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MLP	� Multi-layer perceptron
SVM	� Support vector machine
RF	� Random forest

1  Introduction

Sarcopenia is a gradual musculoskeletal disease commonly 
occurring with aging, often coexists with various chronic 
conditions such as chronic obstructive pulmonary disease 
and cardiovascular disease [1–4]. The significance of sar-
copenia diagnosis is closely associated with morbidity, 
mortality, and healthcare expenditure. Although consen-
sus is still evolving, according to recent sarcopenia diag-
nostic guidelines, individuals presenting with “low muscle 
mass accompanied by low muscle strength or low physical 
performance” are diagnosed with sarcopenia [2, 5, 6]. In 
clinical practice, muscle mass is typically evaluated using 
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Abstract
Sarcopenia is a rapidly rising health concern in the fast-aging countries, but its demanding diagnostic process is a hurdle 
for making timely responses and devising active strategies. To address this, our study developed and evaluated a novel sar-
copenia diagnosis system using Stimulated Muscle Contraction Signals (SMCS), aiming to facilitate rapid and accessible 
diagnosis in community settings. We recruited 199 adults from Wonju Severance Christian Hospital between July 2022 
and October 2023. SMCS data were collected using surface electromyography sensors with the wearable device exoPill. 
Their skeletal muscle mass index, handgrip strength, and gait speed were also measured as the reference. Binary classi-
fication models were trained to classify each criterion for diagnosing sarcopenia based on the AWGS cutoffs. The binary 
classification models achieved high discriminative abilities with an AUC score near 0.9 in each criterion. When combin-
ing these criteria evaluations, the proposed sarcopenia diagnosis system performance achieved an accuracy of 89.4% in 
males and 92.4% in females, sensitivities of 81.3% and 87.5%, and specificities of 91.0% and 93.8%, respectively. This 
system significantly enhances sarcopenia diagnostics by providing a quick, reliable, and non-invasive method, suitable for 
broad community use. The promising result indicates that SMCS contains extensive information about the neuromuscular 
system, which could be crucial for understanding and managing muscle health more effectively. The potential of SMCS in 
remote patient care and personal health management is significant, opening new avenues for non-invasive health monitor-
ing and proactive management of sarcopenia and potentially other neuromuscular disorders.
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height-adjusted appendicular skeletal muscle mass (also 
known as Skeletal Muscle mass Index; SMI) measured 
through techniques like Dual-energy X-ray Absorptiometry 
(DXA) [7] or Bioelectrical Impedance Analysis (BIA) [8, 
9], muscle strength is assessed through handgrip strength 
[10], and physical performance is quantitatively evaluated 
using tests such as the Short Physical Performance Battery 
(SPPB) [11, 12], usual gait speed, 6-minute walk test, or 
Timed Up and Go (TUG) test [2, 13]. However, a survey 
conducted in Australia and New Zealand revealed that in 
reality, the accessibility to such evaluation methods is often 
limited due to the restricted availability of expensive equip-
ment [14, 15]. Another drawback can be people who cannot 
properly perform the tasks required for assessment because 
of immobilization, life-threatening illnesses or conscious-
ness problems from sedative medications do not even get a 
chance to be diagnosed [16–18].

There are many studies to diagnose sarcopenia using var-
ious methods. A cross-sectional study that applied machine 
learning algorithms to 11 selected features, including hand-
grip strength and gait speed, demonstrated an accuracy 
exceeding 0.9 with a sample of 160 participants [19]. A 
study utilizing machine learning models to analyze Elec-
tronic Health Records data from 1304 participants identified 
key predictors of sarcopenia and achieved a high predic-
tion accuracy, with logistic regression and support vector 
machine models reaching an Area Under the Receiver Oper-
ating Characteristic (ROC) Curve (AUC) of 0.91 and 0.99 
respectively [20]. Another study developed sex-specific sar-
copenia identification tools for maintenance hemodialysis 
patients using machine learning, where the voting classifiers 
achieved an AUC of 0.87 for males and 0.78 for females. 
Other studies utilized computed tomography images [21, 
22], chest X-ray [23], or ultrasound [24]. However, these 
methods still require skilled personnel for data collection, 
which can limit accessibility. While simpler diagnostic 
approaches like the SARC-F questionnaire [25–27] exist, 
they often show low sensitivity [28, 29], indicating the need 
for more reliable and innovative methods to accurately 
diagnose sarcopenia.

