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Abstract

The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable
intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of
inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we
resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the
localized corona-type plasma discharge around a needle-like electrode with the spot size ,1 mm. When the electrode is
positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge
induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells,
even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the
cellular and cell nucleus levels after the plasma exposure.
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Introduction

The ability to isolate, manipulate, confine, interrogate and

control living cells with the single-cell precision is rapidly

becoming an issue of paramount importance because of the

recently discovered generic phenomenon of cell-to-cell variability

in their responses to external stimuli [1–3]. Apoptosis is one of the

most important and widely studied cellular responses because of its

relevance to the formation and operation of tissues and organisms

at all stages of life, origin and development of diseases, as well as

responses of cells to chemical therapies [4].

Given a very large number of physiological, biochemical,

electrochemical and other factors that affect cellular responses, a

large number of approaches are pursued [5–12]. These single-cell-

level approaches include microelectrochemistry [5], endoscopy

and interrogation based on one-dimensional nanostructures

[6,10], active and addressable microwell/microelectrode arrays

[7,9], cell manipulation, patterning, agitation, and stimulation for

customized, high-precision tissue engineering [8,11,12], and

several others. In spite of the presently achievable intracellular-

level physiological probing through bio-photonics and nano-

probe-based techniques, the issue of inducing selective, single-cell-

precision apoptosis, without affecting neighbouring cells remains

essentially open.

Recently, atmospheric-pressure gas plasmas have emerged as

effective tools to induce various physiological responses in living

cells and tissues including high apoptotic selectivity between

malignant cancer and normal tissue cells [13–15]. Reduction of

the plasma treatment spot sizes to micrometer dimensions has

recently enabled applications of the plasma jet and corona-type

discharge-induced reactive chemistry in single-cell-level treatment

and highly-localized nanoparticle synthesis [16–20].

Even though the spot sizes of the plasma jets can be as small as

15 mm [17], which is comparable or even smaller than typical cell

sizes, selective control with single-cell precision has not been

demonstrated. Indeed, recent advances in the single-cell-level

treatment made it possible to simultaneously expose a quite large

number of isolated single cells to the plasma jet sustained in a

helium flow through a thin optical fiber [16,17]. This exposure

produces a cocktail of relatively long-living chemically-active (e.g.,

reactive oxygen/nitrogen species, ROS/RNS) species that interact

with the cells [13].

However, in the absence of precise micromanipulation and

positioning of the plasma jet spot, the plasma-generated electrons

and ROS/RNS species are distributed randomly in the volume of

the cell culture medium and affect at least several cells that come

in contact with the plasma-generated species. This conclusion is

consistent with the results of statistical analysis of cell responses

that suggest that a large number of cells (a significant fraction of a

typical number of ,36104 cells/well) may be affected even after a

short (e.g., ,10 s) plasma exposure and develop apoptotic

responses within 24 hours after the treatment [16,17]. Moreover,

the directed He gas flow and fast propagating plasma bullets in the
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plasma jet may disturb the culture medium, move the cells or even

cause their dehydration. This is why the issue of the plasma-

enabled cell control with the single-cell precision remains

essentially open.

Here we resolve this issue and report on the effective single-cell-

precision cancer cell treatment using the localized corona-type

plasma discharge around a needle-like electrode with the spot size

,1 mm. When the electrode is positioned at a certain distance

against a selected cell, a focused and highly-localized plasma

discharge induces apoptosis in the selected individual HepG2 and

HeLa cancer cells only, without affecting any surrounding cells,

including small clusters of cells. This is confirmed by the real-time

monitoring of the morphological and structural changes at the

cellular and cell nucleus levels after the plasma exposure.

Moreover, the plasma discharge is powered by a 12 V battery

and is generated without any external gas flow or power supply.

