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ABSTRACT 

 

Introduction: Quantification of dynamic contrast-enhanced (DCE)-MRI has the potential to 

provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge 

for clinical adoption.  

Methods: A 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals 

derived from the Extended Tofts model with the Parker arterial input function. Network training 

incorporated B1 inhomogeneities to estimate perfusion (Ktrans, vp, ve), tissue T1 relaxation, proton 

density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison 

to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in 10 

healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate 

the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. 

Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor.  

Results: The DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of 

variation (CV) in the healthy cervix varied between 5-51% depending on the parameter. Parameter 

values in the tumor agreed with previous studies despite differences in methodology. The CV in 

the tumor varied between 1-47%.  

Conclusion: The proposed approach provides comprehensive DCE-MRI quantification from a 

single acquisition. DCE-Qnet eliminates the need for separate T1 scan or BAT processing, leading 

to a reduction of 10 minutes per scan and more accurate quantification. 
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1.  Introduction 

Quantitative parametric maps derived from dynamic contrast-enhanced (DCE)-MRI data can 

provide important information for cancer diagnosis and early treatment response evaluation. For 

example, quantitative DCE-MRI can be used to study tumor vascularity and identify tumors that 

are better perfused and oxygenated and thus more sensitive to chemotherapy or radiotherapy [1]. 

However, despite extensive research work and promising results, quantitative perfusion 

parameters still play a very limited role in routine clinical practice [2]. One of the main causes 

has been the challenging pharmacokinetic modeling and quantification involved in DCE 

analysis. The DCE perfusion parameters of interest are sensitive to patient-specific variables, 

such as T1, arterial input function (AIF), bolus arrival time (BAT), blood hematocrit and others, 

which must be known for accurate quantification. While some of these parameters can be 

estimated using separate scans or measurements, misregistration between the separate 

acquisitions (induced by motion, for example) can introduce errors into the maps. Similarly, 

most of the methods for BAT calculation rely on a subjective delineation of some threshold to 

determine the contrast agent (CA) onset [3], [4]. In short, the dependence of the signal on 

multiple parameters and the complexity of the pharmacokinetic models is a significant challenge 

for reproducible quantification.  

Deep neural networks (DNN) are attractive for DCE-MRI quantification, as they can efficiently 

model complex, nonlinear functions [5] and are thus able to map measured signals to the 

underlying parameters even with limited training data [6], [7], [8]. This allows DNNs to 

efficiently solve the inverse problem [9], [10] and correctly estimate the underlying parameters. 

Recent work demonstrated the usefulness of DNNs for DCE-MRI estimation [4], [11], [12], [13]. 

However, most of these studies required a separate T1 acquisition and BAT analysis and the use 

of patient-derived AIF curves, which may not be universally available, to train the neural 

network.  

This work presents a comprehensive DNN-based quantification method for DCE-MRI data 

called DCE-Qnet that estimates quantitative T1, proton density (PD), and BAT maps, in addition 

to perfusion parameters (Ktrans, vp, ve), using a single acquisition, and therefore eliminates the 

need for a separate T1 acquisition or BAT analysis. DCE-Qnet also presents a novel way to map 



T1 from contrast enhancement only. The methodology proposed in DCE-Qnet is inspired by the 

DRONE approach [6], which utilizes a DNN trained with simulated, physics-derived Bloch 

equations to perform T1 and T2 mapping. DCE-Qnet is evaluated using digital phantoms with 

realistic T1, BAT and perfusion parameter values, and compared to a standard fitting algorithm. 

The clinical utility of DCE-Qnet is demonstrated in 10 healthy subjects and one patient with 

cervical cancer. 

2.  Methods 

2.1.  Neural network architecture and training 

The mathematical framework and notation of the extended Tofts model used in this work are 

described in the Appendix section. A 7-dimensional neural network was defined consisting of a 

60-nodes input layer, five 300-node hidden layers and a 5-node output layer (Figure 1). A set of 

100,000 tissue parameters were sampled from the following ranges: Ktrans=[0, 0.5] 1/min, vp=[0, 

70]%, ve=[0, 80]%, T10=[0, 3000]ms, BAT=[25, 175] seconds , B1=[0, 2] as a scaling of the 

nominal B1. Sampling was accomplished using latin-hypercube (LH) sampling, a statistical 

method for generating random but relatively uniformly distributed samples in each dimension 

[14]. The transmitter B1 field was included in network training to account for inevitable B1 

inhomogeneities but excluded from network output to avoid additional burden in the estimation 

process. For each set of parameters, a DCE-MRI experiment was simulated using Eqns. (A1)-

(A5). The parameters of the Parker AIF were obtained from Ref. [15] and the resulting signals 

were normalized to have a l2-norm of 1. The equilibrium magnetization (S0) in the signal (Eqn. 