Sarcopenia is strongly associated with both muscle func-
tion and structure, as evidenced by diagnostic criteria that 
emphasize muscle mass, strength, and physical perfor-
mance. This age-related sarcopenia leads to decrease the 
myelin’s cross-sectional area (CSA) of motor neurons and 
muscle mass of muscle fiber type II [30–32], and this results 
in a decline in physical function [30, 33]. Therefore, analyz-
ing motor neurons and muscle fibers is essential for diag-
nosing sarcopenia. The motor unit, as the fundamental unit 
responsible for muscle contraction, is highly correlated with 
muscle function [34–36]. Given the importance of muscle 
function in sarcopenia, we believe that electromyography 

(EMG), which captures motor unit action potentials, is well-
suited for evaluating muscle functionality. Voluntary sur-
face EMG (sEMG) provide valuable information on motor 
unit action potentials, including firing rate, recruitment pat-
tern, latency, and amplitude. Studies have shown signifi-
cant correlations between sEMG features obtained during 
maximal voluntary contractions (MVC) and muscle mass 
[37, 38], muscle strength [38], and as well as physical per-
formance [39], highlighting sEMG’s potential in assessing 
these aspects of muscle health. Furthermore, recent findings 
suggest association between sEMG and sarcopenia [40–43]. 
However, traditional MVC-based sEMG methods can be 
challenging to apply clinically due to the need for skilled 
personnel for data collection, active voluntary contraction, 
and precise testing conditions, which can be uncomfortable 
or difficult for certain populations, including those with sar-
copenia [44, 45]. To address this challenge in accessibility, 
this study leverages Stimulated Muscle Contraction Signal 
(SMCS), a type of sEMG signal measured during electri-
cal stimulation [46]. Specifically, the electrical stimulation 
initiates action potential, generating involuntary muscle 
contractions and eliminating the need for individuals to 
volitionally exert force. Previous research has developed 
digital biomarkers related to muscle strength and endur-
ance using SMCS, which reflects the state of motor neurons 
and is expected to include information related to physical 
performance [46]. Thus, this paper attempts to evaluate the 
muscle mass, muscle strength, and physical performance of 
subjects through SMCS, which encompasses bio-informa-
tion of the neuromuscular system as a whole.

This study presents two main contributions. Firstly, it 
simplifies and automates the diagnosis of sarcopenia using a 
wearable device that measures SMCS signals. This system 
allows for measurements to be taken without the need for 
expert assistance, making it feasible for future applications 
in home monitoring and other settings. Secondly, instead 
of directly diagnosing sarcopenia, the system predicts the 
‘low’ states of muscle mass, muscle strength, and physical 
performance individually, in alignment with conventional 
clinical practice. These predictions are then combined to 
diagnose sarcopenia. This approach acknowledges that 
even if two individuals are diagnosed with sarcopenia, the 
underlying causes and necessary treatments may differ, and 
the proposed diagnostic system is designed to reflect this 
complexity.

1 3

444



Biomedical Engineering Letters (2025) 15:443–454

2  Materials and methods

2.1  Diagnosis criteria for Sarcopenia

This study adheres to the diagnostic criteria outlined by the 
Asian Working Group for Sarcopenia (AWGS) [2]. Accord-
ing to AWGS guidelines, sarcopenia is diagnosed based on 
low muscle mass accompanied by either low muscle strength 
or low physical performance. To quantify each diagnostic 
component, SMI, handgrip strength, and usual gait speed 
were measured (eFig. 1 in Online Resource 1). SMI was 
measured through multifrequency BIA using the InBody 
770 (InBody, Seoul, South Korea) [47]. An SMI less than 
7.0 kg/m² for males and less than 5.7 kg/m² for females was 
considered ‘low’. Handgrip strength was assessed using a 
digital handgrip dynamometer (T.K.K.5401; Takei Scien-
tific Instruments Co., Ltd., Tokyo, Japan) [48]. The par-
ticipants were asked to stand upright with their shoulders 
in a neutral position, arms at the sides with fully extended 
elbows. The handgrip strength at maximal power for both 
sides were averaged. A handgrip strength less than 28.0 kgf 
for males and less than 18.0 kgf for females was considered 
‘low’. Gait speed was measured on the GAITRite Electronic 
Walkway (CIR Systems Inc., Peekskill, NY), a six-meter-
long and 0.6-meter-wide walkway with pressure-activated 
sensors [49]. Participants were asked to walk on the GAI-
TRite Electronic Walkway ten times barefoot at their usual 
walking speed. A gait speed lower than 100 cm/s was con-
sidered ‘low’ for both males and females. In the rest of the 
text, we denote the binary assessment of whether each diag-
nostic component is ‘low’ as SMIlow, HGlow, GAITlow, 
respectively. In other words, sarcopenia is expressed as

SMIlow ∧ (HGlow ∨ GAITlow) ,� (1)

where ∨  denotes “logical or” and ∧  denotes “logical and”.

