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Antioxidant proteins are substances that protect cells from the damage caused by free radicals. Accurate identification of new
antioxidant proteins is important in understanding their roles in delaying aging. Therefore, it is highly desirable to develop
computational methods to identify antioxidant proteins. In this study, a Näıve Bayes-based method was proposed to predict
antioxidant proteins using amino acid compositions and dipeptide compositions. In order to remove redundant information, a
novel feature selection techniquewas employed to single out optimized features. In the jackknife test, the proposedmethod achieved
an accuracy of 66.88% for the discrimination between antioxidant and nonantioxidant proteins, which is superior to that of other
state-of-the-art classifiers. These results suggest that the proposed method could be an effective and promising high-throughput
method for antioxidant protein identification.

1. Introduction

Oxidation is a chemical reaction that transfers electrons or
hydrogen from a substance to an oxidizing agent. Oxidation
reactions can produce free radicals. In turn, these radicals can
start chain reactions.When the chain reaction occurs in a cell,
it can cause damage or death to the cell. Moreover, oxidative
stress is also the cause and the consequence of disease.
Antioxidants are proteinmolecules that terminate these chain
reactions by removing free radical intermediates and inhibit
other oxidation reactions. They do this by being oxidized
themselves, so antioxidants are often reducing agents such as
thiols, ascorbic acid, or polyphenols [1].

Antioxidants are widely used in dietary supplements and
have been investigated for the prevention of diseases such
as cancer, coronary heart disease, and even altitude sickness.
Plants and animals maintain complex systems of multiple
types of antioxidants, such as glutathione, vitamin A, vitamin
C, and vitamin E, as well as enzymes such as catalase,

superoxide dismutase, and various peroxidases. Insufficient
levels of antioxidants or inhibition of the antioxidant enzymes
can cause oxidative stress and may damage or kill the cells.

As oxidative stress appears to be an important part of
many human diseases, the use of antioxidants in pharma-
cology is intensively studied, particularly as treatments for
stroke and neurodegenerative diseases. Recently, Fernandez-
Blanco et al. reported a computational model to identify
antioxidant proteins based on star graph topological indices
[2]. However, by analyzing Fernandez-Blanco et al.’s dataset,
we found that sequences in their dataset share high-sequence
similarities; some sequences in their dataset even share
100% sequences identity. It has been demonstrated that the
predictive accuracy is closely related to sequence identity
[3, 4], and high-sequence similarity can surely lead to the
overestimation of predictive performance. Therefore, their
results are not credible. There is an urgent need to develop
efficient computational tools for antioxidant proteins identi-
fication.
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In the current study, we propose a Näıve Bayes-based
computational model for predicting antioxidant proteins
using amino acid compositions and dipeptide compositions.
The correlation-based feature subset selection algorithm [5]
was introduced to find the optimal feature set. By using the
optimized features, the proposed model was evaluated in a
benchmark dataset in the jackknife test.

According to some recent comprehensive reviews [6, 7]
a series of recent publications [8–13], to establish a really
useful statistical predictor, we need to consider the following
procedures: (i) construct or select a valid benchmark dataset
to train and test the predictor; (ii) formulate the statistical
samples with an effective mathematical expression that can
truly reflect their intrinsic correlation with the target to be
predicted; (iii) introduce or develop a powerful algorithm
(or engine) to operate the prediction; (iv) properly perform
cross-validation tests to objectively evaluate the anticipated
accuracy of the predictor; (v) and establish a user-friendly
webserver for the predictor that is accessible to the public.
Below, let us describe how to deal with these steps one by one.

2. Materials and Methods

2.1. Dataset. Fernandez-Blanco et al. have constructed a
dataset containing 324 proteins with antioxidant activity
and 1657 proteins without [2]. However, sequences in their
dataset share high-sequence identity.The predictive accuracy
is closely related to the sequence identity [3, 4], and high-
sequence similarity can surely lead to the overestimation of
predictive performance.

In order to prepare a reliable benchmark dataset, we
first extracted proteins with antioxidant activities from the
UniProt [14] according to the following steps: (i) only proteins
with the experimentally confirmed antioxidant activities
were included; (ii) the proteins which are fragments of
other proteins were dislodged; (iii) and proteins containing
nonstandard letters, that is, “B”, “X”, or “Z”, were excluded as
their meanings are ambiguous. After following the aforemen-
tioned strict screening procedures, we obtained 686 proteins
with antioxidant activity and obtained a new raw dataset
by merging the 686 proteins into Fernandez-Blanco et al.’s
dataset [2].

For balancing the number of samples and providing a
significant statistics, sequences which have >60% sequence
similarity were removed from the new raw dataset using CD-
HIT program [15]. If the sequence identity cutoff is set to a
stringent threshold of 25%, the results will be more objective
and reliable. However, in this study we did not use such a
stringent criterion because the currently available data do
not allow us to do so. Otherwise, the number of antioxidant
proteins would be too low to have statistical significance.
Finally, a benchmark dataset containing 254 antioxidant and
1567 nonantioxidant proteins was constructed and can be
found in the online Supporting Information S1 available
online at http://dx.doi.org/10.1155/2013/567529. For further
estimating the performance of the method, we also collected
20 antioxidant proteins (supporting information S2) which
are independent from the training set.