Materials and Methods

Micro-plasma treatment
An electrophysiological micro- manipulator (CFT-8000D,

Jiangsu, Ruiqi Co., Ltd) is used to control the electrode tip

position with the precision of a few tens of nanometers (as shown

in Figure 1), which makes it possible to potentially agitate selected

areas (e.g., specific receptors or organelles) on the cell surface. The

output of the power supply is connected to the electrode through a

ballast resistor R of 10 MV used to limit the discharge current.

This microplasma is driven by a custom-made AC power supply

driven by 12 volt battery rather than any external generator or

wall power. The whole weight of the microplasma device,

including the power supply, is less than 200 g. The output of the

AC booster can reach 5 kV with a frequency of 25 kHz. Micro-

manipulatable tungsten is used as an electrode. The tip radius of

the tungsten electrode is less than 0.5 mm with a taper of 13u taper

angle. The diameter of tungsten probe tip is smaller than

conventional cells (tens of micrometers). The gas temperature of

the microplasma is close to room temperature, which suggests that

the cellular response is not due to the thermal shock. A single

adherent cell was selected and treated by the microplasma. The

plasma exposure lasted only ,10–15 s and the effects of the

treatment were studied immediately or after several hours

afterwards.

Cell culture
Human hepatoma cancer cell line (HepG2), human cervical

cancer cell line (HeLa) and normal liver cell line (L-02) were

purchased from China Center for Type Culture Collection

(CCTCC, Wuhan, China). The cells were cultured in high-

glucose Dulbecco’s modified Eagle’s medium (DMEM, Hyclone,

Logan, UT) supplemented with 10% (v/v) heat-inactivated fetal

bovine serum (FBS, Hyclone) in an incubator containing a

humidified atmosphere of 5% CO2 at 37uC. After attaining

confluence, the cells were detached with 0.25% trypsin (Hyclone),

seeded onto 35 mm cell culture dish (Corning, New York, USA) at

the density of 26104 cells and incubated overnight to allow cell

attachment.

Real-time monitoring of morphological changes
To assess the apoptotic effect of the microplasma exposure on

the treated single cell, real-time morphological observations were

performed with an inverted phase contrast light microscope (XD-

202, Nanjing Jiangnan Novel Optics Co., Ltd). Real-time

observations of cell morphology changes were carried out and

photographed. The surrounding cells were used as controls.

Figure 1. Schematic of the microplasma jet setup and a sketch of the biomedical treatment; the micro-manipulated tip has a
diameter of ,1 mm.
doi:10.1371/journal.pone.0101299.g001

Figure 2. Microphotographs of (a) microplasma plume at the
electrode tip; (b) single-cell-precision microplasma treatment.
doi:10.1371/journal.pone.0101299.g002
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Real-time fluorescence imaging of cell membrane
changes

The microplasma-treated cells were stained with Annexin V-

FITC following the manufacturer’s instructions (Beyotime,

Jiangsu, China). Briefly, culture medium was removed and washed

once with PBS. Then 500 mL binding buffer with 5 mL Annexin

V-FITC was added to cells, and cultured at room temperature for

10 min in the dark. Without being washed with any liquid after

reaction with the fluorochrome, a single cell was chosen and

treated with the microplasma (15 s). A sufficient amount of

Annexin V-FITC was left in the medium to allow binding with the

translocated PS during the ongoing apoptosis process and real-

time imaging process was carried out under dark conditions on a

fluorescence microscope (Olympus TH4-200, Olympus Optical

Co Ltd, Tokyo, Japan) immediately after the microplasma

treatment. In our study, white and fluorescence images were

taken immediately after Annexin V-FITC labeling procedure to

record the initial conditions and the cell locations. The apoptosis

onset could be monitored when the fluorescence intensity

exceeded the detection threshold.