2.2  Details of population demographics

This study recruited participants at the outpatient clinic of 
the Department of Neurology at Wonju Severance Christian 
Hospital between July 2022 and October 2023. Patients 
who were 40 years and older, with no difficulty in walking, 
and were willing to participate in the study were recruited. 
Exclusion criteria included a previous diagnosis of idio-
pathic Parkinson’s disease, atypical parkinsonism, normal 
pressure hydrocephalus, severe cardiopulmonary diseases, 
cancer, osteoarthritis, or orthopedic diseases. A total of 
199 patients, comprising 94 males and 105 females, were 
enrolled. Participants were categorized into two groups: 
the sarcopenia group (n = 40) and the healthy control group 
(n = 159), following the AWGS guidelines. Before the 

collection of data, all participants provided written informed 
consent. This study was conducted in accordance with the 
Declaration of Helsinki, and approved by the Institutional 
Review Board of the Yonsei University Wonju Severance 
Hospital (Ref# 2022-0234-001).

2.3  SMCS data collection protocol

Figure 1 illustrates the exoPill, a wearable device developed 
by EXOSYSTEMS (Seongnam, Gyeonggi-do, Republic 
of Korea), capable of delivering electrical stimulation and 
simultaneously measuring sEMG. To facilitate the collec-
tion of SMCS, hydrogel electrodes were positioned over 
each of the left and right quadriceps femoris muscles, at 
mid-point of the rectus femoris muscle. Participants were 
instructed to sit upright in a chair with both feet flat on the 
floor with knees set at a 90-degree angle. They were also 
instructed to relax their muscles during the measurement 
as shown in eFig. 2 in Online Resource 1. In accordance 
with the protocol established in previous research [46], we 
adapted and modified the electrical stimulation parameters 
to enhance the analytical feature space. To be specific, the 
frequency range of electrical stimulation was extended from 
10 Hz to 30 Hz, as previously used, to 5 Hz to 30 Hz in 
this study, aiming to capture a broader spectrum of muscle 
response data. We also explored a range of electrical stimula-
tion intensities from 0.5 mA to 44.7 mA and determined that 
an intensity of 18.0 mA produced visible muscle twitches 
without causing discomfort to participants; thus, this setting 
was selected. Each electrical stimulation phase was applied 
for 8 s, followed by a 2-second rest period, resulting in total 
measurement time lasting 60 s.

2.4  Data collection hardware specification

The wearable device, exoPill, comprises one cradle and four 
modules. The cradle recharges the batteries in the modules 
and provides information on the availability of the mod-
ules. Each module is equipped with an EMG sensor and an 
integrated electrical stimulator. The modules are respon-
sible for emitting electrical stimulation signals, which are 
generated based on stimulation parameters received from 
the user application. Each module contains custom-built 
circuits, four electrodes, a bi-colored light-emitting diode 
(LED), a battery, and charging pins. The entire circuitry is 
enclosed within a polycarbonate case with dimensions of 
50 × 59 × 23  mm. Four magnetic electrodes, which couple 
to a hydrogel electrodes, are positioned beneath the mod-
ule, slightly protruding from the case. One module weighs 
approximately 40 g with its charging pins exposed on the 
back and has one microcontroller in it.
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stimulation (SMCS). Details of hardware specifications of 
EMG sensors are provided in Table 1. Healthy individual 
and sarcopenia patient SMCS samples are provided in eFig. 
3 in Online Resource 1. After processing, the signal gets 
transmitted to the user application. The device is powered 
by a lithium-ion polymer battery with a voltage of 3.7 V and 
a capacity of 250 mAh. The battery is charged at a DC volt-
age of 4.2 V with a charging current of 450 mA.