2.2. Feature Vector. One of the most important parts for
identifying protein attributes is to generate a set of proper
informative parameters to encode protein sequences. The
amino acid composition and dipeptide composition are the
most important and effective parameters which have been
widely applied in the realm of protein prediction [10–13].
Hence, every protein sequence in the benchmark dataset was
encoded in a discrete vector as follows:

F = [𝑓
1
, 𝑓
2
, . . . , 𝑓

420
]
T
, (1)

where 𝑓
𝑖
are the normalized occurrence frequencies of the 20

amino acids (𝑖 = 1, 2, . . . , 20) and the 400 dipeptides (𝑖 =
21, 22, . . . , 420) in the protein sequence, respectively. T is the
transposing operator.

2.3. Feature Selection. Inclusion of redundant and noisy
features in the model building process would cause poor
predictive performance and increased computation time.
Feature selection is the process of removing irrelevant fea-
tures and is extremely useful in reducing the dimensionality
of the data and improving the predictive accuracy. To reduce
the dimension of the feature space and improve the predictive
accuracy, the filter method Correlation-based Feature Selec-
tion [5] combined with best-first search strategy was used in
the process of feature selection in the current work.

The process starts with an empty set of features and
generates all possible single-feature expansions. The subset
with the highest accuracy is chosen and expanded in the same
way by adding single features. If when expanding a subset
the accuracy does not maximize, the search drops back to the
next best unexpanded subset and continues from there until
all features are added. The subset with the highest accuracy
will be selected as the final optimized feature set [16].

2.4. Naı̈ve Bayes. Näıve Bayes is an effective statistical classi-
fication algorithm [17] and has been successfully used in the
realm of bioinformatics [18–20].The theory of Näıve Bayes is
to assume the attribute variables to be independent from each
other given the outcome. This assumption greatly simplifies
the calculation of conditional probabilities.

In the Näıve Bayes framework, a classification problem
can be seen as the problem of finding the outcome with
maximumprobability given a set of observed variables. Given
the protein example described by its feature vector F =
(𝑓
1
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, . . . , 𝑓
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), we need to look for a class C that maximizes

the likelihood P(F | C) = P(𝑓
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, . . . , 𝑓

𝑛
| C). Since

the current work is intended to classify antioxidant and
nonantioxidant proteins, a binary class C ∈ (0, 1) was
generated, where 1 denotes the sample that was predicted as
an antioxidant protein and 0 denotes nonantioxidant protein.
For the binary classification, the class for the protein sample
could be determined by comparing two posteriors as follows:
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Taking the logarithm of (2), we have
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Hence, the sample will be predicted as 1 (antioxidant protein)
if

log
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≥ 𝜃, (4)

and 0 (nonantioxidant protein) for otherwise. 𝜃 is the
threshold determining the tradeoff between sensitivity and
specificity and can be trained on the training dataset to
maximize the prediction performance.

2.5. Performance Evaluation. The performance of the pro-
posed model was evaluated using sensitivity, specificity
(Garmer, Sperling, and Forsberg), and accuracy (Acc), which
are expressed as follows:

Sn = TP
TP + FN

,

Sp = TN
TN + FP

,

Acc = TP + TN
TP + FN + TN + FP

.

(5)

TP, TN, FP, and FN represent the number of the correctly
recognized antioxidant proteins, the number of the correctly
recognized nonantioxidant proteins, the number of nonan-
tioxidant proteins recognized as antioxidant proteins, and the
number of antioxidant proteins recognized as nonantioxidant
proteins, respectively.

As the performance of the current classifier depends on
the threshold 𝜃 as given in (4), the receiver operating charac-
teristic (ROC) curve was employed. Therefore, the quality of
a classifier can be objectively evaluated bymeasuring the area
under the receiver operating characteristic curve (auROC).
The value of auROC score ranges from 0 to 1, with a score
of 0.5 corresponding to a random guess and a score of 1.0
indicating a perfect separation.

3. Results and Discussion

Three cross-validation methods, namely, subsampling test,
independent dataset test, and jackknife test, are often
employed to evaluate the predictive capability of a predictor.
Among the three methods, the jackknife test is deemed the
most objective and rigorous one that can always yield a
unique outcome as demonstrated by a penetrating analysis
in a recent comprehensive review [21], and hence has been
widely and increasingly adopted by investigators to examine
the quality of various predictors (see, e.g., [8, 22–28]).
Accordingly, the jackknife test was used to examine the
performance of the model proposed in the current study. In

Table 1: Predictive performance of Näıve Bayes based on different
features.

Feature dimensions Sn (%) Sp (%) Acc (%) auROC
420 75.59 52.65 55.85 0.680
44 72.04 66.05 66.88 0.855

the jackknife test, each sequence in the training dataset is in
turn singled out as an independent test sample and all the rule
parameters are calculated without including the one being
identified.

