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Introduction
Anti-myelin oligodendrocyte glycoprotein (MOG) 
antibodies (MOG-IgG) can be found in children and 
adults with monophasic or relapsing demyelination, 
and mounting evidence indicates that the presence of 
clearly positive MOG-IgG titers defines a diagnosis of 
Myelin oligodendrocyte glycoprotein antibody-
associated disease (MOGAD) and argues against a 
diagnosis of MS.1–8 MOG-IgG titers often rapidly 
decline after initial presentation, and relapsing MOG-
IgG positive patients may have periods of unde-
tectable antibodies between relapses.3,9,10 As such, 
the diagnosis of MOGAD cannot be excluded 
when serostatus was not ascertained proximate to 
initial clinical presentation, and failure to recognize 
MOGAD in relapsing patients can lead to a misdiagnosis 
of MS.

We sought to determine the frequency of MOG-IgG 
at presentation in a prospective cohort of children 
who met MS diagnostic criteria and had archived 
serial serum samples obtained in proximity to clini-
cal presentation,11 and to evaluate their clinical and 
magnetic resonance imaging (MRI) features as a 
function of MOG-IgG serostatus.

Methods

Participants
We included 65 children and adolescents meeting MS 
diagnostic criteria either at onset or over time, 
recruited between 2004 and 2017 as part of the pro-
spective Canadian Pediatric Demyelinating Disease 
Study (CPDDS).12 Most participants were recruited 
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and diagnosed before the clinical availability of 
MOG-IgG testing, and none of the participants 
included in this study had clinical anti-MOG testing 
performed as part of their diagnostic workup. For this 
study, CPDDS participants were included if they also 
met the criteria of: (1) first available serum sample 
obtained within 45 days of initial clinical presenta-
tion, (2) complete clinical information available, and 
(3) a diagnosis of MS based on the 2017 McDonald 
diagnostic criteria11 (Figure 1(a)). Data were locked 
as of May 2018.

The clinical phenotype of each attack was deter-
mined from case report forms, using our published 
methods.13 Children meeting the clinical criteria for 
acute disseminated encephalomyelitis (ADEM)14 
were not evaluated for a diagnosis of MS at baseline, 
as stipulated in the 2017 criteria,11 while they could 
be evaluated as possible MS if they experienced 
relapsing non-ADEM events. When clinically indi-
cated, the presence of oligoclonal bands (OCBs) in 
the cerebrospinal fluid (CSF) was assessed using 
isoelectric focusing.

The occurrence of new disease activity (new clinical 
attacks, new MRI lesions or both) was evaluated at all 
study visits (3, 6, and 12 months, and annually there-
after), and at the time of any off-study clinical visits 
or admissions. Monofocal and polyfocal presenta-
tions were defined as those manifesting signs and 
symptoms attributable to involvement of a single or 
multiple location of the central nervous system 
(CNS), respectively. Monophasic and relapsing out-
comes refer to the course of clinical symptoms, with 
monophasic patients not having new disease activity 
over time, and relapsing patients experiencing new 
clinical attacks, more than 30 days from an incident 
event. For this study, disease activity was assessed 
among participants with a minimum of 6 months of 
clinical and MRI observation based on our prior find-
ings in the larger pediatric acquired demyelinating 
syndrome (ADS) cohort15 of median time from clini-
cal onset to the first relapse or new lesion of 
6.18 months (interquartile range (IQR) = 4.73–11.08). 
To address the possible confounding effects of differ-
ent length of follow-up, the annualized relapse rate 
(ARR) was calculated over the first 2 years of follow-
up, restricting the analysis to participants with a mini-
mum observation of 2 years. A standardized clinical 
examination form was completed at each study visit. 
Disability outcome was subsequently extrapolated 
from said form to create an estimated Expanded 
Disability Status Scale (EDSS) score which was 
also compared at 2 years from presentation.16 As a 

sensitivity analysis, the ARR and EDSS results were 
also compared at 4 years from presentation. Use of 
disease-modifying therapies (DMTs) was recorded 
for all participants. The clinical course was consid-
ered atypical for MS based on the presence features 
identified as different between typical MS and 
MOGAD courses in our prior studies.9,17 These 
included as follows: (1) absence of any new lesions 
after 1 year from presentation, in patients not receiv-
ing DMTs or (2) recurrent attacks exclusively in a sin-
gle CNS location (i.e. optic neuritis). The study was 
approved by the research ethics boards of all partici-
pating institutions. Guardians and participants pro-
vided written informed assent/consent.