The hydrogel electrodes for collecting SMCS were 
StiMus Electrode developed by HUREV Corp (Wonju, 

The microcontroller (STM32L451CE, STMicroelec-
tronics) in the modules communicates with a Bluetooth 
low-energy module (NRF52840, Nordic Semiconductor) 
through UART communication at a rate of 115,200 bps. 
This communication allows the module to receive com-
mands from the user application, which is connected via 
Bluetooth 5.0 communication and operates the circuitry of 
each module. The circuitry can generate a pulse wave with 
a frequency ranging from 5 Hz to 100 Hz and a maximum 
peak-to-peak amplitude of 100 V (measured at a non-induc-
tive resistor of 500 ohms). The EMG recording system with 
band-pass filtering from 17  Hz to 450  Hz and amplifica-
tion with a gain of 1,100 were used to detect the sEMG. 
The microcontroller then measures the filtered signal at a 
rate of 1,000 samples per second through 12-bit analog-to-
digital conversion, of which only the upper 8 bits are uti-
lized. This approach helps to minimize the impact of minor 
EMG fluctuations due to unwanted voluntary contractions, 
allowing the focus to remain on the EMG signals generated 
by involuntary muscle contractions in response to electrical 

Table 1  Hardware specification of EMG sensor in exoPill module
Hardware specification
Input impedance 10GΩ
Input referred noise level 0.1µV(1 kHz)
Notch filter 50, 60 Hz
EMG filter 17 Hz ~ 450 Hz
Common mode rejection ratio(dB) 86dB
Sampling rate 1000 Hz
Sensitivity (resolution) 12bit

Fig. 1  Experimental equipment for collecting SMCS: a wearable device (exoPill) for the electrical stimulation and b hydrogel electrodes, c mag-
netically coupled
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conducted on data with consistent baselines and amplitudes, 
which is crucial for reliable feature extraction.

In the feature extraction phase (Fig.  2b), Muscle Con-
traction Pattern (MCP) features are systematically extracted 
from each segmented SMCS [46, 50]. This involves con-
verting SMCS data into spectrograms using the Short Time 
Fourier Transform (STFT), with a window size of 64. Each 
electrical stimulation phase lasts for 8 s, and with a sampling 
rate of 1000 samples/sec, this results in a segment length 
of 8000 samples. Applying the STFT with the aforemen-
tioned parameters yields a spectrogram of size 32 × 125
, composed of 32 frequency bins. To capture the essential 
dynamics of muscle activity, two types of envelope signals 
are computed for each frequency bin by summing the posi-
tive peaks with their adjacent negative peaks and interpolat-
ing the gaps [50]. A bias elimination method is then applied 
to one type of the envelope signals to enhance the accuracy 
of the features. Autocorrelation is performed on these enve-
lopes to derive the final MCP features, which effectively 
capture the repetitive patterns of muscle activation and are 
crucial for accurate sarcopenia diagnosis. Since this peak-
based computation can shorten the envelope signal’s length 

Gangwon-do, Republic of Korea). Each electrode features 
a hydrogel contact surface component, measured 145 mm 
wide and 65 mm long, exhibiting a resistance of 50 Ω per 
20 mm.

2.5  Proposed Sarcopenia diagnosis system

Figure 2 presents an overview of the proposed sarcopenia 
diagnosis system, which encompasses three main phases: 
data preprocessing, feature extraction, and binary classifi-
cation model training. During the data preprocessing phase 
(Fig. 2a), SMCS data is segmented by each electrical stimu-
lation frequency ranging from 5 Hz to 30 Hz. The raw sEMG 
signals captured by the wearable device were first amplified 
1100 times using an amplifier configured with a 3.3 V single 
power supply, and a bias was applied before feeding the sig-
nal into the analog-to-digital converter. This step enabled 
the capture of motor unit responses with a potential differ-
ence of -1.5 mV to 1.5 mV. In this study, the 8-bit digitized 
data, with a resolution of 12 µV, was further normalized to 
a range of -1 to 1 for analysis, ensuring the baseline set to 
0. This standardization ensures that subsequent analyses are 

Fig. 2  Overview of the proposed sarcopenia diagnosis system. a col-
lected SMCSs are segmented by each electrical stimulation period, b 
Muscle Contraction Pattern (MCP) features are extracted. c Features 
are further selected to use as input for the binary classification model, 

each target criterion. Abbreviation: ES, electrical stimulation; SMCS, 
Stimulated Muscle Contraction Signal; STFT, Short-Time Fourier 
Transform; coef., coefficients
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variance of selected features. For ‘poly’ kernels, the poly-
nomial degree was chosen from {1, 2, 3}. For RF, hyper-
parameters were selected from: maximum depth {None, 
10, 20, 50, 100}, minimum samples per leaf {1, 2, 4, 8}, 
minimum samples per split {2, 5, 10, 25}, and number of 
estimators {5, 10, 25, 50, 100, 200}. The selected optimal 
hyperparameters for each model are detailed in eTable 1 and 
eTable 2 in Online Resource 1.

