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During virus infection, host toll-like receptors (TLRs) can recognize different pathogen-associated mo-
lecular patterns and trigger the innate immune response. TLR7/8 can identify the single-stranded RNA
(ssRNA) of the virus. This study aimed to search ssRNA sequences recognized by TLR7/8 from the SARS-
CoV-2, SARS-CoV, and MERS-CoV whole genomes by a bioinformatic technique. The immunoinformatic
approach showed that the SARS-CoV-2 genome has more ssRNA fragments that could be recognized by
TLR7/8 than the SARS-CoV genome. These findings suggest innate immune hyperactivation by SARS-CoV-
2. This activity is possibly able to provoke a robust proinflammatory response via TLR7/8 recognition and
cause acute lung injury.

© 2020 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
The novel coronavirus (SARS-CoV-2) represents a public health
emergency of international concern [1]. As of 10th March 2020, the
death toll from the novel coronavirus stood at 4,012, with more
than 113,702 confirmed cases in China, as well as cases in 109 other
countries [2]. Coronaviruses are single, positive-sense RNA viruses
belonging to the family Coronaviridae, which includes Middle East
respiratory syndrome coronavirus (MERS-CoV) and severe acute
respiratory syndrome coronavirus (SARS-CoV) [3].

Viral interactions with the host immune system play a central
role in the outcome of infection. In the initial phase, recognition of
evolutionarily conserved microbial structures, known as pathogen-
associated molecular patterns (PAMPs), is an essential function of
the innate immune system [4]. Germ line-encoded pattern recog-
nition receptors (PRRs) are proteins expressed by a variety of cells
and are responsible for sensing the presence of PAMPs. Sensing of
PAMPs by PRRs markedly upregulates the transcription of genes
involved in inflammatory responses [4].

Toll-like receptors (TLRs) belong to a conserved family of innate
immune recognition receptors acting as the primary sensors of
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specific PAMPs expressed by numerous pathogens [5]. The human
TLR family comprises 11 members, of which TLR-3, -7, and -8 are
essential in recognition of structural components of RNA viruses
[6e8]. TLR7 senses single-stranded RNA (ssRNA) oligonucleotides
containing guanosine- and uridine-rich sequences from RNA vi-
ruses [6]. Recognition occurs in the endosomes of plasmacytoid
dendritic cells (DCs) and B cells. TLR8 is phylogenetically and
functionally closely related to TLR7 and recognizes ssRNA. It is
preferentially expressed in myeloid DCs and monocytes [7].

In this study, we searched ssRNA fragments in the whole
genome from SARS-CoV, MERS-CoV, and SARS-CoV-2 (from
different geographical origins mainly from Germany [SARS-CoV-2/
Germany] and Wuhan [SARS-CoV-2/Wuhan]) by a bioinformatics
scanning technique to reveal important TLR7/8 recognition sites in
the whole genome of these.

1. Materials and methods

1.1. Bioinformatics analysis of ssRNA sequences

All genomic sequences were collected on 31 January 2020 from
GenBank or Gisaid [9]. Those of SARS coronavirus NC_004718.3;
Middle East respiratory syndrome coronavirus NC_019843.3;
d.
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BetaCoV/Wuhan/IPBCAMS-WH-01/2019 EPI_ISL_402123, and
BetaCoV/Germany/BavPat1/2020 EPI_ISL_406862 were employed.
SequenceSearcher software (http://athena.bioc.uvic.ca/tools/
SequenceSearcher) [10] was used to perform motif ssRNA
searches for the whole-genome sequences of SARS-CoV, MERS-
CoV, SARS-CoV-2/Wuhan, and SARS-CoV-2/Germany.

2. Results

Crystallographic, biophysical, and cellular data have established
ssRNA sequence preferences for TLR7. The UU(U/C) motif fully binds
to TLR7, followed by the UU(G/A) motif (moderate binding) [11].
Therefore, we investigated the number of UUU, UUC, UUG, and UUA
ssRNA fragments in the whole genome sequences of SARS-CoV-2/
Wuhan, SARS-CoV-2/Germany, SARS-CoV and MERS-CoV. The
four virus genomes analyzed showed similar amounts of U and G
nucleotides, and the full lengths of each genome are comparable
(Table 1). The SARS-CoV-2/Wuhan genome presented 708 UUU
ssRNA fragments, which represents 17.4% more fragments than the
SARS-CoV genome (1.17-fold change) and 8.1% more than the
MERS-CoV genome (1.08-fold change). No difference was found in
the number of UUU ssRNA fragments between the SARS-CoV-2/
Wuhan genome and the SARS-CoV-2/Germany genome isolated
on January 28, 2020 in Germany (only two additional sequences)
(Table 1 and Fig. 1).

