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ABSTRACT 

 

 Gaining a better understanding of rates and patterns of meiotic recombination is crucial 

for improving evolutionary genomic modelling, with applications ranging from demographic to 

selective inference. Although previous research has provided important insights into the 

landscape of crossovers in humans and other haplorrhines, our understanding of both the 

considerably more common outcome of recombination (i.e., non-crossovers) as well as the 

landscapes in more distantly-related primates (i.e., strepsirrhines) remains limited owing to 

difficulties associated with both the identification of non-crossover tracts as well as species 

sampling. Thus, in order to elucidate recombination patterns in this under-studied branch of the 

primate clade, we here characterize crossover and non-crossover landscapes in aye-ayes 

utilizing whole-genome sequencing data from six three-generation pedigrees as well as three 

two-generation multi-sibling families, and in so doing provide novel insights into this important 

evolutionary process shaping genomic diversity in one of the world's most critically endangered 

primate species.  
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INTRODUCTION 

 

 Recombination is a fundamental biological process required for faithful gametogenesis in 

most sexually reproducing species (see the reviews of Baudat et al. 2013; Johnston 2024). 

Apart from being essential for the proper pairing of homologous chromosomes and their 

segregation into gametes during meiosis (Keeney 2001), recombination also plays an important 

evolutionary role in shuffling genetic variation, improving the efficacy of natural selection by 

breaking linkage interference between segregating beneficial and deleterious alleles (Hill and 

Robertson 1966; Felsenstein 1974; and see the review of Charlesworth and Jensen 2021).  

 In primates, as in many other organisms, meiotic recombination predominantly occurs in 

1-2 kb long regions of the genome – so called recombination "hotspots" – the location of which 

is mainly determined by the zinc-finger protein PRDM9 (Baudat et al. 2010; Myers et al. 2010; 

Parvanov et al. 2010). By binding specific DNA sequence motifs and trimethylating histone H3 

at lysines 4 and 36 (Powers et al. 2016), PRDM9 guides the meiotic machinery to initiate the 

formation of DNA double-strand breaks, the repair of which may result in either a reciprocal 

exchange between homologs (termed a crossover; CO) or a unidirectional replacement of a 

genomic region in one chromosome leaving the donor homolog unmodified (termed a non-

crossover; NCO) (see reviews of Wang et al. 2015; Lorenz and Mpaulo 2022; Johnston 2024).  

 While both COs and NCOs play important roles in shaping genetic diversity (Przeworski 

and Wall 2001), previous studies have suggested that NCOs tend to be considerably more 

common than COs in most organisms (Jeffreys and May 2004; Cole et al. 2010; Comeron et al. 

2012; Li et al. 2019). However, owing to the difficulty in detecting the often very small NCO 

events (with most tract lengths in humans being < 1 kb; Jeffreys and May 2004; Williams et al. 

2015; Halldorsson et al. 2016), combined with the need for a segregating variant to be present 

in the donor homolog in order to allow identification (i.e., the tract remains undetectable if the 

donor and converted sequence are identical), the NCO landscape remains comparatively 
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understudied. For these same reasons, combined with other underlying assumptions such as 

geometrically-distributed tract lengths, computational approaches for NCO inference are 

generally characterized by poor accuracy (see discussion of Wall et al. 2022). As such, time-

consuming and costly direct pedigree-sequencing studies remain the most promising avenue for 

improving our understanding of this process (and see Peñalba and Wolf 2020 for a detailed 

overview of current methodologies). 

With regards to primates specifically, although previous research has begun to elucidate 

the rates and patters of recombination in haplorrhines – a suborder of primates that includes 

humans (Kong et al. 2002, 2010; Coop et al. 2008; Pratto et al. 2014; Williams et al. 2015; 

Halldorsson et al. 2016), other great apes (Auton, Fledel-Alon, Pfeifer, Venn et al. 2012; Pfeifer 

and Jensen 2016; Stevison et al. 2016), and monkeys (Rogers et al. 2000, 2006; Cox et al. 