A5) is a scaling factor that is removed during normalization and was hence set to 1 in the 

analysis. The BAT value was defined as the time-shift which minimized the difference between 

the measured and fitted curves for each voxel. A validation set was defined using 20% of the 

generated data to quantify the quality of the network training with the remainder used for 

training. The DCE-MRI simulation was implemented on an Nvidia RTX2080 Ti graphics 

processing unit (GPU) (Nvidia Corp. Santa Clara, CA) with 11 GB of memory. The loss was 

defined as the mean absolute error and the network was trained with the Adam optimizer [16] 

with a batch size of 1000 and an adaptive learning rate with weight decay of 10-4. Zero mean 

Gaussian noise was added during training to promote robust learning [17] and the network was 

trained for 3000 epochs.  



The estimated parameters were used in combination with the measured data to quantify the 

proton density (PD). As in MR fingerprinting (MRF), the PD of each voxel was calculated as a 

scaling of the reconstructed data using the expression [18]: 𝑃𝐷 =
𝒎𝑇𝒅

‖𝒅‖𝟐
 where m is the measured 

signal and d is the signal synthesized from the tissue parameter values found by the network.  

 

 

Figure 1: Main components of the DCE-Qnet estimation process. (A) Sampling of the DCE parameters shown for 3 

out of 6 parameters for visualization purposes. The parameter values were generated by LH sampling of the 6-

dimensional space. (B) The population-based Parker AIF was used to generate the concentration-time curves for 

each of the DCE parameter combinations. (C) Concentration-time curves were converted to signal intensity values 

using the signal model defined in Eqn. (A5). (D) Diagram of the neural network used. Signal intensity curves 

generated from the sampled DCE parameters were used as input to the network during training. The network learned 

to map the signal intensity curves to the underlying tissue parameters. The proton density was then calculated from 

measured and synthesized signals obtained with the estimated DCE parameters.  

2.2.  Numerical simulations 

2.2.1.  Reconstruction accuracy in comparison to alternative 

reconstruction method  

The accuracy of the DNN reconstruction was tested in a custom digital phantom consisting of 

2500 pixels, each corresponding to a set of DCE parameters selected at random from a uniform 

distribution. A DCE-MRI acquisition with N=60 time-steps was simulated, as described in the 

Appendix section, for each pixel and the resulting signal used as input to the trained DNN. The 



simulations used the same scan protocol as that of the healthy subject (see section 2.3.1). The 

Pearson correlation between the DNN-estimated parameters and the reference values was 

calculated, along with the RMSE. The linear-least-squares best-fit line between the reference and 

estimated parameters was also calculated to evaluate the deviation from linearity.  

The accuracy of the DNN reconstruction in the phantom was compared to a standard 

reconstruction using nonlinear-least-squares (NLSQ) fitting implemented using the lsqcurvefit() 

function (Matlab R2018b, The Mathworks, Natick, MA). The algorithm was initialized with the 

following values: Ktrans=0.2, vp=40%, ve=40%, T1=1000 ms, BAT=50. The estimated values for 

each parameter were compared to the true values. To simulate the effect of a separate B1 scan, 

T1 scan and BAT analysis, as in conventional DCE processing [19], in a second experiment, the 

fitting algorithm was also provided with the true B1, T1 and BAT values with the fitting 

accuracy quantified for the remaining parameters. Finally, the NLSQ reconstruction was 

compared to a DNN reconstruction. All parameters were simultaneously estimated in the DNN 

reconstruction. Given the increased difficulty in fitting high dimensional signals and to ensure a 

fair comparison between the NLSQ and DNN reconstructions, the true B1, T1 and BAT values 

were only used to initialize the NLSQ algorithm rather than reduce the degrees-of-freedom.  

2.2.2.  Effect of injected training noise 

There is a tradeoff between the noise injected during training and the robustness of the DNN 

reconstruction to measurement noise. Noise injected in training serves to focus the network on 

actual signal features rather than artifacts or noise, reducing the risk of overfitting and leading to 

smoother and more realistic parameter maps. On the other hand, excessive training noise may 

overwhelm small differences between signals arising from different parameters, thereby reducing 

the sensitivity of the reconstruction to small variations in the parameters. To quantify this 

tradeoff, three networks were trained with varying levels of injected training noise corresponding 

to a training SNR of approximately 1, 21 and 41 dB calculated as SNR = 20·log10(S/N) with the 

signal S obtained using the maximum value of the signals comprising the training dataset. The 

use of the maximum signal value provides a ‘worse-case’ analysis which elucidates the limits of 

the proposed approach. To test the robustness of each network to measurement noise, the 

phantom’s simulated DCE signals were corrupted by zero mean Gaussian noise which was 

calibrated to obtain SNRs ranging from 20 to 80 dB. Each of the trained networks was used to 



reconstruct the phantom signals and the normalized RMS error (NRMSE) quantified for each 

parameter.  