3  Results

The following section summarizes the experimental results 
for the proposed methodology. We provide the classifica-
tion results for the models targeting SMIlow, HGlow, and 
GAITlow. All computations were performed using Python 
3.9.12 and TensorFlow 2.10.0.

3.1  Participants characteristics

Table  2 summarizes the demographic and sarcopenia-
related characteristics of our study population, compris-
ing 199 Korean participants. The table provides detailed 
comparisons across both genders within the healthy control 
group and sarcopenia group. The average age and weight of 
male participants were 75.0 years and 65.1 kg, respectively, 
while female participants averaged 74.5 years and 55.8 kg. 
Sarcopenia was identified in 40 participants according to 
the AWGS guidelines. Among these, the sarcopenia group 
included 16 males and 24 females. While there was little dif-
ference in mean age between genders within the sarcopenia 
group, female participants were slightly younger on aver-
age in the healthy control group. Overall, participants with 
sarcopenia were significantly older than those in the healthy 
control group, with statistical significance noted (p < 0.001 
for females and p < 0.05 for males). In terms of height, 
female participants in the sarcopenia group were slightly 
shorter compared to those in the control group, a difference 
that reached statistical significance (p < 0.05). No significant 
height difference was observed among male participants.

3.2  Classification performance for SMIlow, HGlow, 
and GAITlowcriteria

Table 3 summarizes the performance metrics of each trained 
classification model, including MLP, SVM, and RF, com-
pared to the ground-truth reference of diagnostic compo-
nents. This comprehensive evaluation demonstrates the 
system capability to effectively classify SMIlow, HGlow

, and GAITlow. Both the MLP and SVM models demon-
strated similar performance, while the RF model shows 
comparatively lower performance. The experimental results 

to varying degrees, we selected a fixed length of 100 to 
ensure consistent operation across all collected data. Conse-
quently, a 32 × 100 autocorrelation features and 32 × 99 
slope features are created from each envelope signal. Given 
that there are two types of envelope for each electrical stim-
ulation segment, combining across all 6 stimulation seg-
ments results in a total of 76,416 MCP features.

The model training phase (Fig.  2c) involves selecting 
features that demonstrate high relevance to the target, indi-
cated by an AUC greater than 0.7. To reduce redundancy 
and enhance the model’s predictive power, the Minimum 
Redundancy Maximum Relevance (mRMR) algorithm 
is applied to these selected features [51]. A grid search is 
conducted to determine the optimal number of selected fea-
tures, which was set at 64 from options of 32, 64, and 128 
[52]. The refined features serve as inputs for three different 
models: a Multi-Layer Perceptron (MLP), a Support Vector 
Machine (SVM), and a Random Forest (RF).

To rigorously evaluate the performance of each classifi-
cation model for SMIlow, HGlow, and GAITlow, a nested 
3 × 2 cross-validation method is implemented [53, 54]. This 
method ensures that each fold of the SMCS dataset is uti-
lized as training, validation, and test sets in rotation, pro-
moting an even distribution across references. The models 
are trained using the training set, with the validation set 
employed for early stopping, and the test set providing the 
final verification. Performance metrics such as the AUC, 
accuracy, precision, sensitivity, specificity, and F1 score 
are calculated to assess the efficacy of the models across 
the different sarcopenia criteria. The final system’s sarco-
penia diagnosis performance is evaluated using the outputs 
of these models, analyzing accuracy, precision, sensitivity, 
specificity, and F1 score.

Each MLP model, trained separately for each gender 
with specific diagnostic cutoffs for SMI and HG, comprises 
two hidden layers with 256 and 32 neurons respectively, and 
utilizes a dropout ratio of 0.5 to prevent overfitting [55]. The 
MLP models were trained using the Adam optimizer with a 
learning rate of 0.001, a batch size of 512, and up to 1500 
epochs. Early stopping with a patience of 200 epochs was 
applied. The binary cross-entropy loss function was used for 
training, as it is well-suited for binary classification tasks. 
The activation function used in all hidden layers was Expo-
nential Linear Unit (ELU).

