cytokines are paramount in the occurrence
and development of tumors.) to block inflammatory response.
The anti-inflammatory effect of EP may be by inhibiting
the activation of NLRP3 inflammasome and reducing the
expressions of caspase-1 and IL-1β (Li et al., 2018). In sepsis-
associated inflammation, EP inhibits the activity of NLRP3
inflammasome (Zhong et al., 2020).

The NF-κB signaling pathway after activation can promote
the immune, inflammatory and stress responses of the cells and
tissues. The phosphorylation of resting NF-κB by activating I-
κB kinase that is the first step in NF-κB activation. Following
an intricate intermediate reaction, the exposed p65 and p50
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TABLE 1 The application of EP in various diseases.

Disease Species Treatment options Outcomes References

Middle cerebral artery
occlusion (MCAO)

Rats DIPOPA DIPOPA treatment significantly lowered the expression of
inflammatory factors in the cerebral cortex of MCAO rats by
inhibiting the NF-κB activation, thus, showing a strong
neuroprotective effect on brain glial cells.

Lee et al., 2019a

Salmonella intestinal
infection

Mice EP intragastric gavage
(100 mg/kg)

EP protected the intestinal function of mice and reduced the
risk of bacterial infection.

Dong et al., 2019b

Blunt chest trauma and
hemorrhagic shock

Rats EP mixture was injected into
the jugular vein
(50 mg/kg/day)

Treatment with EP reduced granulocyte activation and
inhibited caspase-1/3/7 expression. The phosphorylation of the
NF-κB p65 protein was significantly decreased.

Dieteren et al., 2020

Alzheimer’s disease Rats EP drug orally (50, 100,
200 mg/kg/day)

EP improved memory impairment in AD rats, inhibited
oxidative stress, and protected nerves from damage.

Chavali et al., 2020

Glioblastoma Cells Different concentrations of
EP (0, 10, 20, 30 mM)

EP inhibited both migration and invasion by mitigating NF-κB
and ERK-induced EMT in U251 and U87 cells.

Huang et al., 2020

Parkinson’s disease Mice EP was intraperitoneally
injected (25, 50,
100 mg/kg/day)

After EP treatment, the loss of dopaminergic neurons was
significantly reduced, showing a good protective effect on
neurons in PD mice.

(Haga et al., 2019)

Nephrolithiasis Cells Different concentrations of
EP (0, 1.0, 2.5, 5.0, 10.0 mM)

EP alleviated autophagy and inflammatory response of HK-2
cells, and attenuated renal tubular epithelial cell injury.

Zhao et al., 2018

Endotoxemia and sepsis Mice Intraperitoneal injection of
EP (40 mg/kg)

EP prevented LPS-induced sepsis by inhibiting caspase-11
expression, and curtailed the binding of caspase-11 to LPS.

Qiu et al., 2020

Autoimmunity Mice Intraperitoneal
administration of EP
(80 mg/kg)

EP treatment reduced DCs activation, and inhibited the
expression of cytokines associated with inflammation.

Chakhtoura et al., 2019

Type 1 diabetes Mice Intraperitoneal injection of
EP.

Treatment with EP significantly reduced the incidence of T1D
by enhancing the activation of immunomodulatory cells, and
suppressed local inflammatory responses in the pancreas.

Koprivica et al., 2019

Hyperglycemia Rats EP via intraperitoneal
administration (50 mg/kg)

EP-treated HG-SD rats with renal ischemia-reperfusion
achieved significant remission and reduced inflammatory
response in vivo by down-regulating the HMGB1/TLRS/NF-kB
signaling pathway.

Jun et al., 2018

Prostate cancer Cells Different concentrations of
EP.

EP significantly reduced the viability of PC3 and CWR22RV1
cells and promoted cell apoptosis.

Huang et al., 2018

Traumatic brain injury Rats EP was injected
intraperitoneally (30 mg/kg)

The sensorimotor function of TBI rats treated with EP was
significantly improved, and the inflammatory response during
the recovery period of TBI was decreased.