2.2.3.  Effect of acquisition parameters on network quantification   

Accurate modeling in quantitative MRI require knowledge of the scan parameters. To quantify 

the error induced by training the network with the wrong acquisition protocol, numerical 

simulations were conducted. A network was trained using the protocol used in the volunteers 

(described in section 3.3) and then used to reconstruct two datasets. The first dataset was 

generated with the same protocol as that used in the network training whereas the second dataset 

was generated with a different protocol, namely the protocol used in imaging the tumor patient. 

2.3.  In vivo studies 

2.3.1.  MRI  

In vivo acquisitions were performed on a 3T scanner (Premier, GE Healthcare, Milwaukee, WI) 

using a fat-suppressed T1-weighted stack-of-stars k-space acquisition (radial ky-kx and Cartesian 

kz sampling) using the built-in transmit body coil and a 90-channel body receiver AIR coil. 

Acquired data were reconstructed using Golden-angle Radial Sparse Parallel (GRASP) [20], [21] 

method with a temporal resolution of 5 seconds.  

Healthy subjects were scanned with the DCE-MRI acquisition with the following parameters: 

FOV= 260mm × 260mm, TR/TE= 3.4/1.6 msec, FA= 15°, scan time = 6.3 min, parallel imaging 

acceleration factor along the kz dimension = 2. A patient with cervical cancer was scanned using 

the following parameters, defined in accordance with our institution’s clinical protocols which 

differed from the research protocol used in the healthy subject scan thereby necessitating a 

separately trained quantification network: FOV= 400mm×400mm, TR/TE= 3.2/1.5 msec, FA= 

12°, scan time = 6.3 min. 

The pre-contrast T1 map was obtained with a VFA sequence with flip angles=5°, 10°, 15°, 20° 

and the vendor’s Bloch-Siegert mapping [22] used for B1 mapping with flip angle=10°, TE=2.4 

ms and TR=164 ms. 

2.3.2.  Human subjects 



Ten healthy female volunteers (ages 24-40, mean age 29±4.9 years) and a 41 years-old patient 

with cervical cancer were recruited for this study and provided IRB informed consent. Each 

subject was injected with 0.1 mmol/kg of Gadavist followed by a 20 ml saline flush at 3 ml/s 

using a mechanical power injector.  

2.3.3.  Data processing 

A trained radiologist (S.W.) segmented the images into regions-of-interest (ROI) consisting of 

the cervix and outer uterine myometrium. In the cervical cancer subject, a tumor ROI was also 

defined. To validate the DNN-estimated maps, three representative voxels were selected in each 

dataset and the measured concentration-time curves were compared to concentration-time curves 

synthesized from the DNN-estimated parameters. The Pearson correlation was used to quantify 

the agreement between the measured and synthetized curves. 

2.3.3.1.  Inter-subject variability 

The variability of the proposed method was quantified in the 10 healthy volunteers. The mean 

(µ) and SD (σ) for each ROI and tissue parameter were calculated across all subjects and the 

coefficient of variation, defined as CV=100×σ/µ, computed for each parameter and tissue type 

(cervix and myometrium).  

2.3.3.2.  Comparison with NLSQ with measured B1 and T1  

The tissue maps obtained with DCE-Qnet in a healthy subject were compared to those obtained 

by NLSQ fitting using measured B1 and T1 maps and calculated BAT maps. The BAT was 

estimated by selecting the time point exhibiting the largest gradient in the signal. These 

parameters served as input to the NLSQ fitting algorithm to obtain the estimated Ktrans, vp and ve 

maps.  

2.3.4.  Tumor patient 

2.3.4.1.  Intra-subject reproducibility 

The in vivo reproducibility of the DNN quantification was assessed by test-retest experiments. 

The patient was scanned once with the DCE-MRI pulse sequence then scanned again 24 hours 

later. The data from both scans was reconstructed with the trained DNN and the CV used to 

calculate the agreement between the scans for each ROI.  



3.  Results 

3.1.  Numerical simulations 

3.1.1.  Quantification accuracy in comparison to alternative methods  

The DCE-Qnet estimated parameters are shown in comparison to the reference values for each 

parameter in Figure 2A assuming a fixed B1, corresponding to estimation with a measured B1 

map. The estimated and reference values were strongly correlated for all parameters (R2≥0.85). 

The best-fit line showed a maximum deviation from linearity of less than 6% across all 

parameters and little bias. The DCE-Qnet estimation of all parameters (Figure 2B) demonstrated 

increased variance although estimated parameters were still well correlated with the reference 

values. The NLSQ reconstruction performed poorly for simultaneous estimation of the 6 

parameters, resulting in estimates that were uncorrelated to the reference values (Figure 2C). 