2006; Jasinska et al. 2007; Xue et al. 2016, 2020; Pfeifer 2020; Wall et al. 2022; Versoza, 

Weiss et al. 2024) – little remains known about this process in strepsirrhines. As the most basal 

suborder of primates, gaining insights into the population genetic forces shaping the genomes of 

strepsirrhines is crucially important, not only to improve our understanding of primate evolution, 

but also for elucidating the scale at which recombination rates and spatial distributions of CO 

and NCO events may change between taxonomic groups, as this variation has been shown to 

be substantial (see reviews of Paigen and Petkov 2010; Stapley et al. 2017). Given the vital role 

of recombination in maintaining genetic diversity, such inference is additionally important for the 

development of effective conservation strategies, particularly as many strepsirrhines are highly 

endangered (Gross 2017). For example, amongst the more than 100 species of strepsirrhines 

endemic to Madagascar (Mittermeier et al. 2010), aye-ayes (Daubentonia 

madagascariensis) are one of the most threatened by anthropogenic activities, such as slash-

and-burn agriculture, logging, mining, and urbanization (Suzzi-Simmons 2023), with the 

resulting extensive habitat loss and fragmentation having already decimated their populations to 

an estimated 1,000 to 10,000 individuals (Louis et al. 2020).  
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 Thus, to elucidate the rates and patterns of recombination in this under-studied branch 

of the primate tree – which represents an early split in the primate clade and thus a valuable 

comparative outgroup for future primate studies – we here investigate both the more commonly 

studied CO and the less-commonly studied NCO landscapes in aye-ayes. Using whole-genome 

sequencing data from six three-generation pedigrees and three two-generation multi-sibling 

families, we present the first recombination rate estimates for a strepsirrhine and thereby 

provide novel insights into this important evolutionary process shaping genetic diversity in one 

of the world's most critically endangered primate species. 

 

 

RESULTS AND DISCUSSION 

 

 To study the rates and patterns of recombination in aye-ayes, 14 individuals were 

selected from a multi-generation pedigree housed at the Duke Lemur Center, the genomes of 

which were sequenced to mean depths of 50X (Supplementary Table 1; Versoza et al. 2024a). 

After mapping reads to the species-specific genome assembly (Versoza and Pfeifer 2024), 

autosomal variants were called following the Genome Analysis Toolkit's Best Practices (van der 

Auwera and O'Connor 2020), and filtered using a set of coverage-, genotype-, and inheritance-

based criteria described in Versoza, Weiss et al. (2024), resulting in a high-confidence call set 

consisting of 1.8 million variants (Supplementary Table 2). This call set was divided into six 

three-generation pedigrees and three two-generation nuclear families with multiple offspring 

(Supplementary Figure 1) for which gamete transmission could be tracked in order to identify 

recombination events based on "phase-informative" markers – that is, heterozygous variants for 

which the parent-of-origin could be determined (with an average of 0.5 million phase-informative 

markers per pedigree / family; Supplementary Table 3, and see Figure 1b in Versoza, Weiss et 

al. 2024 and Supplementary Figure 2 for a schematic of the workflow in the three-generation 
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pedigrees and two-generation nuclear families; respectively). Based on these phase-informative 

markers, recombination events were classified as either COs – that is, a single change of 

haplotype phase along a chromosome (from maternally-inherited to paternally-inherited 

haplotype blocks or vice versa) – or NCOs – that is, phase-informative markers that mismatched 

surrounding haplotype blocks (for additional details, see "Materials and Methods" in the 

Supplementary Materials). 

 

The landscape of COs in aye-ayes  

 A total of 117 and 310 putative CO events were identified across the autosomes in 6 and 

18 meioses through the pedigree-based and family-based approaches, respectively. Visual 

inspection of these initial datasets revealed a clustering (i.e., ≥ 2 COs originating from the same 

meiosis located within < 1 Mb) of 36 COs across 8 genomic regions, with the majority of these 

36 events (94.4%) identified through only one of the two approaches (Supplementary Table 4). 