Figure 3. Current-voltage waveforms of the plasma discharge.
doi:10.1371/journal.pone.0101299.g003

Figure 4. Real-time monitoring of morphological changes at the single-cell level in HepG2 cell. A single adherent HepG2 cell was
selected and treated by the microplasma for 15 s. The surrounding cells were used as controls. The cell labeled by the red dotted line is the
microplasma treated single cell (top left corner). The cells labeled by the blue full line are untreated control cells (bottom right corner).
doi:10.1371/journal.pone.0101299.g004
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Real-time fluorescence imaging of nucleus changes
To analyze the morphological signs of apoptotic nuclei, Hoechst

33342 staining was performed. Briefly, live HepG2 and HeLa cells

were incubated with Hoechst 33342 (Beyotime, Jiangsu, China) at

room temperature for 30 min. After being washed 3 times with

culture medium, a single Hoechst 33342-stained cell was chosen

and directly treated with the microplasma. Real-time monitoring

of nucleus changes was performed using a Nikon fluorescence

microscope.

Results and Discussion

Single-cell-precision plasma treatment
Figure 2 shows the single-cell-precision microplasma treatment

of a HepG2 cell. As seen in Figure 2(a), the plasma plume

generated around the powered microelectrode with the tip

diameter of ,1 mm is very small (,2 mm) and is thus suitable

for the precise treatment of single cells with comparable or larger

sizes. When the electrode tip approaches the cell, the cell

membrane serves as a floating counter-electrode while the plasma

is brought in direct contact with its surface, as seen in Figure 2(b).

The discharge voltage and current were measured by a P6015

Tektronix HV probe and a TCP202 Tektronix current probe,

respectively. They are recorded by a Tektronix DPO7104

wideband digital oscilloscope and shown in Figure 3. From

Figure 3 one can clearly see that the discharge actually appears

periodically with a pulse repetition rate of approximately 25 kHz.

The discharge current waveform shows that the discharge occurs

only once in one voltage period during the voltage rise phase. The

discharge current has a full-width at half-maximum of about

270 ns and a peak value of about 1 mA. The average power

delivered to the plasma is about 4 mW. The gas temperature of

the microplasma is close to room temperature, and the plasma can

be used directly for human skin or even internal organ treatments,

without any unwanted thermal or electric shock effects.

Cell-level morphological changes
To study the effect of microplasmas on the treated single

HepG2 cell, morphological changes have been studied. These

changes include cell contraction, membrane blebbing, chromatin

condensation, DNA fragmentation, etc. and are indicative of

apoptosis [21]. As seen in Figure 4, before the microplasma

exposure, all the cells were healthy and spindle-shaped with clear

contours. Immediately after the contact with the microplasma, the

affected single cell started shrinking and gradually changed their

normal shape into a more collapsed roundish shape which is quite

common to apoptotic bodies.

One can see that membrane blebs appear after 20 min

following the 15 s of the plasma treatment. A cell membrane

deformation is also clearly seen. On the other hand, the non-

treated control cells were unaffected and healthy during the entire

incubation period. These distinctive morphological changes are

the simplest indicators of the cell death progression, yet are not

sufficient to define the apoptotic nature of the response. This is

why cell membrane- and nucleus-specific fluorescent staining tests

were carried out.

Membrane-level changes
To validate the effect of the microplasma, real-time imaging

using green fluorescent label Annexin V-FITC was performed to

visualize the HepG2 cell membrane changes (Figure 5). Annexin-

V has strong affinity for phosphatidylserine (PS), which is a

membrane phospholipid that normally expressed only on the inner

surface of the cell membrane. As the apoptosis response

progresses, PS is rapidly translocated to the outer membrane

surface where it is available for Annexin-V binding. The PS

translocation in the membrane precedes any change in the nucleus

and is regarded as one of the earliest hallmarks of cellular

apoptosis [22,23]. Thus, through binding to Annexin V, apoptotic

and non-apoptotic cells can be easily distinguished visually from

the fluorescence.