For the SVM and RF models, the optimal parameter set-
ting was selected based on those that empirically provided 
the best performance in our experiments. For each fold in 
the inner loop, SVM hyperparameters were selected from 
the following ranges: {0.1, 0.2, 0.5, 1.0} for regulariza-
tion parameters, { 1/(Nfeat · σ 2

X), 1/Nfeat}, for kernel 
coefficient, and {‘linear’, ‘poly’, ‘rbf’} for kernel type. 
Nfeat denotes number of selected features, and σ 2

X  is the 
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of 100.0%, indicating its high reliability. GAITlow model 
also showed good sensitivity at 97.2%, although the speci-
ficity was lower at 69.6%, which may indicate challenges in 
distinguishing GAITlow accurately. In females, the system 
maintained high diagnostic standards as well, achieving an 
accuracy of 92.4% and a sensitivity of 88.5% for SMIlow
. The HGlow model again performed excellently, mirror-
ing the high precision seen in males. GAITlow model in 
females had an accuracy of 87.6% with a high sensitivity of 
92.0%, similar to males, but with slightly lower specificity 
at 66.7%.

Figure 3 presents the Receiver Operating Characteristic 
(ROC) curves for the MLP classification models developed 

showed that strong classification performance was achieved 
across various models, regardless of the specific model 
used. Unless otherwise specified, subsequent mentions of 
models and performance metrics refer to the MLP model 
for simplicity.

In males, the models exhibited strong performance 
across all metrics. For SMIlow, the accuracy was nota-
bly high at 90.4%, with a specificity of 93.3%, reflecting 
the model’s ability to correctly identify normal cases. The 
precision was somewhat lower at 75.0%, suggesting some 
limitations in identifying low SMI cases without false posi-
tives. The HGlow model showed exceptional results, with 
an accuracy of 96.8% and a perfect specificity and precision 

Table 2  Demographic and sarcopenia-related characteristics of the study population
Male Female
Total Healthy control Sarcopenia Total Healthy control Sarcopenia

N 94 78 16 105 81 24
Age (years) 75.0 ± 8.9 74.1 ± 8.3 79.2 ± 10.9a 74.5 ± 7.4 73.2 ± 7.2 79.0 ± 6.2d

Height (cm) 165.6 ± 5.8 166.1 ± 5.9 163.1 ± 4.8 153.3 ± 5.1 154.0 ± 4.9b 151.2 ± 5.2cd

Body Weight (kg) 65.1 ± 8.1 66.4 ± 7.9 58.7 ± 6.2a 55.8 ± 7.8 58.2 ± 6.6b 47.5 ± 5.4cd

SMI (kg/m2) 7.4 ± 0.7 7.6 ± 0.5 6.5 ± 0.4a 5.9 ± 0.7 6.2 ± 0.4b 5.0 ± 0.5cd

Handgrip strength (kgf) 29.1 ± 7.6 29.1 ± 7.2 21.6 ± 6.3a 17.2 ± 4.4 18.0 ± 4.1b 14.3 ± 4.5cd

Gait speed (cm/s) 82.6 ± 23.4 87.1 ± 21.9 60.8 ± 17.8a 77.7 ± 22.3 80.4 ± 22.6 68.5 ± 18.9d

Calf circumference (cm) 34.4 ± 2.7 34.9 ± 2.6 32.1 ± 1.9a 32.7 ± 2.9 33.7 ± 2.2b 29.2 ± 2.1cd

SARC-F score 1.6 ± 1.8 1.2 ± 1.5 3.3 ± 2.2a 2.5 ± 2.5 2.4 ± 2.6b 2.8 ± 2.3
Data are given as the mean and standard deviation. ap < 0.05 for the comparisons between male healthy control group and male sarcopenia 
group. bp < 0.05 for the comparisons between male healthy control group and female healthy control group. cp < 0.05 for the comparisons 
between male sarcopenia group and female sarcopenia group. dp < 0.05 for the comparisons between female healthy control group and female 
sarcopenia group.
Abbreviations: SMI, skeletal muscle mass index; SARC-F, Strength, assistance with walking, rising from a chair, climbing stairs, and falls 
questionnaire.

Table 3  The performance metric of the trained models in predicting three diagnostic components
Model type Accuracy Sensitivity Specificity Precision F1-score

Male SMIlow MLP 90.4% 79.0% 93.3% 75.0% 76.9%
SVM 91.5% 84.2% 93.3% 76.2% 80.0%
RF 87.2% 68.4% 92.0% 68.4% 68.4%

HGlow MLP 96.8% 93.8% 100.0% 100.0% 96.8%
SVM 97.9% 95.8% 100.0% 100.0% 97.9%
RF 96.8% 93.8% 100.0% 100.0% 96.8%