Laboratory analysis
Analysis was carried out on a total of 363 archived 
serum samples, acquired within 45 days from clinical 
onset (baseline), then serially at 3, 6, and 12 months, 
and yearly thereafter. None of the samples were 
obtained after treatment with plasma exchange, and 
only 3/366 samples were obtained within 30 days of 
exposure to intravenous immunoglobulins (which 
was not associated with changes in prior or subse-
quent MOG-IgG results). Archived samples were 
batch-shipped and analyzed centrally using a live cell-
based MOG-IgG1-specific assay18 and titered using 
IgG (H + L) as the detecting antibody. The assay cut-
off was based on a visual score, ranging from 0 to 4, 
with scores <1 considered negative, from 1 to <2 
low positive, and 2 or greater “high” positive, as per 
our previously published methods.9 All samples were 
also assessed for the presence of anti-aquaporin-4 
(AQP4) antibodies.19

MRI analysis
The research MRI protocol included axial and sagittal 
T2-weighted, fluid-attenuated inversion recovery 
(FLAIR)-weighted, and T1-weighted sequences, 
before and after administration of gadolinium.

MRI scans at presentation (baseline) were analyzed by 
a team (G.F., R.A.B., B.B., G.L., D.A.C.) trained in the 
application of the MRI scoring tool20 and blinded to 
clinical and serological status. The scoring team inde-
pendently adjudicated each scan as being “typical” or 
“atypical” for MS. Based on the information obtained 
through the scoring tool and evidence from existing 
literature,9,21 MRI features considered atypical for MS 
were (1) absence of brain lesions; (2) presence of large 
ill-defined lesions; (3) diffuse bilateral pattern; or (4) 
presence of only small/non-specific lesions.
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Baseline scans were also scored using the 2017 
McDonald criteria.11 Scans acquired without admin-
istration of gadolinium were excluded from the 
baseline adjudication of criteria, while spine MRI 
scans acquired as part of the clinical care were con-
sidered, whenever available. Cortical lesions were 
not considered in our scoring, given that our research 
MRI protocols were not designed for their reliable 
detection.

Serial brain scans were analyzed for the occurrence 
of new lesions and lesion resolution. Complete 
lesion resolution was defined as a normal brain MRI 
at any timepoint following an abnormal baseline 
MRI. The most recent research scan was also evalu-
ated for the presence and location of lesions, and for 
the measurement of T2 and T1 lesion volumes. In 
particular, T2 lesions were segmented using a 
Bayesian classifier22 and then manually corrected 
by a trained expert, while T1 lesions were automati-
cally segmented as a subset of T2 lesion voxels with 
T1 intensity less than 87% that of normal appearing 
white matter.

Statistical analysis
Demographic, clinical, and MRI features were 
compared between MOG-IgG-positive and negative 
groups, using chi-square or Fisher’s exact tests for cat-
egorical variables and Mann–Whitney U tests for con-
tinuous variables. The effect size of these comparisons 
was computed as standardized difference scores.23 
The analyses were performed using Python (www.
python.org, version 3.6.5) and R (www.r-project.
org, version 3.1.3). The sensitivity and specificity of 
the features suggested as red flags were computed 
using Dag-stat.24

Results

MOG-IgG antibody results in archived baseline 
samples
Twelve of the 65 children (18%) diagnosed with MS 
had MOG-IgG titers above the laboratory cut-off in 
the samples archived from their initial presentation. 
Ten of these were high-positive on the IgG1 assay. 
One had a borderline-positive result in the first sam-
ple, followed by a high-positive IgG1 result in the 
subsequent sample obtained 3 months post-onset. One 
tested positive exclusively in the H + L assay (titer 
200), with titers below the threshold for positivity on 
the IgG1 assay (Figure 1(a), Table 1). All participants 
tested negative for anti-AQP4 antibodies.

Criteria for conferring MS diagnosis (baseline 
and follow-up)
At presentation, 55 of the 65 participants were eval-
uable using the 2017 McDonald criteria (i.e. after 
exclusion of one participant with ADEM presenta-
tion and nine with baseline MRI performed without 
administration of gadolinium-based contrast agent), 
with a diagnosis of MS conferred at that time in 40 
(73%) of them. The remaining 25 met MS diag-
nostic criteria in follow-up, based on development 
of clinical relapses, MRI lesions, or both, which 
were identified a median of 4.1 months from onset 
(range = 2.3–48.7 months, Figure 1(b)).