Similarly, NLSQ estimation of 4 parameters was generally poor (Figure 2D) even with a fixed 

B1. When the algorithm was initialized with the true B1, BAT and T1 values the NLSQ 

estimation was markedly improved (Figure 2E), with the best-fit line showing a maximum 

deviation of less than 6%, similar to that of DCE-Qnet estimation of 5 parameters.  



 

Figure 2: Reconstruction accuracy and comparison between NLSQ and DCE-Qnet. (A) Estimated vs 

reference comparison for parameters estimated with DCE-Qnet for a known fixed B1 equivalent to using 

a measured B1 map. (B) Estimated vs reference comparison for simultaneous DCE-Qnet estimation of all 

parameters. Although the variance was larger, the DCE-Qnet values were nevertheless strongly correlated 

with the reference values despite simultaneous estimation of all 6 parameters. (C) Estimated vs reference 

comparison for joint estimation of all parameters using the NLSQ algorithm. Compare with the DCE-



Qnet estimation shown in (B). (D) NLSQ estimation for fixed B1. (E) NLSQ estimation when the true 

B1, true T1 and true BAT were provided as inputs to the function. 

3.1.2.  Effect of injected training noise 

The NRMSE of the parameter estimation obtained with DCE-Qnet networks trained with 

different noise levels is shown in Figure 3. Except for the BAT, the error of all parameters was 

predictably large at low SNR but dropped quickly with increasing SNR and converged to a level 

which varied depending on the injected noise level (Figure 3A). For example, the error 

converged at 20 dB for 1 dB training SNR but at 60 dB for 41 dB training SNR. Notably, greater 

injected noise resulted in faster convergence of the error albeit to a higher absolute error in 

comparison to a smaller noise injection.  

 

Figure 3: Normalized RMS error (NMRE) for different parameters as a function of SNR for networks trained with 

different injected noise levels. Shown is the output from the network trained with training SNR of (A) 41dB, (B) 21 

dB and (C) 1dB. Note that higher levels of injected noise reduced the SNR at which the error converged albeit at the 

cost of a larger error.  

3.1.3.  Effect of acquisition parameters on network quantification   

The tissue parameter values estimated with the network trained with the correct and wrong 

parameters in comparison to the reference values are shown in Supporting Figure S1.  Using the 

incorrect protocol in the network training increased the reconstruction error validating the 

necessity of a separately trained network for acquisitions with different parameters.   

3.2.  In vivo subjects 

3.2.1.  Healthy subjects 



Quantitative maps from a representative subject are shown in Figure 4A. The measured 

concentration-time curves (blue circles) for the three selected voxels are shown in Figure 4B 

along with the synthesized concentration-time curves in red. There was strong correlation (r ≥ 

0.99) between the measured and synthesized curves. The distribution of values in the delineated 

ROIs for a representative subject is shown for each parameter in Figure 5. The distributions of 

the estimated parameters reflected differences in the tissue types, as expected. The distribution of 

all estimated parameters in the cervix for all subjects is shown in Figure 6. The mean±SD values 

across all subjects, along with the inter-subject CVs are listed in Table 1. The CV varied by 

parameter, ranging between 5 and 51% in the cervix, and between 8 and 88% in the uterine 

myometrium. The tissue maps obtained with DCE-Qnet in comparison to those obtained with 

NLSQ in a healthy subject are shown in Supporting Figure S2. The DCE-Qnet maps showed 

improved image quality and better delineation of the anatomy than NLSQ, despite the use of 

measured B1, T1 and calculated BAT maps in the NLSQ fitting.  

 



 

Figure 4: (A) Quantitative Ktrans, vp, ve, T1, BAT and PD maps estimated by DCE-Qnet from a representative 

healthy subject. The three numbered red points on the PD map correspond to the sample concentration-time curves 

displayed in (B). (B) A comparison between the measured concentration-time curves (blue dots) and curves 

synthesized from the quantitative maps estimated by DCE-Qnet. Note the close agreement between the measured 

data and the synthesized curves.  



 

Figure 5: Box and whisker plots of the distribution of parameter values estimated with the proposed DCE-Qnet for 

different tissue types. Shown are (A) Ktrans, (B) vp, (C) ve, (D) T1, (E) BAT and (F) PD values.  

 

Figure 6: DCE and tissue parameter values for all healthy subjects scanned. The data was calculated for the ROI 

located in the cervix. Shown are (A) Ktrans, (B) vp, (C) ve, (D) T1, (E) BAT and (F) PD values.  

 



3.2.2.  Tumor patient 

The quantitative parameter maps for each time point are shown in Figure 7A and the 

concentration-time curves of three representative tumor voxels in Figure 7B. The measured and 

synthesized curves were in strong agreement (r ≥ 0.99). There were notable differences in the 

maps of the two time points (Figure 7A) due to distinct patient positioning and bladder filling. 

The distribution of values of each estimated parameter within the tumor is shown in Figure 8. 