Interestingly, (UUU)2 repeated motifs were more abundant in
the SARS-CoV-2/Wuhan and SARS-CoV-2/Germany genomes
(n ¼ 4) than in the SARS-CoV genome (n ¼ 2) and equally repre-
sented in the MERS-CoV genome (Table 1 and Fig. 1).

The SARS-CoV-2/Wuhan genome presented 518 UUC ssRNA
fragments, which was less than the number in the SARS-CoV
genome (n ¼ 563). However, (UUC)2 repeated motifs were 13.6%
more abundant in the SARS-CoV-2/Wuhan genome than in the
SARS-CoV genome (1.15-fold change) (Table 1 and Fig. 1).

Regarding UUA/G ssRNA fragments, show a lower binding af-
finity than the other motifs to TLR7, we found 27.1% (UUA; 1.27-fold
change) and 5.3% (UUG; 1.05-fold change)more ssRNA fragments in
Table 1
Analysis of the number of ssRNA fragments from the coronavirus whole genome recogn

Genome SARS-CoV MERS-CoV

Reference Sequence: NC_004718.3 NC_019843.3
U % (bp) 30.73 (9143) 32.94 (9799)
A % (bp) 28.51 (8481) 26.55 (7900)
C% (bp) 19.97 (5940) 20.56 (6116)
G % (bp) 20.80 (6187) 21.19 (6304)
Total nucleotides (bp) 29,751 30,119
The number of oligonucleotide fragments recognized by TLR7
Motif fully bound
UUU 603 655
(UUU)2 2 4
UUC 563 581
(UUC)2 13 14
(UUC)3 1 0
Motif moderately bound
UUA 689 791
(UUA)2 22 30
(UUA)3 3 1
aUUG 776 846
(UUG)2 24 31
(UUG)3 0 1
The number of oligonucleotide fragments recognized by TLR8*
UG 2664 2704
(UG)2 199 191
(UG)3 16 16
(UG)4 3 1
(UG)5 1 0

a UUG motifs are also recognized by TLR8.
the SARS-CoV-2 genome than in the SARS-CoV genome. No notable
differences were found in the number of these ssRNA fragments
between the SARS-CoV-2/Wuhan and SARS-Cov-2/Germany ge-
nomes (Table 1 and Fig. 1).

A study published by Tanji Hiromi et al. [12] revealed that in the
crystallographic structure of TLR8eORN06 (UUG6UU), only two or
three nucleotides interact in the second active site of TLR8, namely,
UG or UUG oligonucleotides [12]. Therefore, we investigated the
number of UG ssRNA fragments in the whole-genome sequences of
SARS-CoV-2, SARS-CoV and MERS-CoV. The number of (UG)n
ssRNAmotifs was always lower in the SARS-CoV-2/Wuhan genome
than in the SARS-CoV genome. However, the number of UUG ssRNA
fragments was higher in the SARS-CoV-2/Wuhan genome than in
the SARS-CoV genome, as previously shown in the TLR7 analysis
(Table 1 and Fig. 1).

Therefore, it can be speculated that the SARS-CoV-2 genome
contains more ssRNA fragments with the possibility of interacting
with TLR7/8 than the SARS-CoV genome. Accordingly, SARS-CoV-2
has many more chances than SARS-CoV to contact the host innate
immune system, and SARS-CoV-2 has the similar probability than
MERS-CoV to interact with TLR7/8.

3. Discussion

The SARS-CoV-2, SARS-CoV, and MERS-CoV infections show
several similarities regarding the clinical presentations, which can
vary from asymptomatic infection to severe disease [13]. Addi-
tionally, a cytokine-storm has been observed in the rapid course of
SARS [14,15] and MERS [16,17], and in the serum of SARS-CoV-2-
infected patients, proinflammatory cytokines are upregulated
[18]. It was inferred that an overactive innate immune response
could contribute to virus-induced immune pathology resulting in
acute lung injury in the infected patients. Therefore, in this study,
based on the essential structural feature of the PAMP-PRR complex,
specifically the interaction of TLR7/TLR8 with ssRNA [11,12], we
searched ssRNA fragments with a pathogenic molecular pattern
from the SARS-CoV-2, MERS-CoV and SARS-CoV whole genomes.
ized by TLR7/8.