Of the 12 MOG-IgG positive participants, the 
McDonald 2017 criteria could be applied at baseline 
to 10, of whom only 4 (40%) met both dissemination 
in space (DIS) and time (DIT) criteria (Figure 1(b)). 
In contrast, of the 53 MOG-IgG negative participants, 
the criteria could be applied at baseline to 45, of 
whom 36 (80%) met both DIS and DIT criteria for 
MS (p = 0.017).

Over time, all 12 MOG-IgG positive participants 
demonstrated evidence of new disease activity, 7 
(54%) of whom experienced new clinical episodes, 
and 5 (42%) developed new MRI lesions but no addi-
tional clinical attacks (Figure 1(b)).

Of the 53 MOG-IgG negative participants, 37 (70%) 
experienced further clinical relapses, 15 (28%) devel-
oped new MRI lesions but no clinical attacks, and one 
met the diagnostic criteria for MS at onset though did 
not develop new signs of disease activity during the 
available follow-up of 2 years.

Comparison of baseline clinical and MRI 
features between MOG-IgG positive and negative 
participants
The subgroups of participants compared in each 
analysis are outlined in Figure 1(a). MOG-IgG posi-
tive participants were younger than the seronegative 
group (Figure 2(a) and Table 1) and 11/12 (92%) 
were younger than 11 years at onset. MOG-positive 
participants presented with optic neuritis (ON) and/
or transverse myelitis (TM) nearly twice as often as 
MOG-negative participants (Figure 2(b) and Table 1). 
ADEM was the presenting phenotype of one seron-
egative participant.

Of all 12 patients found to be MOG-IgG positive at 
baseline, 11 had baseline MRI available, all of which 
were adjudicated as atypical for MS. This was due to 

https://journals.sagepub.com/home/msj
www.python.org
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the absence of brain lesions in three participants (all 
presenting with ON), the presence of large, confluent 
and ill-defined lesions in three participants, the pres-
ence of an ill-defined lesion with prominent cortical 
involvement in one participant, the presence of a large 

ill-defined pontine lesion in two participants, and the 
presence of exclusively small, non-specific lesions in 
two participants (Figure 2(c)–(j)). In contrast, 44 of 
the 48 (92%) MOG-IgG negative participants had typ-
ical MS features on their presenting MRI (p < 0.0001). 

Table 1. Baseline clinical, MRI, and laboratory features according to MOG serological status.

Characteristic All MOG-IgG 
positive

MOG-IgG negative SD p-value

Participants (n) 65 12 53  

Sex (female) (n/%) 43 (66%) 8 (67%) 35 (66%) 0.013 >0.99

Age at onset (median (IQR)) 14.00 (10.93–15.08) 9.04 (6.50–10.36) 14.33 (13.01–15.31) −1.6 <0.0001

Days from onset to first serum sample 
collection (median (IQR))

14 (6–24) 22 (6–26) 13 (7–23) 0.85 0.31

Steroids in the 30 days prior first sample 
acquisition (n %)

32 (49%) 7/12 (58%) 25/53 (47%) 0.23 0.70

ADEM (n %) 1 (2%) 0 (0%) 1 (2%) −0.2 >0.99

Monofocal ON (n %) 15 (23%) 5 (42%) 10 (19%) 0.51 0.19

Polyfocal ON (n %) 5 (8%) 1 (8%) 4 (8%) 0.029 >0.99

Monofocal TM (I %) 6 (9%) 2 (17%) 4 (8%) 0.28 0.31

Polyfocal TM (n %) 4 (6%) 1 (8%) 3 (6%) 0.1 0.57

ON + TM (n %) 1 (2%) 1 (8%) 0 (0%) 0.43 0.18

Other than ON/TM/ADEM (n %) 33 (51%) 2 (17%) 31 (58%) −0.96 0.011

Brain MRI typical for MS (n/N %) 44/59 (75%) 0/11 (0%) 44/48 (92%) −4.70 <0.0001

Lesions present (n/N %) 56/59 (95%) 8/11 (73%) 48/48 (100%) −0.87 0.0051

Total brain lesions count (median (IQR)) 12.00 (5.00–16.00) 4.00 (0.50–11.00) 14.00 (5.50–16.00) −0.86 0.018

Presence of discrete lesions (n/N %) 53/56 (95%) 7/8 (88%) 46/48 (96%) −0.3 0.38

Presence of only well-defined lesions (n/N %) 41/56 (73%) 3/8 (38%) 38/48 (79%) −0.93 0.026