Although COs form at random during meiosis, crossover interference tightly regulates their 

location within each chromosome (Muller 1916; Broman and Weber 2000), making such a 

pattern highly implausible in nature (see the discussions of Wall et al. 2022; Versoza, Weiss et 

al. 2024). More likely, this observation is driven by genotyping errors; thus, these CO events 

were excluded from further analyses, as is common practice. Subsequently, pedigree-based 

and family-based datasets were consolidated across the 20 meioses, and an additional 17 COs 

were removed either because the event was detected across multiple meioses (16 COs), 

possibly indicating a mis-placement or inversion of a contig during the genome assembly, or 

because it occurred at the same position as a NCO in another individual (1 CO), thus likely 

resulting from a genotyping error. The final dataset contained 305 COs: 163 and 142 COs in the 

10 maternal and 10 paternal meioses, respectively (Figure 1a; and see Supplementary Table 5 

for details).  
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 Aye-ayes exhibit one of the lowest levels of nucleotide diversity of any primate studied to 

date (Perry et al. 2013; Terbot et al. 2024; Soni et al. 2024) – yet, despite the resulting lower 

marker density across the pedigree, the median resolution of male and female CO events (12.9 

and 20.0 kb; Supplementary Figure 3, and see Supplementary Table 6 for a summary) is on par 

with those previously obtained from similarly-sized non-human primate pedigree studies (7.7 

and 22.3 kb in olive baboons [Wall et al. 2022] and rhesus macaques [Versoza, Weiss et al. 

2024], respectively). In accordance with crossover assurance, ensuring an obligate CO between 

homologous chromosomes (or chromosome arms) during meiosis (Jones and Franklin 2006), 

an average of 1.1 COs were identified per chromosome and meiosis. In total, between 10 and 

21 COs were observed per meiosis across the 14 autosomes (Supplementary Table 6), with CO 

density in males and females roughly inversely correlated with chromosome size 

(Supplementary Figure 4). CO events were significantly enriched in regions harboring predicted 

PRDM9 binding sites (210 out of 305 COs, or 68.9%; p-value < 2.2e-16, one-sided binomial 

test; Figure 1a) using the degenerate sequence motifs previously determined in great apes 

(Berg et al. 2011; Auton, Fledel-Alon, Pfeifer, Venn et al. 2012; Schwartz et al. 2014; Stevison 

et al. 2016) as a proxy (note that given the high turn-over rate of PRDM9 binding motifs 

between species, the actual overlap is likely even greater). Consistent with a preferential 

binding of PRDM9 in intronic and intergenic regions that are often more accessible in chromatin 

structure (Coop et al. 2008; Walker et al. 2015), CO events were enriched in these genomic 

regions (Supplementary Figure 5). Additionally, a clustering of COs was observed toward the 

telomeric ends in males, while females displayed an overall larger number of COs that were 

more evenly spaced throughout the genome (Figure 1b), as previously observed in other 

primates (e.g., Kong et al. 2002, 2010; Coop et al. 2008; Wall et al. 2022; and see Lenormand 

and Dutheil 2005 and Sardell and Kirkpatrick 2020 for a discussion of this widespread 

phenomenon). Moreover, in agreement with recent studies in humans (Porubsky et al. 2024) 

and chimpanzees (Venn et al. 2014), the frequency of CO events decreased with both maternal 
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and paternal age in aye-ayes (with 1.48 and 1.36 fewer COs per year, respectively; Figure 1c); 

however, given the small sample size, this observation is not statistically significant (maternal: 

adjusted R2 = 0.1307, p-value: 0.4583 and paternal: adjusted R2 = -0.2682, p-value: 0.5864). 

Based on the number of COs per meiosis, the sex-averaged autosomal genetic map was 

estimated to be 1,525 cM in length (Table 1) – approximately 25-35% shorter than those of 

catarrhines (Rogers et al. 2000, 2006; Cox et al. 2006; Jasinska et al. 2007; Wall et al. 2022; 

Versoza, Weiss et al. 2024) as may be anticipated from the lower karyotype (2n = 30 in aye-

ayes [Tattersall 1982] vs. 2n = 42 and 60 in rhesus macaques [Owen et al. 2016] and vervet 

monkeys [Finelli et al. 1999], respectively) (Pardo-Manuel de Villena and Sapienza 2001), 

which, in turn, exhibit shorter map lengths than hominoids (Kong et al. 2002, 2010; Venn et al. 