GAITlow MLP 90.4% 97.2% 69.6% 90.8% 93.9%
SVM 88.3% 91.5% 78.3% 92.9% 92.2%
RF 90.4% 94.4% 78.3% 93.1% 93.7%

Female SMIlow MLP 92.4% 88.5% 93.7% 82.1% 85.2%
SVM 92.4% 96.2% 91.1% 78.1% 86.2%
RF 88.6% 73.1% 93.7% 79.2% 76.0%

HGlow MLP 93.3% 94.6% 92.0% 92.9% 93.7%
SVM 96.2% 96.4% 96.0% 96.4% 96.4%
RF 91.4% 90.9% 92.0% 92.6% 91.7%

GAITlow MLP 87.6% 92.0% 66.7% 93.0% 92.5%
SVM 83.8% 85.1% 77.8% 94.9% 89.7%
RF 81.0% 89.7% 38.9% 87.6% 88.6%

Abbreviations: SMI, skeletal muscle mass index; HG, handgrip strength; GAIT, gait speed; MLP, multi-layer perceptron; SVM, support vector 
machine; RF, random forest.
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participants were classified as normal based on the AWGS 
cutoff. Despite the higher prevalence of normal cases in the 
participants, the models effectively distinguished SMIlow 
cases, demonstrating their robustness. For instance, in the 
male group, the model correctly identified 15 out of 19 
SMIlow subjects. In contrast, the gait speed classification 
faced a different challenge, as there was a higher propor-
tion of GAITlow cases in the participants. For females, the 
GAIT model correctly predicted 12 normal and 80 low con-
ditions, demonstrating high sensitivity in a scenario where 
low cases were more prevalent.

to assess SMI, HG, and GAIT across genders. The ROC 
curves demonstrate the model ability to accurately classify 
these measures as either high or low according to the AWGS 
cutoffs. For males, the models achieved AUC scores of 0.94, 
0.99, and 0.92 for SMI, HG, and GAIT, respectively, high-
lighting their strong discriminative capabilities, especially 
for HG which approaches perfect classification with an 
AUC of 0.99. The models for females recorded AUC scores 
of 0.97, 0.99, and 0.87 for SMI, HG, and GAIT, respec-
tively, indicating high efficacy in classification accuracy.

Figures  4 and 5 display the confusion matrices for the 
MLP models assessing SMIlow, HGlow, and GAITlow

, using the AWGS sarcopenia cutoffs as reference for 
males and females, respectively. For SMI, the majority of 

Fig. 4  Confusion matrix of the trained male classification MLP models in each criterion: a SMIlow, b HGlow, c GAITlow

 

Fig. 3  Receiver Operating Characteristic (ROC) curves for MLP classification models: a in male groups and b female groups. Abbreviation: SMI, 
skeletal muscle mass index; HG, handgrip strength; GAIT, gait speed
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related to muscle mass, muscle strength, and physical per-
formance were extracted from 199 community-dwelling 
participants and used for training models. The developed 
sarcopenia diagnosis system achieved a fair performance 
with an accuracy of 89.4% among males, and that of 92.4% 
among females. With the aid of a specialized app, the wear-
able device autonomously conducts electrical stimulation, 
collects SMCS data, and diagnoses sarcopenia, facilitating 
the assessment process without requiring expert interven-
tion. Furthermore, assessment using SMCS takes about 
one to two minutes at a time for each leg, so the 20 min of 
time required for conventional assessment can be reduced 
to about three minutes. It has been reported that diagnosing 
sarcopenia in critically ill patients is rather challenging since 
the patients cannot carry out tasks related to the assessment 
and whether their assessment results represent the muscle 
health remains in question [16, 17]. SMCS can serve as 
a fair alternative when the physical tasks required for the 
assessment are not allowed, or in situations where use of 
dynamometer, access to DXA or alternative muscle mass 
measurement techniques is limited. To sum up, diagnosing 
sarcopenia using the SMCS breaks away from the conven-
tional way of having patients come to a medical facility and 
go through a complicated measuring process.

The approach presented in this study offers a more 
‘explainable’ method for diagnosing sarcopenia by 

3.3  Overall performance of the developed 
sarcopenia diagnosis system

The overall diagnostic efficacy of our developed sarcopenia 
diagnosis system is summarized in Table 4, which presents 
the accuracy, sensitivity, specificity, precision, and F1-score 
for each criterion across genders, and Fig. 6, which presents 
confusion matrices for detecting sarcopenia. When evaluat-
ing sarcopenia with these SMCS-based trained MLP mod-
els, the proposed system achieved an accuracy of over 89% 
in both genders, with males at 89.4% and females at 92.4%. 
The sensitivity was higher in females (87.5%) compared 
to males (81.3%), showing a slight gender discrepancy in 
detecting sarcopenia conditions.