SARS-CoV-2/Wuhan SARS-CoV-2/Germany

EPI_ISL_402123 EPI_ISL_406862
32.24 (9593) 32.16 (9567)
30.08% (8949) 29.89 (8893)
18.46 (5492) 18.39 (5471)
19.71 (5865) 19.67 (5851)
29,899 29,782

708 706
4 4
518 513
15 15
3 3

876 873
25 25
0 0
817 817
22 22
0 0

2589 2586
175 174
12 12
1 1
0 0
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Fig. 1. Comparison of the number of ssRNA fragments from coronavirus genomes recognized by TLR7/8. The number of oligonucleotide fragments found in the SARS-CoV-2,
MERS-CoV and 2020-nCoV genomes with respect to the SARS-CoV genome are shown by fold change. (A) Oligonucleotide fragments fully bound to TLR7, (B) oligonucleotide
fragments moderately bound to TLR7, and (C) oligonucleotide fragments bound to TLR8. UUG motifs are also recognized by TLR8.
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Our bioinformatic analysis showed that the SARS-CoV-2 genome
contains a large number of fragments that could be recognized by
TLR7/8, and it even contains more fragments than the SARS-CoV
genome. This result suggests the ability to induce a rapid type I
interferon response [7]. The production of type I IFNs (primarily
alpha IFN [IFN-a] and IFN-b) plays a central role in the induction of
antiviral responses. Type I IFNs influence protein synthesis, growth
regulation, and apoptosis and enhance the maturation of DCs, the
cytotoxicity of natural killer cells, and the differentiation of virus-
specific cytotoxic T lymphocytes [19]. However, innate immune
hyperactivation could be involved in the dysregulation of a series of
proinflammatory cytokines during viral infection [20].

The recognition of ssRNA fragments by TLR7/8 could depend on
the virus replication manner, so that a more robust proin-
flammatory response should occur after a latent period, except for
the host immune cell taking up viral particles. This effect is feasible
because a number of immune cells display distinct susceptibility to
MERS-CoV [17] and SARS-CoV [21].

Interestingly, in addition to its expression in immunological
cells, TLR7/8 is expressed predominantly in the lung, bronchus,
breast, rectum, smooth muscle tissue, cerebral cortex, and kidney
[22]. Although TLR7 and TLR8 are phylogenetically and structurally
related, TLR7- and TLR8-specific agonists trigger different cytokine
induction profiles. TLR7-specific agonists generally induce IFN-
regulated cytokines, but TLR8-specific agonists lead primarily to
the production of proinflammatory cytokines [23]. These factors
may provide SARS-CoV-2 with a shortcut to trigger an innate im-
mune response through TLR7/8 and ultimately contribute to the
development of immune pathology within the lungs.
Most likely, additional pathogenic molecular patterns can be
recognized by other innate immune receptors, such as SARS-CoV
spike protein, which was observed to be a TLR2 ligand [24], and
damage-associated molecular patterns (DAMPs) that are released
in response to tissue damage from cells killed by viruses [25]. All of
these factors also probably contribute to the cytokine storm. The
interaction between viral PAMPs and PRRs in immune cells plays an
essential survival role in the response to viral infections but may be
simultaneously responsible for tissue injury associated with severe
virus-induced inflammation.

For positive-sense RNA viruses such as coronavirus, it is
known that viral genomic ssRNA is recognized by either the
endosomal RNA receptors (TLR7/TLR8), and the cytosolic RNA
sensors, such as retinoid-inducible gene-1 (RIG1), melanoma
differentiation-associated gene 5 (MDA5), laboratory of genetics
and physiology 2 (LGP2), and cytoplasmic protein kinase R (PKR)
[26]. Nevertheless, the consensus definition of cytosolic RNA
sensor ligands remains controversial, and the crystal structures
with their RNA sequence-specific are not available. For this
reason, the cytosolic sensors were not included in the bio-
informatic analysis.

In conclusion, the SARS-CoV-2 genome contains more ssRNA
fragments that could be recognized by TLR7/8 than the SARS-CoV
genome and similar ssRNA fragments than the MERS-CoV
genome; possibly making it able to provoke a robust proin-
flammatory response via TLR7/8 recognition and cause acute lung
injury, leading to death. These bioinformatic findings suggest that
SARS-CoV-2 plays a crucial role in the overactive innate immune
response.
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