In the control samples, we could not observe any binding of

Annexin V-FITC in HepG2 cells before the microplasma

treatment. Binding of Annexin V-FITC to the plasma-treated cell

Figure 5. Real-time monitoring of the apoptotic membrane changes of the single HepG2 cell treated with the microplasma for 15 s.
Annexin-V fluorescent staining was performed to visualize these changes. The cell labeling is the same as in Figure 4.
doi:10.1371/journal.pone.0101299.g005
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became detectable 5 min after the treatment and gradually

increased thereafter. However, for the non-treated cells, no

fluorescence was detected even six hours later. It is noteworthy

that the membrane blebbing was observed 10 min after the end of

the plasma exposure. The cell became brighter and larger with a

clearly fluorescent boundary upon further incubation. Membrane

blebbing is another morphological change typical of apoptosis,

thus this observation confirms the occurrence of apoptosis only in

the microplasma-treated cell [24].

Nucleus-level changes
Nucleus changes, which occurred relatively late in the process of

apoptosis, were imaged with DNA staining by Hoechst 33342 dye.

Similar to the membrane staining, white and fluorescence images

were taken immediately after the Hoechst 33342 labeling to record

the initial conditions and the cell locations (first two images in

Figure 6). The cell in the top left corner was treated by the plasma

for 15 s while the cell in the bottom right corner was the control

cell. At the beginning, both treated and un-treated cells were

stained blue with the same brightness. Since nucleus changes occur

relatively late in the process of apoptosis, no obvious difference can

be seen even at 20 min after the microplasma treatment.

However, 30 min after the plasma exposure, nucleus of the

treated single cell became brighter compared to the non-treated

cell.

The observed difference in the fluorescence intensity may be

due to, on the one hand, the dysfunction of P-glycoprotein, a

membrane transporter which could extract the Hoechst 33342 in

the cell. However, P-glycoprotein pump function is usually

impaired and could not effectively transport Hoechst 33342 out

of the apoptotic cell. This causes accumulation and hence stronger

emission of Hoechst 33342 from the apoptotic cell [25,26]. On the

other hand, nucleus began to condense, causing relatively stronger

fluorescence. 6 hour later, nucleus condensation was clearly seen

in the treated single cell. Thereafter, the nuclear membrane was

clearly disrupted, accompanied by diffused DNA fragments. On

the country, non-treated cells retained a normal nuclear

morphology.

Figure 6. Real-time monitoring of nucleus changes of the single HepG2 cell after 15 s of the plasma treatment. The cell labeling is the
same as in Figure 4.
doi:10.1371/journal.pone.0101299.g006

Figure 7. Optical emission spectra of the plasma: (a) 250–500 nm and (b) 500–800 nm.
doi:10.1371/journal.pone.0101299.g007
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Possible effects of reactive species
To characterize chemically active species in the microplasma,

optical emission spectroscopy (OES) is used, which allows the

analysis of the radiation emitted by the atoms, ions, molecules, and

radicals. Hence, a half-meter spectrometer (Princeton Instruments

Acton SpectraHub 2500i; spectral resolution: 2 nm, grating:

1200 g mm21, slit width: 150 um) is used to measure the optical

emission of the microplasma plume. Figure 7 shows the optical

emission spectra (OES) of the microplasma plume in the 250–

800 nm spectral range. As can be seen, the optical emission

spectra are dominated by the excited nitrogen and oxygen species.

The ROS play a crucial role in cancer cell death, and can

induce apoptosis by affecting the DNA, as well as lipids and

proteins that are involved in intracellular signaling cascades [27].

Excessive production of ROS may either directly damage the

cellular structure to cause cell necrosis or indirectly affect normal

cellular signaling pathways and gene regulation to induce

apoptosis [28]. The reactive nitrogen species may also affect the

cell-inactivation process [13]. In particular, NO radicals can cause

apoptosis, necrosis or, alternatively, protect the cells from death,

depending on the cell type, radical concentration, as well as the

duration and specific areas of the exposure [29]. Numerical

simulations of the active species generated in tip-sustained corona-

type plasma discharges [30] and their extension towards biolog-

ically-relevant media are therefore highly warranted in the near

future.