Diffuse bilateral pattern (n/N %) 8/56 (14%) 3/8 (38%) 5/48 (10%) 0.67 0.078

⩾1 Cerebellar lesions (n/N %) 21/56 (38%) 2/8 (25%) 19/48 (40%) −0.32 0.7

⩾1 Cerebellar peduncle lesions (n/N %) 15/56 (27%) 1/8 (12%) 14/48 (29%) −0.42 0.43

⩾1 Brainstem lesions 33/56 (59%) 4/8 (50%) 29/48 (60%) −0.21 0.7

⩾1 Peri fourth ventricle lesions (n/N %) 8/56 (14%) 1/8 (12%) 7/48 (15%) −0.061 >0.99

⩾1 Periventricular lesions (n/N %) 51/56 (91%) 6/8 (75%) 45/48 (94%) −0.53 0.14

⩾3 Periventricular lesions (n/N %) 31/56 (55%) 1/8 (12%) 30/48 (62%) −1.2 0.017

⩾1 Lesion perpendicular to the major axis of 
the corpus callosum (n/N %)

37/56 (66%) 0/8 (0%) 37/48 (77%) −2.6 <0.0001

⩾1 Basal ganglia lesions (n/N %) 4/56 (7%) 0/8 (0%) 4/48 (8%) −0.43 >0.99

⩾1 Thalamic lesions (n/N %) 11/56 (20%) 1/8 (12%) 10/48 (21%) −0.23 >0.99

⩾1 Juxtacortical lesions (n/N %) 45/5 (80%) 7/8 (88%) 38/48 (79%) 0.23 >0.99

⩾1 T1 hypointense lesions (n/N %) 51/56 (91%) 7/8 (88%) 44/48 (92%) −0.14 0.55

⩾1 Lesion enhancement (n/N %)a 36/53 (68%) 3/7 (43%) 33/46 (72%) −0.61 0.19

⩾1 Spinal lesions (n/N %) 16/19 (84%) 2/3 (67%) 14/16 (88%) −0.51 0.42

⩾1 LETM 3/16 (19%) 2/2 (100%) 1/14 (7%) 5.09 0.11

Total T2 lesion volume (median (IQR))b 2.99 (1.17–11.07) 2.35 (0.42–4.98) 3.03 (1.33–11.58) −0.31 0.51

Total T1 lesion volume (median (IQR))b 0.52 (0.11–2.70) 0.11 (0.01–0.92) 0.57 (0.19–2.88) −0.16 0.37
OCBs (n/N %) 32/44 (73%) 2/8 (25%) 30/36 (83%) −1.4 0.0027

ADEM: acute disseminated encephalomyelitis; EDSS: Expanded Disability Status Scale; FSS: Functional System Score; LETM: Longitudinally Extensive 
Transverse Myelitis; OCBs: oligoclonal bands; ON: optic neuritis; SD: standardized difference; TM: transverse myelitis.
aAnalyses of lesion enhancement were restricted to scans with administration of gadolinium-based contrast agent.
bLesion volume at baseline was available for 6/8 MOG-IgG positive and 33/48 MOG-IgG negative participants with brain lesions at presentation.
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The four MOG-IgG negative patients with atypical 
baseline MRI included three children with at least one 
large, atypical lesion, but in the presence of multiple 
typical MS lesions. One child had bilateral ill-defined 
cerebellar peduncle lesions, bilateral T2 hyperintensi-
ties of the corticospinal tracts, and scattered smaller 
ill-defined supra-tentorial lesions.

Compared to lesions in MOG-IgG negative partici-
pants, lesions in MOG-IgG positive participants were 
less likely to have exclusively well-defined margins, 
less likely to be oriented perpendicularly to the major 
axis of the corpus callosum, and less likely to enhance 
following gadolinium administration (Table 1).

The presence of CSF-OCBs was assessed in 42/66 par-
ticipants; they were positive in only 2/8 (25%) MOG-
IgG positive participants, in contrast to most MOG-IgG 
negative participants (30/36, 86%, p = 0.0027).

Evolution of MOG-IgG status
Serial serum samples were obtained in 62 partici-
pants over a median of 4.98 years (IQR = 2.03–7.44, 
Figure 3). None of the initially seronegative participants 
converted to seropositive in follow-up samples. 