4  Discussion

This study developed sarcopenia diagnosis system using 
deep learning and SMCS. Our approach introduces SMCS 
obtained via a wearable device, allowing for a simpler, con-
sistent, and non-voluntary assessment of muscle response to 
electrical stimulation. By capturing the motor unit’s response 
to a controlled stimulus, SMCS can offer insights into 
muscle function that are relevant for sarcopenia. Features 

Table 4  The performance metric of the trained models in diagnosing Sarcopenia
Sex Model type Accuracy Sensitivity Specificity Precision F1-score

Sarcopeniaa Male MLP 89.4% 81.3% 91.0% 65.0% 72.2%
SVM 88.3% 75.0% 91.0% 63.2% 68.6%
RF 87.2% 62.5% 92.3% 62.5% 62.5%

Female MLP 92.4% 87.5% 93.8% 80.8% 84.0%
SVM 94.3% 95.8% 93.8% 82.1% 88.5%
RF 88.6% 70.8% 93.8% 77.3% 73.9%

aSarcopenia diagnosis performance metric is evaluated by combining three criteria evaluations of models, SMIlow, HGlow, GAITlow, accord-
ing to AWGS.

Fig. 5  Confusion matrix of the trained female classification MLP models in each criterion: a SMIlow, b HGlow, c GAITlow
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in a separate ongoing clinical study [56]. SMCS was mea-
sured in a seated posture with both feet flat on the floor and 
knees bent at a 90-degree angle to minimize variability 
related to voluntary contraction and ensure participant com-
fort. However, different body postures and knee angles, or 
variations in body weight may influence muscle responses 
to electrical stimulation, potentially affecting SMCS mea-
surements. In future research, we plan to further address 
variations in body weight by evaluating their impact on 
SMCS. Additionally, we will consider assessing SMCS 
in various resting postures, such as a reclined position, to 
determine the impact of posture on SMCS reproducibility 
and reliability. Our system classified each criterion to binary 
( SMIlow, HGlow, GAITlow), which may not be sufficient 
to capture the gradation of severity. Therefore, we consider 
extending this work adopting a regression model that could 
provide a continuous output, instead of binary, offering a 
more detailed assessment of disease severity. All these 
improvements would enable more precise monitoring and 
management of sarcopenia progression, tailoring interven-
tions more effectively to the patient condition.

In conclusion, this study developed a sarcopenia diagno-
sis system to reduce the burden on patient diagnosis without 
going through multiple assessments at medical facilities. A 
total of six classification models (three models per sex) were 
developed from SMCS data, demonstrating the capability 
of SMCS to facilitate various muscle assessments. Of these 
models, two were for muscle mass (i.e., SMIlow), two were 
for muscle strength (i.e., HGlow), and two were for physical 

evaluating three diagnostic components and integrating 
these assessments to determine the presence of sarcopenia. 
Unlike many existing machine learning-based sarcopenia 
diagnostics, which often deliver diagnostic results with-
out showing the intermediary steps, our method provides 
clear insights into which specific indicators contribute to the 
diagnosis. This transparency is crucial because it not only 
helps in understanding the underlying causes of sarcopenia 
in individual patients but also aids healthcare profession-
als in tailoring specific interventions based on the deficient 
indicator. To the best of our knowledge, this is the first study 
to develop system to assess all three indicators simultane-
ously as a standalone diagnostic tool. Making the diagno-
sis more accessible, the proposed approach of diagnosing 
sarcopenia will help make timely medical interventions via 
early diagnosis and improve the prognosis in turn.

Due to the nature of the study and availability of data, 
participants were limited to Korean ethnicity for now, 
extending this work with other ethnicities remains a future 
task. Despite having a patient sample relatively small, we 
conducted thoughtfully tests using cross-validation to ame-
liorate this problem. Additionally, in this study, SMCS was 
measured only once per participant, which does not allow 
for reliability analysis such as test-retest. In future studies, 
we plan to revise the SMCS collection protocol to measure 
SMCS at least twice per participant to provide data on its 
reliability. This study's experiment does not include test-
retest results; however, the reliability of the SMCS-based 
digital muscle marker technique was sufficiently verified 

Fig. 6  Confusion matrix in sarcopenia diagnosis using developed diagnosis system with MLP models: a male group and b female group
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