Mao et al., 2021

Non-alcoholic fatty liver
disease

Mice EP was added to the drinking
water of mice as treatment
(3%, v/v)

The inflammatory cytokines in the liver of MCD mice treated
with EP in drinking water were significantly reduced,
pathological characteristics of liver tissue were improved, and
alanine aminotransferase level in the serum was decreased.

Sun et al., 2021

active the sites of NF-κB to enter the nucleus and participate
in the transcription process of inflammatory factors (Colombo
et al., 2018). EP has shown its potent repressive effect on
p50/p65, thus being a potential inhibitor of NF-κB (Sharma
et al., 2015). Johansson et al. (2008) showed EP could reduce
the activities of I-κB kinase and p65 protein while regulating
the stress response of neutrophils to the adhesion factors or
cytokines. In addition, EP inhibited the activity of NF-κB
before gene transcription. The propensity of EP inhibits the
NF-κB signaling pathway that has compelled several scientists
to employ it as a therapeutic agent for various inflammatory
diseases and cancers. In addition, extensive researches on the
neuroprotective role of EP has been conducted. For instance,
the neuroinflammation and demyelination are most common

pathological features in multiple sclerosis. EP significantly
impaired the inflammatory response, enhanced the myelin
sheath regeneration and recovery, and reduced the loss of
oligodendrocytes to improve the behavioral ability of animals in
a cuprizone-induced mouse model (He et al., 2019).

Ethyl pyruvate hinders the high
mobility group box-1 signaling
pathway

The regulatory mechanism of EP in terms of HMGB1 has
been extensively studied. EP can inhibit HMGB1 secretion and
alleviate inflammatory response. Ca2+ is involved in the release
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of HMGB1 (Zou et al., 2015). Interestingly, the extrication of
HMGB1 is considerably impaired, which following EP enhance
Ca2+ sequestration (Shin et al., 2015). Moreover, mesenchymal
stem cells have been suggested as a probable treatment strategy
for the treatment of systemic lupus erythematosus (Yuan et al.,
2019). However, the conundrum regarding the aging and death
of stem cell that can lead to the recurrence of the disease, which
is yet to be unraveled. Not surprisingly, HMGB1 necessitates the
ineffectiveness of stem cell function and promotes inflammatory
response. In Ji et al. (2019) study corroborating the above
statement, they also found EP to enhance the regulatory
T-cells. This was concomitant with the reduced deterioration
of bone marrow mesenchymal stem cells in MRL/lpr mice,
as well as the significant inhibition of HMGB1 expression
and TLR4/NF-κB signaling pathway. Also, EP improves cancer
treatment by inhibiting the HMGB1 secretion. Nonetheless, EP
treatment significantly inhibits the recognition of these two
proteins, augments the death of tumor cells, inhibits the NF-
κB/STAT3 pathway, and hinders the instigation of inflammatory
response (Liu et al., 2019a). As another receptor of HMGB1,
TLR4 can recognize and bind to the disulfide HMGB1. An
intramolecular disulfide bond that exists between Cys23 and
Cys45, and triggers an inflammatory response (Kwak et al.,
2019). EP can significantly curtail the binding between TLR4
and HMGB1.

Ethyl pyruvate attenuates
astrocytic activation to improve
spinal cord injury

In the wake of SCI, the excessive reaction of glial cells and
inflammation cause the destruction of microenvironment at
the injured sites. This complicates the neuronal recovery after
injury. EP has been demonstrated potential anti-inflammatory
and neuroprotective effects, is applied in the treatment of
various diseases (Wagner et al., 2018; Liu et al., 2019b).
In particular, EP treatment reduced the proliferation of
over-activated astrocytes, prevented the neuroinflammation
development, and promoted the axonal growth, along with
the restoration of hind limb function in the SCI animal
model (Sun et al., 2017). In both in vivo and in vitro
studies, EP has been evidenced to significantly reduce the
expression of neurotoxic and inflammatory factors (such as
ROS, IL-1β, TNF-α, and HMGB1) produced by the impaired
neurons (Birkenmeier et al., 2016; Dong et al., 2019a). These
endogenous neurotoxic factors are conspicuous in the activation
of astrocytes. Moreover, He et al. (2021) showed that the
EP-treated astrocytes can upregulate the expressions of a
variety of neurotrophic factors, including ciliary neurotrophic
factor (CNTF) and brain-derived neurotrophic factor (BDNF).
These neurotrophic factors are important conditions for axonal
regeneration. Also, the extrication of HMGB1 by the damaged