Among the 11 of these 62 who were MOG-IgG pos-
itive at presentation, 5 persisted positive in all 
follow-up samples (median follow-up = 6.08 years, 
IQR = 2.66–8.19), 2 fluctuated between MOG-IgG 
positive and negative status (median follow-up = 6.97 
and 7.44 years), and 4 converted to seronegative 
(median time to conversion = 1.6 years (IQR = 0.9–2.9), 
median follow-up = 6.18 years (IQR = 4.76–7.33)). 
The patient who had an initial borderline MOG-IgG 
result, then found to be MOG-IgG positive at 
3 months, converted to MOG-IgG negative at 1 year, 
and remained seronegative for the subsequent 5 years 
of follow-up. While three of the MOG-IgG positive 
participants were treated with DMT (glatiramer ace-
tate, interferon-beta, and cyclophosphamide) at some 
point during follow-up, in all cases, DMT was initi-
ated subsequently to collection of the first seronega-
tive sample.

Clinical course according to MOG-IgG status
Among the 63 participants with at least 6 months of 
clinical and MRI follow-up, the median time to the 
second clinical attack and the ARR in the first 2 years 
did not differ between MOG-IgG positive (n = 12) 
and negative participants (n = 51) (Table 2). The two 

Figure 3. Clinical and imaging disease course. Each bar indicates the serological follow-up of an individual participant, 
with dark and light blue colors indicating seropositive and seronegative status, respectively. (a) Colored circles 
correspond to clinical relapses. Participants initially MOG-IgG positive show a preponderance of episodes of monofocal 
ON. (b) Black dots indicate the time of acquisition of follow-up brain MRI scans with no new T2 lesions, while the large 
blue diamonds indicate the follow-up brain MRI with detection of new T2 lesions. New lesions were detected across 
both seropositive and negative participants, with most MOG-IgG positive participants showing new lesions at the earliest 
follow-up timepoints, and relatively few subsequently.
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groups differed in relapse phenotype, with MOG-IgG 
positive participants showing a clear preponderance 
of episodes of isolated ON, and less frequently mono/

polyfocal TM or ADEM. Conversely, most attacks in 
MOG-IgG negative participants had phenotypes dis-
tinct from ON, TM or ADEM (Figure 3(a)).

Table 2. Clinical and MRI disease activity in participants with at least 6 months of clinical and MRI follow-up.

MOG-IgG positive 
(n = 12)

MOG-IgG negative 
(n = 51)

SD p-value

Years of clinical follow-up  
(median (IQR))

8.14 (6.19 to 9.80) 6.11 (4.06 to 9.25) 0.43 0.096

Ever treated with DMT (n/N %)a 3/12 (25%) 42/51 (82%) −0.89 0.00028

Clinical relapses (n/N %) 7/12 (58%) 36/51 (71%) −0.26 0.58

Years from onset to second clinical attack 
(when occurred) (median (IQR))

0.74 (0.29 to 1.20) 0.90 (0.43 to 1.97) −0.18 0.41

ARR in the first 2 years (median (IQR))b 1.00 (0.50 to 1.00) 1.00 (0.50 to 1.25) −0.079 0.18

EDSS at 2 years (median (IQR))c 2 (1 to 3) 1 (0 to 1.50) 0.25 0.024

Years from previous relapse to 2 years 
EDSS assessment

1.25 (0.82 to 1.88) 0.84 (0.37 to 1.43) 0.47 0.044

Visual FSS at 2 years (median (IQR)) 2 (0.25 to 3) 0 (0 to 1) 0.38 0.0034

New brain T2 lesions (n/N %) 11/12 (92%) 50/51 (98%) −0.29 0.35

Years from onset to first new T2 lesion 
(when occurred) (median (IQR))

0.34 (0.29 to 1.14) 0.31 (0.26 to 0.58) 0.21 0.51

Complete lesion resolution (n/N %)d 1/8 (13%) 0/46 (0%) 0.53 0.15

Years from first to last MRI scan  
(median (IQR))