The mean±SD and CV for each parameter in the myometrium and the tumor are listed in Table 

1. The test-retest repeatability varied by parameter yielding a CV in the tumor that ranged 

between 0.4 and 48%. A comparison of the results obtained in this study and those reported in 

the literature is listed in Table 2.  



 

Figure 7: (A) Estimated parameter maps for the patient with tumor for the two time points scanned with the second 

time point occurring 24 hours after the initial scan. The three numbered red points on the PD map of the second 

time-point correspond to the sample concentration-time curves displayed in (B). (B) A comparison between the 



measured concentration-time curves (blue dots) and curves synthesized from the quantitative maps estimated by 

DCE-Qnet in the tumor ROI.  

 

Figure 8: Box and whisker plots for the parameter values estimated using the proposed DNN in the tumor ROI for 

each of the measured time points. The second time point was acquired 24 hours after the first time point.  

Table 1: Mean±SD of tissue parameter values in the subjects scanned 

Anatomical region Tissue Parameters 

 Ktrans  

[1/min] 

Vp  

[%] 

Ve  

[%] 

T1  

[ms] 

BAT 

[sec] 

PD 

[a.u.] 

aHealthy subjects        

Cervix 0.21±0.07 2±1 59±3 1596±293 55±5 0.1±0.03 

CV [%] 35.7 51.4 5.3 18.3 11.8 30.6 

Uterine myometrium 0.28±0.06 4±3 56±5 1624±159 55±5 0.11±0.02 

CV [%] 23.1 88.4 8.9 9.8 8.1 23.5 

bTumor patient        

Uterine myometrium 0.25±0.03 8±5 6±1 1706±219 50±25 1.43±0.27 

CV [%] 14.4 60.2 1.9 12.8 46.8 18.5 

Tumor 0.18±0.02 4±2 58±3 1560±21 50±20 1.9±0.1 

CV [%] 11.9 46.7 4.5 1.4 37.8 5.5 

a CV calculated for the 10 subjects scanned 



b CV calculated for the 2 time points scanned 

 

4.  Discussion 

4.1.  Numerical simulations 

4.1.1.  Effect of injected noise in training 

The amount of noise injected in training had a measurable effect on the accuracy and image 

quality of the quantitative maps. By randomly varying the injected noise in each training epoch, 

the network learns to associate tissue parameters with signal features that exceed the noise floor 

rather than noise or artifacts (due to undersampling, for example). As such, increases in SNR did 

not improve the accuracy past a certain threshold (Figure 3). Increasing the injected noise 

reduced this threshold but also increased the absolute error. This can be understood to result from 

the noise overwhelming small signals in the phantom. Of note, the data in Figure 3 was 

generated with noise SD defined as a percentage of the maximum signal in the training dataset. 

This allows a ‘worse-case’ analysis but understandably results in relatively large errors, 

particularly for the case of 1 dB training SNR (Figure 3C). The error in vivo (Figure 4, Figure 7, 

Figure S2) was significantly smaller since a fixed noise SD is used instead.  

For a given noise level, the error as a function of SNR differed between the quantified tissue 

parameters. For example, the error in the BAT was consistently lower than that of the other 

parameters. This is reflective of the inherent sensitivity of the sequence to different parameters 

which is a challenge for accurate DCE quantification as discussed below.  

4.1.2.  Comparison to conventional quantification  

DCE quantification is commonly accomplished by NLSQ fitting of the measured data [23]. 

However, these fitting algorithms are known to be sensitive to initialization and noise and are 

more susceptible to getting trapped in local minima which affects the accuracy of the results 

(Figures 2B, 2C, Supporting Figure S2). DCE-Qnet quantification outperformed NLSQ fitting 

despite simultaneous estimation of a larger set of parameters (Figure 2A, Figure 2B). DCE-Qnet 

was trained on data generated by sampling the entire parameter space, which removes the need 

for parameter initialization and makes the quantification less vulnerable to local minima. 

Because it was trained on noisy data, DCE-Qnet was more robust to noisy measurements in vivo, 



enabling better delineation of the anatomy than NLSQ fitting even when separate B1 and T1 

maps were provided to the NLSQ algorithm (Supporting Figure S2).  

4.2.  In vivo experiments  

4.2.1.  Inter-subject variability 

The quantified tissue parameters values exhibited significant variations across subjects (Figure 6, 

Table 1) in the cervix and myometrium. This is to be expected given the substantial influence of 

age and menstrual period on the MRI characteristics of the uterus. Moreover, subject position 

(e.g., anterversion, mid-positioned, vs. retroversion) and the relationship with adjacent pelvic 

organs such as the degree of distension of the bladder can also affect the resulting maps [24], 

[25], [26].     