Plasma versus electric field effects
The micro-tips in our experiments also generate significant

time-variable electric fields in their vicinity. As reported previously

[31], pulsed electric fields may also cause cell death, e.g., through

electric pulse-induced electroporation of the cell membrane. In the

close vicinity of the micro-tip used in our experiments, the

magnitude of the electric field can reach tens and even hundreds of

kilovolts per centimeter. However, the electric field very rapidly

decreases with distance away from the tip. In our experiments the

electrode tip was typically positioned approximately 150 mm away

from the cell surface. Therefore, the cell membranes experienced

much weaker electric fields than near the tip’s surface, with the

estimated magnitude of about 1–2 orders of magnitude lower. This

is why the probability of merely electric-field-induced cell death is

lower in our experiments compared to the electric field effects

reported previously [31].

To demonstrate the primary importance of the reactive species

generated by the microplasma discharge compared to the electric

field-related effects, we have conducted a set of control experi-

ments where the microtip was coated with a very thin layer of

paraffin wax which prevents the plasma generation, yet not very

significantly disturbs the magnitude of the electric field (at least it

remains of the same order of magnitude as for the plasma-

generating uncoated microtip). The uncoated and paraffin wax-

coated microtips that were used in these studies are shown in

Figure 8.

Importantly, the cells treated with the wax-coated microtip did

not experience apoptosis, which can be interpreted that the

observed apoptotic responses of the cells are indeed more related

to the plasma-generated species rather than merely the electric

field effects. Specifically, to elucidate the effects of the plasma

exposure versus the electric field-related effects, we treated four

HepG2 cells using both pristine and wax-coated microtips shown

in Figures 8(a) and (b), respectively.

Morphological studies of the cells subjected to the plasma

exposure have been carried out. As seen in Figure 9, before the

microplasma exposure, all the HepG2 cells were healthy and

spindle-shaped with clear contours. Four cells were selected

randomly and treated with a pristine microtip (shown in

Figure 8(a)) for 15 s. Membrane blebs appeared approximately

10 minutes after the exposure and their membrane deformation is

also clearly seen with the prolonged incubation time. On the other

hand, non-treated cells were unaffected and healthy during the

entire incubation periods.

Figure 8. Uncoated (a) and wax-coated (b) microtips used in
our experiments to elucidate the effects of a plasma versus
electric field effects.
doi:10.1371/journal.pone.0101299.g008

Figure 9. Morphological evolution of the membrance blebbing in 4 selected HepG2 cells treated with microtip in Figure 8(a).
doi:10.1371/journal.pone.0101299.g009
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Exactly the same treatment of the four randomly selected

HepG2 cells using the wax-coated microtip shown in Figure 8(b)

showed completely different results. In Figure 10, one can clearly

see that the four cells are not affected significantly.

These observations clearly support our conclusion that the

effects observed in our microplasma experiments are more closely

related to the reactive species generation in the plasma. These

effects may also be quite different from the commonly known

electric field effects such as electroporation.

Normal cells are not affected by plasma treatment
We have also evaluated the effects of the microplasma exposure

on a normal liver cell line (L-02) with the same microplasma and

treatment parameters. As shown in Figure 11, the plasma

treatment of the four randomly selected L-02 cells did not lead

to any significant effects, even after 2 hours of observation. This

result opens an opportunity for the detailed parametric and

process optimization studies, which will be a subject of our future

work and possibly work of other researchers.

Effects of plasma on other cancer cells
Another cancer cell line (HeLa) were used to clarify the effect of

the microplasma exposure. In Figures 12–14, the treated cells and

untreated cells are closely contacted to form small compact cell

clusters. Importantly, just the plasma-treated cells were killed,

while the neighboring cells were not affected significantly. This can

be clearly seen from the 2 hours-long examination of the

morphological changes shown in Figure 12.