cells has previously been found to activate astrocytes (Hayakawa
et al., 2010). Interestingly, EP indicates its neuroprotective effect
on spinal cord neurons by impairing the cell apoptosis and
HMGB1 release (Wang et al., 2009). Neuroinflammation is
a key factor that induces astrocytic activation. The GFAP is
often used as an important indicator of astrocytic activation.
The activation of astrocytes appears to be related to several
activations of inflammatory pathways. Lipopolysaccharide is
usually used to induce the neuroinflammation in cells. Studies
on lipopolysaccharide-induced the activation of astrocytes have
revealed that the activities of the MAPK, STAT3, and NF-
κB are enhanced, and targeted inhibition of these signaling
pathways may significantly mitigate the activation of astrocytes
and impair the secretion of various cytokines (Che et al., 2020).
Olcum et al. (2021) explored the inhibitory process of EP on
NLRP3 inflammasomes in the activated microglia, and found
it to incapacitate cell activation induced by inflammasomes
through facilitating the impaired activation of the HMGB1/NF-
κB axis and inhibiting the secretion of multiple cytokines. In
astrocytes, the stimulation of the HMGB1/NF-κB axis triggers
cell activation, along with the significant upregulation of the
GFAP expression (Zhao et al., 2020). These results suggest that
EP might inhibit astrocyte activation through the HMGB1/NF-
κB axis. EP promoted the axonal growth of spinal cord tract,
induced the microglia regeneration and differentiation, and
promoted the recovery of SCI in mice (He et al., 2019). The
deletion of Rac1 gene or the induction of SOCS1 resulted in
microglia activation, and EP treatment inhibited the activated
microglia by regulating JAK/STAT pathway (Kim et al., 2008).
Furthermore, JAK/STAT pathway is related to the activation of
astrocytes (Lee et al., 2019b), and activation of the JAK/STAT
pathway leads to the phosphorylation of STAT and translocates
to the nucleus, where the associated inflammatory factors
are transcribed. Moreover, in the activated astrocytes, the
phosphorylation of the JAK/STAT signaling pathway positively
correlates with the expression of GFAP (Wang et al., 2020c).
In addition, some studies have shown the anti-inflammatory
and neuroprotective effects of EP through regulating the
MAPK/NF-κB pathway in the treatment of SCI (Genovese et al.,
2009).

Conclusion

The complete treatment of SCI is a current persistent
medical conundrum owing to chronic inflammation that
complicates injury recovery, together with the formation of
glial scar by astrocytes that hinders axonal regeneration of the
spinal cord tract. Astrocytes are the most glial cells in the
central nervous system, and are involved in neuroprotection.
However, under unfavorable conditions, astrocytes proliferate
through excessive activation, and cause harm to the body.
Several studies have evidenced the adverse effects of activated
astrocytes in SCI, and to inhibit this activation process is

Frontiers in Molecular Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1013033
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-1013033 September 12, 2022 Time: 15:18 # 8

Fan et al. 10.3389/fnmol.2022.1013033

to attenuate cytokines. Additionally, extracellular HMGB1
stimulates astrocytes, triggers cell inflammation, and aggravates
glial scars. The TLR4 on astrocyte membrane is the ligand
that receives HMGB1. Following successful pairing, the
HMGB1-TLR4 activates I-κB kinase that stimulates NF-κB
and causes the downstream inflammatory response. EP, as
a stable anti-inflammatory and neuroprotective agent, can
effectively mitigate the proliferation and inflammatory response
of astrocytes by inhibiting the HMGB1/TLR4/NF-κB pathway,
and enhance the functional recovery of SCI patients. EP could
be a potent ameliorative avenue to SCI. However, further studies
need to unravel other possible mechanisms mediated by EP,
along with the elucidation of probable side effects before being
employed in the clinical setting.
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