4.2.2.  In vivo reproducibility in the tumor 

The in vivo reproducibility in the tumor varied by parameter. Most parameters (Ktrans, ve, T1 and 

PD) showed good to excellent reproducibility. Since the BAT depends on the bolus injection 

time, which is operator dependent, larger variations (i.e. poor reproducibility) are to be expected.  

The reproducibility of the vp was also limited. This may be due to several factors. First, the 

magnitude of the vp in the tumor was small and hence more likely affected by estimation noise. 

Second, although the test-retest experiments yielded maps that were visually similar, there were 

clear differences between the two scans due to patient positioning and bladder filling (Figure 

7A). Bladder filling can deform neighboring organs thereby affecting the reproducibility of the 

measurements. Future studies will ensure consistent bladder filling between time points and will 

include more patients and more time points to guarantee accurate measurement of the 

reproducibility.  

4.2.3.  Comparison with previous studies 

Few studies have reported quantitative DCE parameters in healthy subjects due to growing 

awareness of the potential adverse effects of contrast agent accumulation [27]. However, the T1 

values measured in this study are similar to those reported by Bazelaire et al [28] in the cervix 

(1596±293 vs 1616±61 ms) and myometrium (1624±159 vs 1514±146 ms) which serves to 

validate our approach.  



There is a wide range of reported Ktrans, vp and ve values in cervical tumors, as shown in Table 2. 

Although some of these differences may be due to tumor heterogeneity, it is certain that 

differences in experimental conditions contributed to the differences in the values as well. 

Differences in the selection of AIF, hematocrit or relaxivity values assumed and the BAT 

processing used can affect the quantification. To our knowledge, this study is the first to account 

for the effects of B1 inhomogeneity in the DCE quantification. This is important because T1 

maps are commonly obtained using a variable flip angle (VFA) sequence which is strongly 

affected by B1 inhomogeneity [29], [30]. In turn, this affects the concentration-time curves 

leading to inaccuracies in the quantification. The use of DNN for DCE quantification has been 

proposed by others [31] though there are notable differences to our approach. First, this work 

proposes a joint estimation of the perfusion parameters along with T1 and B1. Secondly, DCE-

Qnet is trained entirely on simulated data which eliminates the need for patient data collection. 

Additionally, the patient data used in this study was acquired with a relatively slow (5 

seconds/frame) sampling rate, leading to a more challenging quantification. DCE-Qnet was 

nevertheless able to successfully reconstruct the quantitative tissue maps. Finally, unlike Ref. 

[31], the clinical focus of this study is cervical cancer.  

4.3.  Pharmacokinetic model  

This study used the Extended-Tofts pharmacokinetic model which can be motivated by 

consideration of the relatively slow sampling rate in our acquisition in comparison to e.g. 

Donaldson et al [32] and the assumption of highly perfused cervical tissue [33]. The use of the 

Tofts model also enables comparison with the numerous other studies listed in Table 2 that use 

this model. While various DCE models exist in the literature [19], the goal of this study was not 

to evaluate the merits of different models but to demonstrate the feasibility of DCE 

quantification using a neural network trained exclusively with simulated data. Indeed, DCE-Qnet 

is model-agnostic and can be applied with other pharmacokinetic models by simply changing the 

training dataset used.   

4.4.  T1 estimation from contrast enhancement 

DCE-Qnet introduces a novel way to estimate T1 from contrast enhancement only, which does 

not need variation of the flip angle in the acquisition as in standard T1 estimation techniques. 

Instead, the network is trained to exploit the dynamic T1 reduction produced by the passage of 



the contrast agent to infer the (contrast-free) tissue T1. This approach eliminates the need for a 

separate T1 scan and ensures perfect registration between all mapped parameters. However, 

since the T1 sensitivity is dependent on tracer uptake, T1 values in regions with poor uptake may 

incur errors in the estimation.   

4.5.  Challenges of deep learning for DCE quantification  

Deep learning quantification using physics-derived simulated training data was originally 

proposed for T1 and T2 estimation using MRF [6] and later adapted to quantification of other 

highly-multiparametric acquisitions [7], [8], [34], [35]. The key advantages of DNN-based 

quantification include rapid computation, elimination of the need for patient data, and 

simultaneous estimation of multiple parameters. Such features are beneficial in DCE 

quantification as well but limitations inherent to the DCE acquisition require careful 

consideration. In MRF, scan parameters can be freely varied to induce a differential signal 

evolution between tissues with different underlying parameters. In contrast, the DCE-MRI signal 

is defined by the contrast agent uptake in the tissue which is physiologically driven and only 

weakly dependent on the scan parameters. This limits the achievable sensitivity of the acquisition 

to small variations in tissue parameters. Tissues with low contrast agent uptake, such as fat, will 

therefore have a small DCE signal potentially resulting in larger errors in the estimated 

parameters for that type of tissues.  