The results of Annexin V-FITC (Figure 13) and Hoechst 33342

(Figure 14) staining further confirmed these results. Just the

microplasma-treated HeLa cells showed nucleus condensation and

the PS translocation with Hoechst 33342 accumulation and

Annexin V staining, which are the indicators of cell apoptosis.

Therefore, we can conclude that the microplasma exposure is

Figure 10. Same as in Figure 9 for wax-coated microtip in Figure 8(b).
doi:10.1371/journal.pone.0101299.g010

Figure 11. Plasma treatment of 4 selected normal liver cells does not noticeably affect them, even after 2 hours of observation.
doi:10.1371/journal.pone.0101299.g011
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indeed sufficient to induce apoptosis selectively, without affecting

neighboring cells.

Limitations of single-cell-precision studies
These studies were limited to simple indicators of the cell

apoptosis, without aiming to study the cell cycle or intracellular

mechanisms compared to recent publications [32,33]. The main

reason is due to the limitations of the flow cytometry, Western blot,

and q-PCR techniques to determine the apoptotic responses from

individual cells. As can be seen in Figures 9–14 above, the short

microplasma exposure is sufficient to induce apoptosis just in the

treated cancer cells, while neighboring cells are not affected.

However, the flow cytometry and Western blot methods typically

require at least 104 cells, and the methods are often used to study

the changes of a relatively large cell population. The single-cell-

precision cell apoptosis may not show changes detectable by the

flow cytometry and Western blot methods. This is why we used

simple Annexin V and Hoechst 33342 staining as indicators of cell

apoptosis, and found that the microplasma used in this work

indeed leads to apoptosis with a single-cell precision.

Potential applications
The results of our work are important for several future

biomedical applications. For example, with the advent of early-

stage detection of a small number of cancerous cells it may be

possible to selectively treat the malignant cells while keeping the

normal cells intact. It presently remains very challenging to

identify very small clusters of cancerous cells below a certain

minimum number of cells. When the relevant unambiguous early

detection techniques become available, the microplasma-based

approach of this work may potentially make a significant impact

on the cancer treatment therapies.

Other possibilities include agitation of selected areas on cell

surfaces for inducing specific cellular effects such targeted

Figure 12. Morphological evolution of 3 selected HeLa cells treated with microplasmas.
doi:10.1371/journal.pone.0101299.g012

Figure 13. Annexin-V staining suggests that the 4 microplasma-treated HeLa cells show apoptotic response.
doi:10.1371/journal.pone.0101299.g013
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reprogramming of stem cells (possibly including cancer stem cells)

to achieve the desired potency and fate choice outcomes, as well as

intracellular probing and agitation of the selected organelles. In

these cases the effects of time-varying electric fields also need to be

unambiguously included and interpreted.

Conclusion

In summary, we have demonstrated that individual HepG2 and

HeLa cancer cells can be effectively inactivated via the single-cell-

precision, microplasma-induced apoptotic response, while normal

L-02 liver cells remain unaffected by the same plasma exposure.

The microplasma can be confined to the small (,1 mm) volume

around the tip of a needle which can be positioned in any specific

area by using a micromanipulator. The power delivered to the cell

is very small (a few mW) yet sufficient to induce apoptosis

selectively, without affecting neighboring cells, even within small

clusters of closely contacting cells. The plasma source is battery-

operated and does not rely on any external power or gas supplies,

which may be particularly useful in situations where external

power supply is not available or device portability is an issue.

This advance is generic and applicable to different types of

cancer cells. It may lead to next-generation single-cell-precision

microsurgeries. Step changes are also possible in the capability of

addressable microarrays towards instantaneous inactivation of the

as-detected malignant cells, where the needles in the arrays may be

used as both the electrophysiological probes and the electrodes for

the plasma generation.
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