5.22 (3.78 to 9.34) 5.02 (1.10 to 6.36) 0.44 0.11

Most recent MRI features

Lesions present (n/N %) 9/12 (75%) 51/51 (100%) −0.82 0.0055

Total brain lesions count  
(median (IQR))e

4.5 (4 to 12) >15 (11 to >15) −1.2 0.00092

⩾ 1 Periventricular lesions (n/N %)e 5/9 (56%) 50/51 (98%) −1.2 0.0012

⩾ 1 Lesion perpendicular to the major 
axis of the corpus callosum (n/N %)e

3/9 (33%) 43/51 (84%) −1.2 0.0033

⩾ 1 Infratentorial lesions (n/N %)e 5/9 (56%) 41/51 (80%) −0.55 0.19

⩾ 1 Juxtacortical lesions (n/N %)e 7/9 (78%) 43/51 (84%) −0.17 0.64

⩾ 1 T1 hypointense lesions (n/N %)e 4/9 (44%) 46/51 (90%) −1.2 0.0042

Total T2 lesion volume at last MRI scan 
(cc) (median (IQR))e

0.40 (0.06 to 1.18) 4.31 (2.64 to 10.26) −0.84 0.00044

Total T1 lesion volume at last MRI scan 
(cc) (median (IQR))e

0.018 (0.011 to 0.15) 1.35 (0.67 to 4.70) −0.79 0.00012

T2 lesion volume change from baseline 
to last follow-up (cc) (median (IQR))f

−0.14 (−3.04 to −0.020) 0.33 (−0.72 to 2.18) −0.54 0.21

ARR: annualized relapse rate; DMT: disease-modifying therapy; EDSS: Expanded Disability Status Scale; FSS: Functional System 
Score; SD: standardized difference; IQR: interquartile range.
aIn addition to MS-specific DMTs, cyclophosphamide was used in one MOG-positive and three MOG-negative participants. One 
MOG-negative participant was on therapy with minocycline for 1 year during the study period.
bThe ARR in the first 2 years was assessed in the 57 participants (9 MOG-IgG positive and 48 MOG-IgG negative) with at least 
2 years of clinical follow-up.
cEDSS at 2 years was available for 52 participants (10 MOG-IgG positive and 42 MOG-IgG negative), and visual FSS in 50 
participants (10 MOG-IgG positive and 40 MOG-IgG negative).
dLesion resolution was evaluated among participants with brain lesions in the baseline scans. Five of the 52 MOG-IgG negative 
with observation >6 months did not have an MRI scan within 45 days from onset and could not be evaluated for resolution of the 
baseline lesions.
eThe number of lesions, their location, and total lesion volume were computed only among subjects with brain lesions in the last 
MRI scan. Measurement of T2 lesion volume at last follow-up was available for 9 MOG-IgG positive and 47 MOG-IgG negative, 
while for T1, lesion volume was available for 6 MOG-IgG positive and 33 MOG-IgG negative.
fThe analysis of T2 lesion volume change from baseline to last follow-up was computed with the inclusion of participants with and 
without lesions at baseline and last FU scans, but restricted to those with lesion volume measurement available at both baseline and 
last follow-up. These included 6 MOG-IgG positive and 28 MOG-IgG negative.
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New lesions on brain MRI were detected in nearly 
all participants regardless of MOG-IgG status 
(Figure 3(b)). New lesions in MOG-IgG positive 
participants were commonly detected within a few 
months from the presenting episode. Of the partici-
pants with MRI follow-up greater than 1 year, only 
3/13 (27%) MOG-IgG positive showed new T2 
lesions beyond the first year from presentation, ver-
sus 30/34 (88%) of the MOG-IgG negative ones 
(p = 0.00028).

Complete resolution of all brain lesions was uncom-
mon, with lesions present at the most recent brain 
MRI (acquired a median (IQR) of 4.99 (1.11–7.00) 
years from presentation) in 9/12 (75%) MOG-IgG 
positive and in all 51 MOG-IgG negative participants 
(Table 2). Nonetheless, the most recent MRI scans of 
the nine MOG-IgG positive participants with persis-
tent brain T2 lesions showed fewer lesions compared 
to MOG-IgG negative participants, contributing to a 
smaller total T2 lesion volume (Table 2).

T1 hypointense lesions at most recent MRI were 
detected in fewer MOG-IgG positive participants 
(4/9; 44%) compared to 46/51 (90%) MOG-IgG 
negative (p = 0.0042), associated with a reduced total 
T1 lesion volume. Seropositive participants also 
exhibited less frequent lesions periventricular or per-
pendicular to the major axis of the corpus callosum 
(Table 2). Of the four MOG-IgG negative partici-
pants with presenting imaging features atypical for 
MS, three developed typical new T2 lesions and 
evolved into a more classical MS imaging profile 
over time, while one continued to appear atypical at 
his most recent MRI evaluation (performed 8 years 
from presentation).