4.6.  Limitations and future work 

This study used the population-based Parker AIF [15], [36] to improve reproducibility and to 

simplify the comparison to previous studies [32], [37], [38], [39], [40], [41]. Nevertheless, a 

subject-specific AIF may yield more accurate DCE parameters. Existing subject-specific AIF 

measurement methods require manual intervention and can suffer from partial volume and 

motion effects. Although outside the scope of this study, the proposed framework can also be 

adapted to include an estimation of subject-specific AIF along with the other tissue parameters. 

This is left for future studies. It should also be noted that T1 and B1 are covariates so errors in 

the estimation of one will propagate to the other parameters, reducing the precision. However, 

this can be mitigated by a separate B1 acquisition.  



Table 2: Cervical tumor DCE parameter values reported in the literature 

Reference No. of 

subjects 

Field (T) Contrast 

Agent 

Model AIF Ktrans Vp [%] Ve [%] 

This study 10 

(healthy) 

1 

(tumor) 

3 Magnevist  Extended 

Tofts 

Parker 0.21±0.07 

(healthy) 

0.18±0.02 

(tumor) 

2±1 

(healthy) 

4±2 (tumor) 

59±3 

(healthy) 

58±3 

(tumor) 

aKallehauge et 

al., 2013 [37] 

16 3 Dotarem Extended 

Tofts 

Various 0.46±0.29 6±5 54±14 

bLiu et al., 

2020, [38] 

48 3 Omniscan Extended 

Tofts 

Image- 

derived 

1.24±0.34 64±21 14±9 

Andersen et 

al., 2011, [39] 

78 1.5 Magnevist Tofts  Population 

based 

0.18±0.06 −−−− 42±16 

Donaldson et 

al., 2010, [32] 

30 1.5 Magnevist Extended 

Tofts 

Image- 

derived 

0.35±0.26 4±3 34±17 

Yang et al., 

2010, [40] 

39 1.5 Omniscan Extended 

Tofts 

Parker 0.18±0.05 2±1 36±11 

cFeng et al., 

2020, [41] 

38 1.5 Gado-

diamide 

Extended 

Tofts 

Image- 

derived 

0.71±0.32 73±15 24±21 

a average of Parker, magnitude and CT-derived AIFs, b average of non-residual and residual group, c average of significant and non-

significant reaction groups



 

5.  Conclusion 

This work describes a novel deep learning approach for comprehensive DCE-MRI quantification 

from a single acquisition. The method accounts for B1 inhomogeneity and simultaneously 

computes 6 tissue parameter maps, eliminating the need for separate T1 acquisition or BAT 

processing leading to a 10 minutes reduction in scan time and more accurate and reproducible 

quantification.  

6.  Appendix 

Contrast agent uptake was represented using the Extended Tofts model (ETM) [36], [42] where 

changes in concentration are modeled as a function of time. The AIF is the concentration of the 

contrast agent in the plasma of a feeding artery and is denoted by Cb(t). The AIF was obtained 

from the population-derived Parker AIF model [15]. The blood plasma concentration of the 

contrast agent, Cp(t), was obtained by scaling the AIF by the hematocrit (Hct) concentration: 

Cp(t) = Cb(t)/(1-Hct), with Hct=0.42.  

Defining vp as the plasma volume fraction, ve as the extracellular extravascular space (EES) in 

tissue and Ktrans as the volume transfer constant from plasma to EES, the tissue concentration of 

CA is given by [36], [42]:  

 𝐶𝑡(𝑡) =  𝑣𝑝𝐶𝑝(𝑡) + 𝐾𝑡𝑟𝑎𝑛𝑠 ∫ 𝐶𝑝(𝑡′)exp (
−𝐾𝑡𝑟𝑎𝑛𝑠(𝑡−𝑡′)

𝑣𝑒
) 𝑑𝑡′

𝑡

0
 

(A1) 

The arrival delay of the CA bolus to the tissue is modeled as a shift of the Ct(t) curve by the 

BAT:  

 𝐶𝑡
𝑠(𝑡) =  𝐶𝑡(𝑡 − 𝐵𝐴𝑇) (A2) 

The presence of CA induces a reduction in the T1 from its native value (T10) that is proportionate 

to the concentration-time curve and the relaxivity (r1) of the CA:  

 1

𝑇1
=

1

𝑇10
+ 𝑟1𝐶𝑡

𝑠(𝑡)  (A3) 

The T1 reduction affects the measured MRI signal, which for a spoiled gradient echo sequence, 

is dependent on several additional parameters such as the equilibrium signal S0, the TR and the 

FA α as well as the transmitter magnetic field inhomogeneity B1:   



 
𝑆 = 𝑆0 sin(𝐵1 ∙ 𝛼)

1−exp(− 
𝑇𝑅

𝑇1
)

1−cos(𝐵1·𝛼) ∙ (exp(− 
𝑇𝑅

𝑇1
))

  
(A4) 

The concentration-dependent signal equation can be obtained by substituting Eqn. (3) into Eqn. 