2014). Similar to other primates, females exhibit an overall longer genetic map length than 

males (1,630 cM vs 1,420 cM) – however, the ratio of the female to male autosomal map length 

(1.15) is lower than that observed in humans (1.36; Porubsky et al. 2024). The genome-wide 

average CO rates in males and females were thus estimated to be 0.77 cM/Mb and 0.94 cM/Mb 

(Table 1) – approximately 40-50% lower than the average rates of 1.3 cM/Mb and 2.0 cM/Mb 

reported in humans (Bhérer et al. 2017) – with the overall lower sex-averaged rate (0.85 cM/Mb) 

likely contributing to the low levels of genetic diversity observed in the species (Perry et al. 

2013; Terbot et al. 2024; Soni et al. 2024). 

 

The landscape of NCOs in aye-ayes  

 A total of 151 and 198 putative NCO events were identified through the pedigree-based 

and family-based approaches, respectively (note that complex events involving multiple, non-

contiguous NCO tracts within < 5 kb as well as NCOs with tracts > 10 kb were excluded from 

analyses as such events were previously shown to frequently represent incorrect genotype calls 

or assembly errors; Smeds et al. 2016; Wall et al. 2022). After merging the datasets from the 

pedigree-based and family-based approaches, 88 NCOs were removed, either because the 
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event was detected across multiple meioses (86 NCOs) or because the phase-informative 

markers overlapped with a structural variant (1 NCO; Versoza et al. 2024b) or CO in another 

individual (1 NCO). Thus, the final dataset contained 200 NCOs, 95 and 105 of maternal and 

paternal origin, respectively (Figure 2a; and see Supplementary Table 7 for details).  

 On average, 0.71 NCOs were identified per chromosome and meiosis, with 1 to 20 

NCOs per meiosis across the 14 autosomes (Supplementary Table 6). Although quantitatively 

similar to recent estimates in catarrhines (e.g., 1.06 NCOs per chromosome and meiosis in 

rhesus macaques; Versoza, Weiss et al. 2024), this represents a conservative estimate, both 

because NCO events occurring between phase-informative markers will inevitably be missed (a 

particular challenge for species exhibiting low heterozygosity – and thus low marker density – 

such as aye-ayes) but also because the application of stringent quality metrics required to filter 

out false positives may have inadvertently removed genuine NCO events.  

 NCOs are slightly less abundant in females than males (8.6 vs. 9.6) and exhibit shorter 

average tract lengths (157 vs. 165 bp; Figure 2b and see Supplementary Table 6). The sex-

averaged mean tract length of 161 bp is similar to those observed in pedigree studies of other 

primates (with estimated mean tract length of 55-290 bp in humans [Jeffreys and May 2004], 

42-167 bp in baboons [Wall et al. 2022], and 155 bp in rhesus macaques [Versoza, Weiss et al. 

2024]). In fact, the majority of events (57.1%) include only a single phase-informative marker, 

exhibiting a tract length of 1 bp. However, similar to humans (Williams et al. 2015), baboons 

(Wall et al. 2022), and rhesus macaques (Versoza, Weiss et al. 2024) several NCOs with tract 

length longer than 1 kb were also observed (6 in males and 4 in females; Supplementary Table 

7). Furthermore, in agreement with empirical patterns observed in other primates (Williams et al. 