3.1. Prediction of Antioxidant Proteins. We trained the Näıve
Bayes classifier using Waikato Environment for Knowledge
Analysis (WEKA) [29] on the benchmark dataset. As shown
in Table 1, in the jackknife test, an auROC score of 0.68 and
an accuracy of 55.85% with an average sensitivity of 75.59%
and an average specificity of 52.65% were obtained for the
classification of antioxidant and nonantioxidant proteins by
using all the 420 features, that is, 20 amino acid compositions
and 400 dipeptide compositions.

For saving computing time, cross-validation methods
(fivefold or tenfold) are widely used for feature selection
in computational proteomics [16, 30]. In order to identify
prominent features that can distinguish between antioxi-
dant and nonantioxidant proteins, feature selection method
was also carried out to eliminate the redundant features
using WEKA in a ten-fold cross-validation approach on
the benchmark dataset. In the ten-fold cross-validation, the
benchmark dataset is split into ten pieces, and cross validation
is performed using each of these ten pieces as the testing
set. Thus, the training process is performed ten times, each
of which uses the data obtained by deleting the testing set
from the whole dataset. We found that the proposed method
achieved a maximum accuracy of 66.89% and auROC of
0.762 when the feature dimension reduced to 44 (i.e., C, G,
FP, FW, LK, LS, IE, VL, VH, VC, VW, MS, PD, AP, AY, YQ,
YE, YR, HE, HG, QA, KA, KH, DF, DK, DR, EF, EM, EY, ER,
CP, CN, CG, WC, RT, RD, RW, SV, SD, GV, GY, GK, GC).

The jackknife test results of the Naı̈ve Bayes classifier
based on the 44 optimized features for identifying antioxidant
proteins were listed in Table 1. As it can be seen from Table 1,
the currentmethod yielded a better auROC score of 0.855 and
a predictive accuracy of 66.88% with an average sensitivity of
72.04% and an average specificity of 66.05% (Table 1). Both
predictive accuracy and auROC are higher than those of the
model based on the 420 features.

Moreover, for the purpose of evaluating the performance
of the proposed method, we used the 20 experimentally-
confirmed antioxidant proteins (in Supporting Information
S2) to examine the method. As a result, 16 antioxidant pro-
teins were correctly predicted by the proposed method; see
Table 2. This result demonstrates the excellent performance
of our model.

3.2. Comparison with Other Methods. In order to further
testify its superiority, we compared the capability of the
present model with that of other models based on different
kinds of algorithms such as BayesNet, J48 tree, and Random
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Table 2: Predictive results based on the independent dataset.

UniProt ID Predictive result
Q148E0 Antioxidant
Q7RTV5 Antioxidant
Q9D1A0 Antioxidant
P80239 Antioxidant
P0AE08 Antioxidant
Q7BHK8 Nonantioxidant
P0A251 Antioxidant
P0A5N4 Antioxidant
Q8L5E0 Antioxidant
P06728 Antioxidant
Q03247 Antioxidant
P23529 Nonantioxidant
P30041 Antioxidant
O19097 Antioxidant
P23345 Antioxidant
P23346 Antioxidant
O65198 Nonantioxidant
P93407 Antioxidant
P11964 Nonantioxidant
P10792 Antioxidant

Table 3: Comparison of Näıve Bayes with other methods by using
optimized features.

Classifier Sn (%) Sp (%) Acc (%) auROC
BayesNet 42.12 92.53 85.50 0.800
J48 tree 26.37 90.81 81.82 0.565
Random Forest 28.35 97.64 87.97 0.797
Näıve Bayes 72.04 66.05 66.88 0.855

forest. All the classifiers were compared on the benchmark
dataset based on the optimized features (i.e., C, G, FP, FW,
LK, LS, IE, VL, VH, VC, VW, MS, PD, AP, AY, YQ, YE, YR,
HE, HG, QA, KA, KH, DF, DK, DR, EF, EM, EY, ER, CP, CN,
CG, WC, RT, RD, RW, SV, SD, GV, GY, GK, GC). Their best
predictive results from jackknife test were shown in Table 3.

Although the accuracies of BayesNet, J48 tree, and Ran-
dom forest are higher than those of Näıve Bayes, their auROC
scores and sensitivities are all much lower than those of Näıve
Bayes. These results indicate that the proposed Näıve Bayes
model can be effectively used to classify antioxidant and
nonantioxidant proteins.

4. Conclusions

In this study, the Näıve Bayes classifier with feature selection
method is presented to identity antioxidant proteins based
on the primary sequence information. By using Correlation-
based Feature Subset Selection algorithm, the feature dimen-
sions were reduced to 44 prominent features that could
remarkably improve the predictive accuracies. However, the
detailed analyses of the selected features are required to
provide more information about their roles in biological

activity. It is expected that the presented model will pro-
vide novel insights into the research on antioxidants. Since
user-friendly and publicly accessible webservers represent
the future direction for developing practically more useful
predictors [31], we shall make efforts in our future work to
provide a webserver for the method presented in this paper.
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