(A4):  

 

𝑆 = 𝑆0 sin(𝐵1 ∙ 𝛼)
1−exp (−𝑇𝑅(

1

𝑇10
+𝑟1𝐶𝑡

𝑠(𝑡))) 

1−cos(𝐵1·𝛼)∙exp (−𝑇𝑅(
1

𝑇10
+𝑟1𝐶𝑡

𝑠(𝑡)))

  

(A5) 

During training, the DNN learns a mapping between the DCE parameters, T1, BAT, and the 

measured signal as defined by Eq. (A5).  
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12.  Figure Captions 

Figure 1: Main components of the DCE-Qnet estimation process. (A) Sampling of the DCE 

parameters shown for 3 out of 6 parameters for visualization purposes. The parameter values 

were generated by LH sampling of the 6-dimensional space. (B) The population-based Parker 

AIF was used to generate the concentration-time curves for each of the DCE parameter 

combinations. (C) Concentration-time curves were converted to signal intensity values using the 

signal model defined in Eqn. (5). (D) Diagram of the neural network used. Signal intensity 

curves generated from the sampled DCE parameters were used as input to the network during 

training. The network learned to map the signal intensity curves to the underlying tissue 

parameters. The proton density was then calculated from measured and synthesized signals 

obtained with the estimated DCE parameters.  



Figure 2: Reconstruction accuracy and comparison between NLSQ and DCE-Qnet. (A) 

Estimated vs reference comparison for parameters estimated with DCE-Qnet for a known fixed 

B1 equivalent to using a measured B1 map. (B) Estimated vs reference comparison for 

simultaneous DCE-Qnet estimation of all parameters. Although the variance was larger, the 

DCE-Qnet values were nevertheless strongly correlated with the reference values despite 

simultaneous estimation of all 6 parameters. (C) Estimated vs reference comparison for joint 

estimation of all parameters using the NLSQ algorithm. Compare with the DCE-Qnet estimation 

shown in (B). (D) NLSQ estimation for fixed B1. (E) NLSQ estimation when the true B1, true 

T1 and true BAT were provided as inputs to the function. 

Figure 3: Normalized RMS error (NMRE) for different parameters as a function of SNR for 

networks trained with different injected noise levels. Shown is the output from the network 

trained with (A) 0.1% noise, (B) 1% noise and (C) 10%. Note that higher levels of injected noise 

reduced the SNR at which the error converged albeit at the cost of a larger error.  

Figure 4: (A) Quantitative Ktrans, vp, ve, T1, BAT and PD maps estimated by DCE-Qnet from a 

representative healthy subject. The three numbered red points on the PD map correspond to the 

sample concentration-time curves displayed in (B). (B) A comparison between the measured 

concentration-time curves (blue dots) and curves synthesized from the quantitative maps 

estimated by DCE-Qnet. Note the close agreement between the measured data and the 

synthesized curves.  

Figure 5: Box and whisker plots of the distribution of parameter values estimated with the 

proposed DCE-Qnet for different tissue types. Shown are (A) Ktrans, (B) vp, (C) ve, (D) T1, (E) 

BAT and (F) PD values. 

Figure 6: DCE and tissue parameter values for all healthy subjects scanned. The data was 

calculated for the ROI located in the cervix. Shown are (A) Ktrans, (B) vp, (C) ve, (D) T1, (E) 

BAT and (F) PD values. 

Figure 7: (A) Estimated parameter maps for the patient with tumor for the two time points 

scanned with the second time point occurring 24 hours after the initial scan. The three numbered 

red points on the PD map of the second time-point correspond to the sample concentration-time 

curves displayed in (B). (B) A comparison between the measured concentration-time curves 



(blue dots) and curves synthesized from the quantitative maps estimated by DCE-Qnet in the 

tumor ROI. 

Figure 8: Box and whisker plots for the parameter values estimated using the proposed DNN in 

the tumor ROI for each of the measured time points. The second time point was acquired 24 

hours after the first time point. 

Supporting Information 

Supporting Figure S1: Estimated vs reference tissue parameter values for a network trained 

with the correct (blue points) and wrong (red points) acquisition parameters. The network trained 

with the wrong acquisition parameters resulted in increased error as indicated by the higher 

RMSE.   

Supporting Figure S2: (A) Tissue maps obtained with NLSQ fitting using measured B1 and T1 

maps. (B) Tissue maps obtained with DCE-Qnet for the same subject. DCE-Qnet yielded maps 

with improved image quality due to the greater robustness to noise imparted by the network 

training. (C) Distribution of tissue parameter values for each method in an ROI placed in the 

cervix.  

Supporting Table S3: Statistical measures of the agreement between the true and estimated 

parameter values for the different fitting experiments shown in Figure 2.  

 

 

 

 