2015; Halldorsson et al. 2016; Wall et al. 2022; Versoza, Weiss et al. 2024), the distribution of 

NCO tract lengths (Figure 2b) appears more consistent with a power-law (or heavy-tailed) 

distribution than the single geometric distribution frequently modelled (Frisse et al. 2001; Gay et 

al. 2007; Yin et al. 2009). 
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 In contrast to the transmission bias towards strong (C and G) alleles observed at NCOs 

in haplorrhines (68% in humans [Odenthal-Hesse et al. 2014; Williams et al. 2015; Halldorsson 

et al. 2016], 57.6% in baboons [Wall et al. 2022], and 56.5% in rhesus macaques [Versoza, 

Weiss et al. 2024]), there is no support for GC-biased gene conversion (see review of Duret and 

Galtier 2009) at NCOs in aye-ayes (45.7%; 95% CI: 37.5-54.0%; p-value = 0.1763; two-sided 

binomial test) – however, the small sample size limits statistical power in these comparisons. 

 Overall, aye-ayes exhibit a sex-averaged NCO rate of 6.8 ´ 10-7 per base pair per 

generation (95% CI: 2.9 ´ 10-7 – 1.1 ´ 10-6) – an order of magnitude lower than the rates 

previously observed in humans (2.6 ´ 10-6 – 5.2 ´ 10-5; Jeffreys and May 2004; Williams et al. 

2015; Halldorsson et al. 2016) and baboons (7.52 ´ 10-6; Wall et al. 2022). Based on an overall 

autosomal genome length of 2.28 Gb, it is thus expected that an average of ~1.5 kb will be 

affected by NCOs in each generation.  

 

 

In summary, the landscape of CO and NCO events in aye-ayes presented here provides novel 

insights into a parameter crucial for improving population genetic modelling in this highly 

endangered species, and will serve as a valuable resource for future comparative genomic 

studies seeking to understand the long-term evolution of recombination landscapes across the 

primate clade.  
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Table 1. Number of crossover (CO) events and genetic distances identified in maternal / 

paternal meioses. 

 

 
  

scaffold length (Mb) # CO events cM cM/Mb 
1 316.17 20 / 18  200 / 180 0.63 / 0.57 
2 290.59 14 / 9 140 / 90 0.48 / 0.31 
3 261.42 18 / 14 180 / 140 0.69 / 0.54 
4 219.69 13 / 14 130 / 140 0.59 / 0.64 
5 215.45 14 / 8 140 / 80 0.65 / 0.37 
6 204.02 16 / 13 160 / 130 0.78 / 0.64 
7 199.60 9 / 16 90 / 160 0.45 / 0.80 
8 162.77 11 / 9 110 / 90 0.68 / 0.55 
10 114.90 12 / 10 120 / 100 1.04 / 0.87 
11 102.08 9 / 10 90 / 100 0.88 / 0.98 
12 67.30 4 / 5 40 / 50 0.59 / 0.74 
13 62.73 11 / 8 110 / 80 1.75 / 1.28 
14 34.25 6 / 5 60 / 50 1.75 / 1.46 
15 28.26 6 / 3 60 / 30 2.12 / 1.06 

autosomal 2,279.23 163 / 142  1,630 / 1,420 0.94 / 0.77 
(sex-averaged) (152.5) (1,525) (0.85) 
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FIGURE LEGENDS 
 
Figure 1. Characteristics of crossovers. (a) The genomic distribution of CO events in females 

(shown as red circles) and males (blue circles) across the autosomes (note that scaffold 9, i.e., 

chromosome X, is not displayed). The heatmap indicates the density of PRDM9 binding sites 

across 10 Mb genomic regions. (b) Relationship between female and male CO rates and 

relative proximity to telomeric regions. (c) Relationship between maternal and paternal age at 

birth and the number of CO events. 

 
Figure 2. Characteristics of non-crossovers. (a) The genomic distribution of NCO events in 

females (shown as pink circles) and males (blue circles) across the autosomes (note that 

scaffold 9, i.e., chromosome X, is not displayed). The heatmap indicates the density of PRDM9 

binding sites across 10 Mb genomic regions. (b) Distribution of sex-specific NCO tract lengths 

(reported in base pairs [bp]) based on phase-informative sites that mismatched the surrounding 

haplotype block.     
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Figure 1.  
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Figure 2.  
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