At 2 years from presentation, all participants had low 
EDSS scores, although EDSS scores were greater in 
the MOG-IgG positive group (Table 2), mainly driven 
by deficits in visual function: 7/11 (63%) MOG-IgG 
positive participants had visual deficits, which were 
moderate (functional system score (FSS) = 3) in four 
cases and less severe (FSS = 1 or 2) in three cases. The 
visual function at 2 years was not recorded in one par-
ticipant. The four participants without visual impair-
ment had either no neurological deficits (n = 2), 
pyramidal (n = 1, FSS = 1) or bladder dysfunction 
(n = 1, FSS = 1). In contrast, visual deficits were pre-
sent in 15/41 (37%) MOG-IgG negative participants 
evaluated for visual function at 2 years, reaching 
moderate severity (FSS = 3) in only one case. The sen-
sitivity analysis at 4 years from presentation showed 
results similar to those at 2 years for ARR (median 
(IQR) = 0.5 (0.25–0.5) in MOG-positive (n = 10) vs 

0.5 (0.5–0.75) in MOG-negative (n = 39)) and EDSS 
(median (IQR) = 2.00 (1.50–3.00) in MOG-positive 
(n = 10) vs 1.50 (0.00–1.50) in MOG-negative 
(n = 28)).

Discussion
We retrospectively ascertained the presence of MOG-
IgG in archived serum samples from children meeting 
MS diagnostic criteria11 identified as part of a pro-
spective cohort of patients with CNS demyelination, 
well before MOGAD was recognized. We found 
MOG-IgG at presentation in 18% of these partici-
pants, a frequency substantially higher than reported 
in adult MS cohorts, where MOG seropositivity is 
typically below 1% and does not exceed 5%, and the 
vast majority of such patients have low or borderline 
titres.6,7,25–27 Our finding likely reflect, at least in part, 
our study design with assessment of MOG-IgG results 
from samples obtained at the time of presentation, 
therefore including initially MOG-positive children 
who subsequently converted to seronegative. In 
addition, it could also reflect the relatively high pre-
test probability of MOG-IgG among children with 
acquired CNS demyelination, compared to adults,27 
and highlights the importance of a critical evaluation 
of young patients whose MS diagnosis was conferred 
before recognition of MOGAD.

All the MOG-IgG positive children meeting the 2017 
McDonald MS diagnostic criteria in our cohort pre-
sented features atypical of MS (Figure 4), which 
could serve as “red flags” prompting consideration of 
MOGAD (Table 3). In particular, MOG-IgG positive 
patients tended not to demonstrate the classic ovoid 
brain MRI lesions of MS, and their initial lesions 
tended, over time, to dramatically reduce in size, 
yielding a very low cumulative lesion volume. While 
substantial decrease in lesion volume has been previ-
ously described as a common manifestation in par-
ticularly young MS patients (i.e. those presenting 
before the age of 11 years),28 our findings suggest 
such prior reports may have overestimated this asso-
ciation due to inclusion of children with MOGAD 
masquerading as MS. Similarly, while prior studies 
suggested lower frequency of CSF-OCBs in younger 
children with MS,29 OCBs were detected in 85% of 
MOG-IgG negative children in our study, a propor-
tion similar to adult-onset MS.30 Most MOG-IgG 
positive participants in our study were younger than 
11 years at presentation, reinforcing the caution rec-
ommended when applying the 2017 McDonald crite-
ria to this age group.11 The majority of features of 
MOG-IgG positive children observed in this study 
are aligned with what expected in typical pediatric 
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MOGAD.9 Exceptions are a low proportion of chil-
dren presenting with ADEM, and an overall higher 
frequency of clinical relapses and of silent new brain 
MRI lesions,17,31 attributable to the selection of chil-
dren meeting MS diagnostic criteria for the inclusion 
to this study.

Only 3 MOG-IgG positive participants fulfilled 2017 
MS criteria at baseline (two cases meeting DIT thanks 
to presence of CSF-OCBs and one due to simultane-
ous enhancing and non-enhancing lesions), while all 
of them were diagnosed with MS by meeting criteria 

over follow-up. Notably, in one-third of MOG-IgG 
positive participants, development of new asympto-
matic brain lesions was the only evidence of further 
disease activity, although they were typically detected 
within the first months from presentation and contrib-
uted to minimal increase of total T2 lesion volume 
over time. Since only 25% MOG-IgG positive patients 
were treated with MS DMTs at any point (compared 
to 82% MOG-IgG negative patients), the relatively 
limited cumulative lesion burden in seropositive 
patients is unlikely be attributed solely to therapeutic 
disease suppression.

Figure 4. Summary of features considered atypical for MS.
Features considered atypical for MS, in both MOG-IgG positive and MOG-IgG negative participants meeting MS diagnostic criteria. For 
each serologically defined subgroup, the atypical features are shown at presentation, during the disease course, and at time of their most 
recent brain MRI scan. As shown in the intersections of the two Venn diagrams, the majority (10/12) of MOG-IgG positive participants 
exhibited atypical features from initial presentation and throughout their disease course including their most recent MRI, while none 
(0/53) of the MOG-IgG negative MS patients exhibited any of these atypical features throughout their course.
*Minimal lesion load at last MRI evaluation was defined as total T2 lesion volume >0 and <1cc.

Table 3. Red flags prompting evaluation of MOG-IgG antibody status in children meeting MS diagnostic criteria.

Sensitivity (95% CI) Specificity (95% CI)

Presenting features

 Age at onset <11 years 0.92 (0.62–1.0) 0.89 (0.77–0.96)

 Normal brain MRI or exclusively small non-specific lesions 0.45 (0.17–0.77) 1.00

 Large brain lesions with ill-defined borders 0.55 (0.23–0.83) 0.92 (0.80–0.98)

 Diffuse confluent bilateral lesion pattern 0.27 (0.6–0.61) 1.00

Disease course

 Relapses restricted to the optic nerve 0.25 (0.05–0.57) 0.98 (0.90–1.00)

 Complete or near complete resolution of initial MRI T2 lesionsa 0.75 (0.35–0.97) 0.89 (0.77–0.96)
  Absence of new T2 lesions after 1 year from presentation  

(in patients not treated with high efficacy DMTs)
0.73 (0.39–0.94) 0.88 (0.73–0.97)

aDefined as normal brain MRI or total T2 lesion volume >0 and <1cc at last MRI evaluation.
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In our prior publication on a larger MOGAD cohort, 
we observed an overall lower chance for future 
relapses in patients who converted to seronegative, 
although seroconversion did not entirely exclude the 
possibility of further attacks.9 Given the small number 
of MOG-IgG positive participants, we did not investi-
gate the relationship between MOG-IgG titers at pres-
entation, or their evolution over time, on the 
probability to experience further disease activity in 
this study.

Our imaging findings generally support prior studies 
suggesting that atypical MRI features at presentation 
can provide a reasonable index of suspicion for 
MOGAD.32,33 They also strongly support the diagno-
sis of MOGAD in all our MOG-IgG seropositive par-
ticipants, including in the only patient with initial 
borderline-positive results, where particular caution 
should be applied to rule out false-positivity.27 In 
adult MS cohorts, low or borderline MOG-IgG titers 
are frequently considered as “false positives,” while 
higher titers are thought to be more convincingly 
indicative of MOGAD.27 Our findings agree with the 
concept of “true positives,” given that our seroposi-
tive patients followed a disease course consistent with 
MOGAD rather than MS.

The observations that MOG-IgG titers often decline 
rapidly after clinical onset,3,9,10,34 and that MOGAD 
patients may have prolonged periods of undetectable 
antibodies between relapses3,9,10 confound the ability 
to distinguish between relapsing MOGAD and MS 
when testing is performed months after onset. Hence, 
in children who do not have available testing at onset, 
atypical brain MRI features should prompt considera-
tion of possible “missed” MOGAD. The exposure to 
steroid treatment could potentially contribute to a 
faster reduction of antibody levels in the weeks fol-
lowing treatment initiation, possibly increasing the 
yield of false negative results over time. Although we 
cannot entirely exclude this occurrence in our study 
cohort, the acquisition of samples in close proximity 
to clinical presentation, and the negative history for 
steroid exposure prior sample acquisition in over half 
of the seronegative participants, limit the extent in 
which this event could have affected our results.

A strength of our study is the comprehensive prospec-
tive clinical and MRI characterization of our cohort, 
and our ability to evaluate the presence of MOG-IgG 
antibodies in samples obtained in proximity to clini-
cal presentation. Limitations include relatively small 
sample size and the acquisition of spine MRI and CSF 
analysis only in a subset of participants, according to 
clinical indication. While our research protocol did 

not direct the timing or selection of DMTs, we did not 
feel that therapy affected our ability to identify the 
atypical clinical features of MOG-IgG positive 
patients, as 9/12 never received DMT. Other features, 
such as serology evidence of prior Epstein–Barr virus 
(EBV) infection,35 could contribute in differentiating 
pediatric MS from MOGAD,36 and should be object 
of future studies.

In conclusion, a clinically meaningful minority of 
young children meeting MS diagnostic criteria have 
MOGAD. While high-positive MOG-IgG at baseline 
supports a MOGAD diagnosis, the waning of MOG-
IgG titers over time can lead to a missed diagnostic 
opportunity for MOGAD. When serologic testing is 
not obtained at baseline, clinical and MRI features 
atypical for MS should still raise suspicion of 
MOGAD.
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